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Abstract

The design sensitivity formulation of an energy finite element method is presented using the direct
differentiation and adjoint variable methods. The continuum method is used to derive the design sensitivity
equation of the energy flow equation, whereas the discrete method is used to calculate the variation of the
coupling relation. For design variables, material property, panel thickness, and structural shape are taken
into account, in addition to the structural damping factor. The design variable’s effect on the power transfer
coefficient is discussed in detail. Even if the system matrix equation is not symmetric, the adjoint problem is
solved using the same factorized matrix from response analysis. Design sensitivity results calculated from
the proposed method are compared to the finite difference sensitivity results with a good agreement.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Some research has been performed in structural–acoustic design using the finite element method
(FEM) and the boundary element method (BEM). Design sensitivity is the most important and
expensive information in the modern, gradient-based design optimization process. Ma and
Hagiwara [1], Wang et al. [2], Salagame et al. [3], Choi et al. [4], and Scarpa [5] used FEM to
calculate the design sensitivity of radiated noise. Kane et al. [6], Smith and Bernhard [7], Cunefare
and Koopman [8], Matsumoto et al. [9], Koo [10], and Kim et al. [11] used BEM to calculate the
design sensitivity. The continuum method, discrete method, and semi-analytical method are used
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in the calculation of the design sensitivity. However, the practicality of these methods is limited to
low-frequency (20–200Hz) design problems because an excessive number of elements are required
in high-frequency analysis [12]. The element size of the structural and acoustic domain must be
smaller than the wavelength to ensure an accurate prediction.

Since the response at high frequencies is very sensitive to small changes in the model, statistical
energy analysis (SEA) is often used to simulate the structural–acoustic behavior of a
large system [13–15]. Given its similarities to the heat transfer problem, this approach
uses the conservation of vibration energy within a subsystem of similar modes. From a design
point of view, Lu [16] used SEA to find optimum damping factors to control the power flow of a
system. However, since single energy value represents the lumped subsystem’s status, the energy
variation within a subsystem cannot be represented. In addition, the geometric and material
parameters, which often serve as design variables, do not appear explicitly in the governing
equation.

In contrast to SEA, energy flow analysis (EFA) has been developed using an analytical method
that can represent the vibration behavior of a structure in the averaged sense [17–22]. The
nearfield response is disregarded in high-frequency ranges, and the farfield response is used to
represent the vibration behavior of the structure. Since energy conservation is imposed locally, it
is possible to represent the structural geometry in detail, which is critical from a design point of
view. Even if the response variable (energy density) is not continuous across structural junctions,
this approach has been integrated with FEM to simulate the vibration behavior of a complicated
structure at high frequencies [19,23,24].

Although EFA has been applied to engineering applications using the FEM, its design
sensitivity analysis and optimization has not been fully developed. Recently, Bitsie and Bernhard
[25] differentiate the energy finite element matrix equation with respect to the structural and
acoustic damping factors, plate radiation efficiency, and surface sound absorption coefficient. The
direct differentiation method and chain rule of differentiation are used to evaluate the sensitivity
coefficient of the total energy. Bernhard and Huff [26] studied the effect of panel thickness
changes on energy density levels. However, they did not address the computational method to
calculate the design sensitivity. For the optimization, Borlase and Vlahopoulos [27] integrated the
energy FEM into the design optimization process. The finite difference method (FDM) is used to
calculate the design sensitivity coefficient of the energy density with respect to the structural
damping factors that are design variables.

In this paper, a rigorous development of design sensitivity analysis for the energy flow problem
is presented. The variational equation is differentiated with respect to design variables. Such
design variables as material property, panel thickness, and structural shape are taken into account
in addition to the structural damping factor. The first two types of design variables refer to a
parametric design variable, since the structural configuration does not change during the design
process. When the structural shape is a design variable, however, the effect of this variable is
complicated, and the concept from the material derivative approach [28] is used in the derivation
of the design sensitivity formulation. Two methods are proposed in calculating the design
sensitivity: the direct differentiation method and the adjoint variable method. The first method
solves for the response variable sensitivity, and the performance sensitivity is then obtained using
the chain rule of differentiation. In contrast, the second method computes the performance
sensitivity by solving the adjoint problem. Even if the adjoint problem is not symmetric, the
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adjoint variable method still uses the same factorized coefficient matrix from response analysis. It
is also shown that the adjoint problem is identical for different design variables.

In EFA, the complicated geometry (built-up structures) is assembled from simple structural
components (rod, beam, membrane, plate, etc.) by using the power transfer coefficient between
components. This power transfer coefficient is a function of the design variables. Thus, in design
sensitivity analysis it is necessary to derive the expression of the power transfer coefficient in terms
of the design variables. Several methods are proposed to calculate the power transfer coefficient.
Langley and Heron [29] proposed an analytical method by using the wave transmission method.
De Langhe et al. [30] used finite element analysis and an artificial damping factor that simulates
the effect of infinite members. Vlahopoulos et al. [31] proposed an iterative scheme using
frequency response analysis. The method of Vlahopoulos et al. [31] is useful when the analytical
method cannot be used, such as on a spot-welded structure. In this paper, an analytical method is
used to calculate the power transfer coefficient and its sensitivity, because the last two methods
present difficulties when used for design sensitivity calculation purposes.

2. Overview of EFA

In order to develop a design sensitivity formulation in the subsequent section, EFA [19–22] and
energy finite element analysis [19,23,24] are first reviewed, including a method to calculate the
power transfer coefficient.

2.1. Energy flow equation

The energy flow equation for the steady state structural problem can be obtained through the
energy conservation relation and the time- and space-averaging process [21] as

�
c2

g

Zo
r2e þ Zoe ¼ p; ð1Þ

where e is the time- and space-averaged energy density function, r2 is the Laplace differential
operator, Z is the hysteresis-damping factor, o is the excitation frequency, p is the input power
density, and cg is the group speed [32]. The first term on the left side of Eq. (1) represents the
transmitted power, whereas the second term represents the time-averaged dissipated power. Thus,
Eq. (1) is the balance between inputted, transmitted, and dissipated powers. Note that the
hysteresis-damping factor Z is assumed to be small in the derivation of Eq. (1), i.e Z51:

As discussed by Cho and Bernhard [23], the energy flow equation (1) satisfies within a structural
component. Unlike displacement in structural problems, energy density e is not continuous across
the junction between structural components. The connection between different components can
be achieved through the conservation of power flow and the superposition of vibration energy.
Consider a built-up structure made up of a collection of structural components. Each component
occupies a domain Oi (CR2) with boundary Gi (i ¼ 1;y; r). These domains are interconnected by
constraints at each boundary; that is, structural components are connected to adjacent
components by junctions that constrain admissible fields.
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Fig. 1 illustrates a simple built-up structure with two components (O1 and O2). The boundary of
Oi is composed of Ge

i ; where the energy density e is prescribed, Gq
i where the power flow q is

prescribed, and the junction boundary Gij: In each component Oi; the weak formulation of the
second order differential equation (1) can be obtained by multiplying the virtual energy density %ei

with it, and by integrating the equation over the component’s domain. After integration by parts,
we obtainZ Z

Oi

c2
gi

Zio
r%ei � rei þ Zio%eiei

 !
dO ¼

Z Z
Oi

%eipi dO�
Z
Ge

i ,Gq
i
,Gij

%eiðni � I iÞ dG; i ¼ 1; 2; ð2Þ

where rei ¼ ½@ei=@x; @ei=@y	T is the gradient vector of the energy density, ‘‘ � ’’ is the inner product
between vectors and matrices, ni is the unit outward normal vector to the boundary, and

I i ¼ �
c2

gi

Zio
rei; ð3Þ

is the time- and space-averaged energy intensity. Since the last integral on the right side of Eq. (2)
represents the power flow on the boundary, we can define the relation

qi ¼ ni � I i: ð4Þ

By using the fact that the virtual energy density %ei vanishes on the boundary Ge
i ; and that the

power flow on the boundary Gq
i is given, the variational equation of the built-up structure in Fig. 1

can be written as X2

i¼1

Z Z
Oi

c2
gi

Zio
r%ei � rei þ Zio%eiei

 !
dO

¼
X2

i¼1

Z Z
Oi

%eipi dO�
Z
Gq

i

%ei #qi dG

 !
�
Z
G12

ð%e1q1 þ %e2q2Þ dG; ð5Þ

with the interface condition q1 þ q2 ¼ 0 on G12:
In a general setting, let e denote a composite vector of energy density fields in the components

making up the built-up structure; that is, e ¼ ½e1; e2;y; er	T; where eiA½H0ðOiÞ	2 represents the
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Fig. 1. A built-up structure with components O1 and O2:
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energy density of the component Oi: The space of kinematically admissible fields is defined as a set
of energy densities that satisfy homogeneous boundary and interface conditions between
components. That is,

Z ¼ feAW : e ¼ 0 on Ge and qi þ qi ¼ 0 on Gijg; ð6Þ

where the product space W ¼ Pr
i¼1½H

0ðOiÞ	2 is the space of energy density fields that satisfy the
required degree of smoothness, Ge ¼ Ge

1,Ge
2,?,Ge

r is the essential boundary where the energy
density function is prescribed, and Gij is the common boundary of components i and j: By using
this definition, Eq. (5) satisfies for every %e � ½%e1; %e2;y; %er	T belonging to the space Z of
kinematically admissible fields.

For convenience in design sensitivity derivations, variational equation (5) can be rewritten using
bilinear and linear forms as

aOðe; %eÞ þ bGðe; %eÞ ¼ cOð%eÞ; 8%eAZ; ð7Þ

where the bilinear and linear forms are defined as

aOðe; %eÞ �
Xr

i¼1

aOi
ðei; %eiÞ ¼

Xr

i¼1

Z Z
Oi

c2
gi

Zio
r%ei � rei þ Zio%eiei

 !
dO; ð8Þ

cOð%eÞ �
Xr

i¼1

cOi
ð%eiÞ ¼

Xr

i¼1

Z Z
Oi

%eipi dO�
Z
Gq

i

%ei #qi dG

" #
; ð9Þ

bGðe; %eÞ �
XNr

ði;jÞ¼1

bGij
ðei; ej; %ei; %ejÞ ¼

XNr

ði;jÞ¼1

Z
Gij

ð%ejqi þ %eiqjÞ dG; ð10Þ

where Nr is the number of interfaces within the built-up structure. Note that the bilinear form
aO( � , � ) is symmetric with respect to its arguments, while bG( � , � ) is not. In fact, with its interface
condition, bG( � , � ) represents the conservation of power flow across the discontinuity of the
material property or junction geometry.

From a design point of view, the parameters that appear in Eq. (7) can serve as design variables.
In the case of a plate-bending problem, for example, the group speed can be written as

cg ¼ 2

ffiffiffiffiffiffiffiffiffiffi
o2D

rh

4

s
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2Eh2

12rð1 � n2Þ
4

s
; ð11Þ

where r is the density of the plate, E is Young’s modulus, v is the Poisson ratio, h is the thickness
of the plate, and D is the flexural rigidity. As will be shown in Section 3, the parameters in
Eq. (11), as well as the hysteresis-damping factor Z; will serve as parametric design variables.
However, in the case of a shape design problem in which the structural domain O is itself a design
variable, an explicit representation of a design variable as a parameter of the problem is not
obvious, which will be discussed in Section 4.
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2.2. Finite element discretization

The analytical solution to Eq. (7) can only be obtained for a simple geometry. In general
structures, FEM is often used to approximate the solution to Eq. (7). The FEM process involves
dividing the structural component’s domain Oi into a set of simple finite elements Om

i ðm ¼
1;y;NiÞ; and then imposing Eq. (7) on each element. The global system of matrix equations can
be obtained through the assembly process. However, the EFA assembly process is different from
conventional FEM, because the energy density is not continuous across structural junctions [23].
Instead of the state variable’s continuity, the conservation of power flow is used in the assembly
process. The structural junction appears when either the material property or the geometric
configuration changes. If no junction exists, then a regular finite element assembly process can be used.

In FEM, the energy density in finite element Om
i is approximated using an interpolation vector

fNm
i g and a nodal energy density vector fEm

i g as

em
i ¼ fNm

i g
TfEm

i g: ð12Þ

The dimensions fNm
i g and fEm

i g are the same as the number of nodes in element Om
i : Then, the

nodal energy density vector of component Oi is defined by

fEig ¼ fE1
i ,E2

i ,y,ENi

i gT: ð13Þ

The same interpolation method will be used for the virtual energy density %ei in the Galerkin
approximation. By using the standard Gauss integration method, the bilinear and linear forms in
Eqs. (8)–(10) are approximated byXr

i¼1

Z Z
Oi

c2
gi

Zio
r%ei � rei þ Zio%eiei

 !
dOE

Xr

i¼1

f %Eig
T½K i	fEig; ð14Þ

Xr

i¼1

Z Z
Oi

%eipi dO�
Z
Gq

i

%ei #qi dG

" #
E
Xr

i¼1

f %Eig
TfF ig; ð15Þ

XNr

ði;jÞ¼1

Z
Gij

ð%eiqi þ %ejqjÞ dGE
XNr

ði;jÞ¼1

f %Ei; %Ejg
Qi

Qj

( )
: ð16Þ

The global system of matrix equations can be obtained through the assembly process. After
imposing the essential boundary condition, the global system of matrix equations is obtained as

½K 	fEg ¼ fFg � fQg; ð17Þ

where fEg ¼ fE1;E2;y;Erg
T; fFg ¼ fF1;F2;y;Frg

T; fQg ¼ fQ1;Q2;y;Qrg
T; and

½K 	 ¼ A
r

i¼1
ð½K i	Þ; ð18Þ

where A denotes the assembly operator that maps the component’s coefficient matrix into the
global coefficient matrix.

When discontinuities in the material property and junction shape exist, the power flow vector
{Qi} must be calculated from the conservation of power flow across the junction. This process is
equivalent to the construction of kinematically admissible fields, defined in Eq. (6). For simplicity,
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let the components Oi and Oj have a single element i and j; respectively, and let elements i and j

share the discontinuous junction. Then, the conservation requirement yields the following relation
between the power flow and the energy density of two adjacent elements:

Qi

Qj

( )
¼ ½J ij	

Ei

Ej

( )
: ð19Þ

Note that it is necessary to define duplicate nodes along the junction. Construction of the junction
matrix [J ij] involves calculating the power transfer coefficient [23]. Thus, it is critical to calculate the
power transfer coefficient in the assembly process. In addition, the power transfer coefficient is a
function of the material property, panel thickness, and junction geometry, which are design variables.

Given the relation in Eq. (19), the power flow vector in Eq. (17) moves to the left side of the
matrix equation. Thus, the assembled matrix of elements i and j becomes

K i 0

0 K j

" #
þ ½J ij	

" #
Ei

Ej

( )
¼

F i

F j

( )
: ð20Þ

Due to the asymmetry of the junction matrix [J ij], the coefficient matrix in Eq. (20) is not
symmetric. However, it will be shown in the development of the design sensitivity formulation
that such asymmetry does not cause any further computational cost in solving the adjoint
problem.

2.3. Power transfer matrix

Langley and Heron [29] presented an analytical method for calculating the power transfer
coefficient for arbitrary angled plate-to-plate junctions. Such a method is used in this paper for
EFA as well as for design sensitivity analysis. The analytical method of calculating power transfer
coefficients uses a junction composed of semi-infinite plates. The rationale for applying this semi-
infinite theory to the finite-dimension has been discussed by Cremer et al. [32] and Cho [33]
through the frequency-averaging process at high frequencies. Consider a set of semi-infinite flat
plates connected directly or via a reinforced beam. Given a specific kind of incident wave with unit
amplitude on one plate, the amplitudes of the transmitted waves on all coupled plates can be
evaluated using the dynamic stiffness matrix method. As a result, based on wave amplitudes the
power carried by different waves can be calculated, from which the power transfer coefficient can
be obtained. A detailed derivation of the power transfer coefficient is presented in Eq. (A.9) of
Appendix A, in conjunction with its sensitivity derivations. In this section, the development of the
junction matrix [J ij] in Eq. (19) will be presented.

Consider a junction composed of coupled, co-planar Plates 1 and 2, as shown in Fig. 2. If the
plate thicknesses or material properties are different, then the interface between the two plates is
defined as a junction. Only a straight-line junction is considered in this paper. Across this
junction, the energy density is discontinuous. In Fig. 2, the super-scribed ‘‘–’’ denotes incoming
flow, and ‘‘+’’ denotes outgoing flow. For simplicity, only a bending–to–bending vibration is
considered. From Fig. 2, the net power flow out of the junction can be written as

qi ¼ qþi � q�
i ; i ¼ 1; 2: ð21Þ

The objective is to write the power flow qi in terms of the energy density.
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The incoming power flow to Plate 1 is the summation of the power flow transmitted from Plate
2, plus the power flow reflected at the junction. Let tij be the power transfer coefficient
(transmission or reflection) from member i to member j: Because of the conservation of power
flow across the junction, incoming flows can be expressed using a linear combination of outgoing
flows as

q�
1 ¼ t11qþ1 þ t21qþ2 ; q�

2 ¼ t12qþ1 þ t22qþ2 : ð22Þ

In addition, the incoming and outgoing power flows can be related with the corresponding energy
densities as

qþ
i ¼ cgie

þ
i ; q�

i ¼ cgie
�
i ; i ¼ 1; 2: ð23Þ

Thus, by substituting the relation in Eq. (22) into Eq. (21), and by using the relation in Eq. (23),
the power flow can be expressed in terms of outgoing energy density as

q1

q2

( )
¼

ð1 � t11Þcg1 �t21cg2

�t12cg1 ð1 � t22Þcg2

" #
eþ1

eþ2

( )
� ½P	

eþ1

eþ2

( )
: ð24Þ

Since the energy density is a time- and space-averaged quantity, it is the superposition of the
incident and scattered components as

ei ¼ eþi þ e�i ; i ¼ 1; 2: ð25Þ

The incoming and outgoing energy densities also have a similar relation as the conservation
relation in Eq. (22), namely,

e1

e2

( )
¼

ð1þ t11Þ t21a

t12=a ð1 þ t22Þ

" #
eþ1

eþ2

( )
� ½G 	

eþ1

eþ2

( )
; ð26Þ

where a ¼ cg2=cg1 is the ratio of the group speeds between two plates. Thus, by substituting the
inverse relation of Eq. (26) into Eq. (24), a relation between the power flow and the energy density
at the junction is obtained as

q1

q2

( )
¼ ½P	½G�1	

e1

e2

( )
: ð27Þ

This junction relation is used in the assembly process of the global system matrix. Note that the
matrices [P] and [G ] are functions of the design variables.
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From Eq. (16), the power flow vector {Qi} is obtained by integrating the local power flow qi

along the junction G12 as

Q1

Q2

( )
¼

R
G12

fN1gq1 dGR
G12

fN2gq2 dG

( )
� ½J12	

E1

E2

( )
; ð28Þ

where {Ei} is the Np � 1 nodal energy density vector of element i; and [J12] is the 2Np � 2Np

junction matrix. This relation is assembled in the global matrix equation using the local-to-global
Boolean operation. Since the interpolation function of those nodes that do not belong to the
junction boundary vanishes on G12; the size of the junction matrix can be further reduced if such a
situation is taken into account.

The junction relation in Eq. (28) corresponds to the simplest situation in the plate-to-plate
connection. If two members are met with an arbitrary angle, then the bending, longitudinal, and
shear waves must be considered simultaneously. In such a case, the size of the junction matrix
becomes 6Np � 6Np: The junction matrix becomes more complicated when multiple components
are connected at the junction. However, the same conservation of power flow can be used,
although with algebraic complications.

3. Parameter sensitivity analysis

Design sensitivity is the gradient of a performance measure with respect to design variables. In
the structural–acoustic problem, the vibration energy often serves as a performance measure.
Parameter sensitivity analysis appears when the parameter of a structural–acoustic problem is a
design variable. The thickness of the plate, the material property, the power transfer coefficient,
and the hysteresis-damping factor are all examples of parametric design variables.

3.1. Definition of a variation

Let us begin with the definition of a variation that will be frequently used in the following
derivations. Throughout this paper, u denotes a parametric design variable. Let c be a function
that depends on current design u and assume that cðuÞ is continuous with respect to design u: If
the current design is perturbed in the direction of du (arbitrary), and e is a scalar parameter that
controls perturbation size, then the variation of cðuÞ in the direction of du is defined as

c0
du �

d

de
cðu þ eduÞ

����
e¼0

¼
@c
@u

du: ð29Þ

Throughout this paper, the prime symbol ‘‘0’’ is the first variation in the calculus of variations [34].
For convenience, subscribed du will often be ignored. The term ‘‘derivative’’ or ‘‘differentiation’’
will often be used to denote the variation in Eq. (29), because the coefficient of du (i.e., @c=@u) will
be calculated in practice. If the variation of a function is continuous and linear with respect to du;
then the function is differentiable (more precisely, it is Fr!echet differentiable). For complicated
problems, it is difficult to prove the differentiability of a general function with respect to the
design. Such problems will not be investigated in this paper.
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Without mathematical proof, the solution e to the energy flow equation in Section 2, given here
in the rewritten form

auðe; %eÞ þ buðe; %eÞ ¼ cuð%eÞ; 8%eAZ; ð30Þ

is differentiable with respect to the design. That is, the variation

e0 ¼ e0ðx; u; duÞ �
d

de
eðx; u þ eduÞ

����
e¼0

; ð31Þ

exists, and is the first variation of the solution to Eq. (30) at design u and in direction du of the
design change. Note that e0 is a function of independent variable x; and depends on design u and
direction du: In Eq. (30), the subscribed u is used to emphasize that the bilinear and linear forms
depend on design u:

In addition, each of the bilinear and linear forms encountered in Section 2 is assumed
differentiable with respect to the design. That is,

a0
duðe; %eÞ �

d

de
auþeduð*e; %eÞ

����
e¼0

; ð32Þ

c0duð%eÞ �
d

de
cuþeduð%eÞ

����
e¼0

; ð33Þ

b0
duðe; %eÞ �

d

de
buþeduð*e; %eÞ

����
e¼0

; ð34Þ

exist, where *e denotes the state variable e; with the dependence on e being suppressed, and %e is
independent of e: For example, a0duðe; %eÞ is the first variation of the bilinear form au in the direction
of du: It is assumed that this first variation is continuous and linear in du; hence, it is the Fr!echet
derivative of au with respect to the design, and as evaluated in the direction of du: Eqs. (32)–(34)
are, in fact, the contributions from the bilinear and linear forms that are explicitly dependent on
the design.

3.2. Direct differentiation method

A direct differentiation method calculates the variation of the energy density in Eq. (31) by
differentiating Eq. (30) as

auðe0; %eÞ þ buðe0; %eÞ ¼ c0duð%eÞ � a0
duðe; %eÞ � b0

duðe; %eÞ; 8%eAZ: ð35Þ

The left side of Eq. (35) presents the terms that are implicitly dependent on the design. Thus,
design sensitivity equation (35) solves the implicitly dependent terms by using the explicitly
dependent ones. The left side of Eq. (35) is the same as that of Eq. (30) if e0 is replaced by e: Thus,
the design sensitivity equation uses the same coefficient matrix from response analysis with a
different load on the right side.

Next, consider a structural–acoustic performance measure that can be written in integral
form, as

c ¼
Z Z

O
gðe;re; u þ eduÞ dO; ð36Þ
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where function g is continuously differentiable with respect to its arguments. Functionals in the
form of Eq. (36) represent a wide variety of structural–acoustic performance measures. For
example, the volume of a structural component can be written with a g that depends explicitly on
u; energy intensity can be written in terms of u and re; and energy density at a point can be
formally written using the Dirac-d measure.

To develop the design sensitivity formula, let us take the variation of the functional in Eq. (36),
as

c0 ¼
Z Z

O
ðg;e � e0 þ g;re � re0 þ g;uduÞ dO: ð37Þ

From the definition of function g; it is assumed that the expressions of g;e; g;re; and g;u are
available. Thus, from the solution e0 of design sensitivity equation (35), the variation c0 can
readily be evaluated in the direct differentiation method.

3.3. Adjoint variable method

Recall that e0 and re0 depend on the design change direction du: The objective of the adjoint
variable method is to obtain an explicit expression of c0 in terms of du; which requires rewriting
the first two terms on the right side of Eq. (37) explicitly in terms of du: For that purpose, an
adjoint equation is introduced by replacing e0 in Eq. (37) with a virtual energy density %k ¼
f%l1; %l2;y; %lrg

T; and by equating the terms involving %k in Eq. (37) to the bilinear forms in Eq. (30),
thus yielding the adjoint equation for the adjoint variable k:

auð %k;kÞ þ buð %k;kÞ ¼
Z Z

O
ðg;e � %k þ g;re � r %kÞ dO; 8 %kAZ; ð38Þ

where the solution k ¼ fl1; l2;y; lrg
T is desired, which is the adjoint energy density associated

with the performance measure in Eq. (36).
The intention is to express the first two terms on the right side of Eq. (37) in terms of adjoint

variable k: Since Eq. (38) satisfies for all %kAZ; Eq. (38) may be evaluated at a specific %k ¼ e0; since
e0 belongs to space Z: After substitution, we obtain

auðe0;kÞ þ buðe0; kÞ ¼
Z Z

O
ðg;e � e0 þ g;re � re0Þ dO; ð39Þ

whose right side is the same as the first two terms of the right side of Eq. (37), which it is now
desirable to write explicitly in terms of du: Similarly, design sensitivity equation (35) may be
evaluated at a specific %e ¼ k to obtain

auðe0; kÞ þ buðe0; kÞ ¼ c0duðkÞ � a0
duðe;kÞ � b0duðe; kÞ: ð40Þ

The left sides of Eqs. (39) and (40) are equal, thus yielding the following desired relation:Z Z
O
ðg;e � e0 þ g;re � re0Þ dO ¼ c0duðkÞ � a0

duðe; kÞ � b0duðe;kÞ; ð41Þ
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where the right side is linear in du and can be evaluated once the state variable e and the adjoint
variable k are determined to be the solutions to Eq. (30) and (38), respectively. Substituting the
result of Eq. (41) into Eq. (37), the explicit design sensitivity of c is obtained as

c0 ¼ c0duðkÞ � a0
duðe;kÞ � b0duðe; kÞ þ

Z Z
O

g;udu dO; ð42Þ

where the first three terms on the right depend on the specific problem under investigation.
As was shown in Eq. (35), the direct differentiation method uses the same coefficient matrix as

response analysis. However, the format of adjoint equation (38) is different from response analysis
because buðe; %eÞ is not symmetric with respect to its arguments. In the early development of the
adjoint variable method [28], the symmetric property of the bilinear form plays an important role.
However, the definition of the adjoint problem in Eq. (38) does not require the symmetric
property of the bilinear form.

3.4. Analytical example: plate component

In this section, explicit expressions of variations in Eqs. (32)–(34) are developed for the plate
component, since this component is commonly used in engineering applications. For notational
simplicity, expressions in this section correspond to a single component without including the
component’s index. When a constant input power and a constant power flow are supplied to the
structure (see Fig. 3), p and #q are independent of the parametric design variable, i.e., p0 ¼ #q0 ¼
0: Thus, from its definition in Eq. (9), the variation of cuð%eÞ vanishes, i.e., c0duð%eÞ ¼ 0: Since the
bilinear form buðe; %eÞ is calculated from the conservation of power flow across a junction, its
variation will be calculated along with the finite element discretization in the next section.

The variation of bilinear form auðe; %eÞ depends on the parametric design variable. For
derivational convenience, the hysteresis-damping factor is treated separately from other design
variables. According to the definition of the variation in Eq. (32), the bilinear form in Eq. (8) is
differentiated with respect to Z to obtain

a0dZðe; %eÞ ¼
Z Z

O
�

c2
g

Z2o
r%e � re þ o%ee

 !
dZ dO: ð43Þ

For other types of parametric design variables, the dependence of auðe; %eÞ on the design is only
through the group speed cg: Thus, the variation of auðe; %eÞ is obtained by

a0duðe; %eÞ ¼
Z Z

O

2cg

Zo
r%e � re


 �
dcg dO; ð44Þ

ARTICLE IN PRESS

Ω 
Ε,ν ,ρ,η

h

π

q̂

Fig. 3. Parametric design variables of a plate component.

N.H. Kim et al. / Journal of Sound and Vibration 269 (2004) 213–250224



where dcg is the variation of the group speed. In the case of a bending-to-bending vibration, the
expression of dcg can be obtained from its definition in Eq. (11), which is summarized in Table 1.

Since the result of the structural–acoustic problem is already available, the variation a0duðe; %eÞ
can be readily evaluated for a given du: In the case of the adjoint variable method, a0

duðe; lÞ is
evaluated with the adjoint result l:

3.5. Finite element discretization

In order to be consistent and efficient, discretization of the design sensitivity equation must
follow the same approximation method as the EFA described in Section 2.2. In this section, finite
element approximation of the design sensitivity equation is presented using direct differentiation
and adjoint variable methods.

3.5.1. Direct differentiation method
The matrices in Eqs. (24) and (26) depend on the design. However, such dependence can only be

identified in the discrete form. Accordingly, their sensitivity expressions are developed using the
discrete method. By using the fact that the matrices [P] and [G] only have explicitly dependent
terms on the design, their variations can be obtained by direct calculation as

½P0	 ¼
�t011cg1 þ ð1� t11Þc0g1 �t021cg2 � t21c0g2

�t012cg1 � t12c0g1 �t022cg2 þ ð1� t22Þc0g2

" #
; ð45Þ

½G 0	 ¼
t011 t021aþ t21a0

t012=a� t12a0=a2 t022

" #
; ð46Þ

where a0 ¼ c0g2=c0g1 � cg2c0g1=c2
g1; and t0ij is the variation of the power transfer coefficient, whose

expression is presented in Appendix A. By taking the variation of the relation ½G 	½G21	 ¼ I ; we
obtain

½G�1	0 ¼ �½G�1	½G 0	½G�1	: ð47Þ

The dependence of power flow in Eq. (27) is two-fold: the implicit dependence through the
energy density ei and the explicit dependence through the matrices [P] and [G]. By using this fact,
the variation of the power flow can be obtained by

q01

q02

( )
¼ ½P	½G�1	

e01

e02

( )
þ ð½P0	½G�1	 þ ½P	½G�1	0Þ

e1

e2

( )
: ð48Þ
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Variation of the group speed

Design variable dcg

H (cg/2h)dh

E (cg/4E)dE

n [ncg/2(1–n2)]dn
r –(cg/4r)dr
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The first term on the right side of Eq. (48) is used to define the junction matrix of the sensitivity
equation, while the second term is used to obtain the explicitly dependent term of the power flow
vector as

b0
duðe; %eÞ ¼

Z
G12

fegTð½P0	½G�1	 þ ½P	½G�1	0Þfeg dG

Ef %E1
%E2 g½J 0

12	
E1

E2

( )
: ð49Þ

Discretization of the structural fictitious load in Eq. (32) can be obtained using the energy
density e: In a plate component, for example, a0

duðe; %eÞ in Eq. (44) can be approximated by

a0
duðe; %eÞ ¼

X2

i¼1

Z Z
Oi

ð
2cgi

Zio
r%ei � reiÞdcgi dO

Ef %E1
%E2 g

Fa
1

Fa
2

( )
du; ð50Þ

where Fa
i is the nodal fictitious load vector of component i, and du is the variation of design that

appears in Table 1.
Since the left side of sensitivity Eq. (35) is the same as the left side of Eq. (30) by replacing e0

with e; the approximated sensitivity equation has the same coefficient matrix as in Eq. (20). The
global sensitivity matrix equation is obtained from Eqs. (35), (49) and (50), as

K1 0

0 K2

" #
þ ½J12	

" #
E0

1

E0
2

( )
¼ �

Fa
1

Fa
2

( )
du � ½J 0

12	
E1

E2

( )
; ð51Þ

where the nodal energy density variation fE0
ig is solved. After computing fE0g ¼ fE0

1 E0
2 g

T; the
variation of energy density is calculated using the same approximation method used in Eq. (12);
that is,

e0i ¼ fN ig
TfE0

ig; ð52Þ

and the sensitivity of the performance measure in Eq. (37) is calculated using the chain rule of
differentiation and numerical integration. Since the coefficient matrix of Eq. (51) is factorized
during EFA, Eq. (51) can be solved very efficiently.

3.5.2. Adjoint variable method
With the adjoint variable method, adjoint variable k is approximated using the same shape

function as the energy density function, i.e., li ¼ fN ig
TfKig: The adjoint load, defined in Eq. (38),

is calculated using the same finite element approximation method and numerical integration
method as Z Z

O
ðg;e � %k þ g;re � r %kÞ dOEf %K1

%K2 g
T

Fadj
1

Fadj
2

( )
; ð53Þ

where f %K1
%K2 g

T is the virtual nodal adjoint variable. The adjoint load in the above equation is
independent of design variables: it only depends on the performance measure. The left side of
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adjoint equation (38) is the transpose of state equation (30) because the bilinear form buð�; �Þ is not
symmetric. Thus, the adjoint problem is defined by using the transpose of the coefficient matrix in
Eq. (20) as

K1 0

0 K2

" #
þ ½J12	

" #T
K1

K2

( )
¼

Fadj
1

Fadj
2

( )
: ð54Þ

Even if the coefficient matrix in Eq. (54) is the transpose of the coefficient matrix in Eq. (20), the
factorized coefficient matrix of Eq. (20) can still be used to solve transposed equation (54). Thus,
the computational costs of solving adjoint equation (51) and sensitivity equation (54) are the
same.

After solving the adjoint variable {k}, the performance sensitivity in Eq. (42) is obtained using
the numerical integration rule as

c0 ¼
Z Z

O
g;udu dO� fK1 K2 g

Fa
1

Fa
2

( )
du � fK1 K2 g½J 0

12	
E1

E2

( )
: ð55Þ

As shown in the above equation, the adjoint variable method still requires the calculation of the
fictitious load {Fa} and ½J 0

12	; which appear in the direct differentiation method. Thus, both
methods require the same computational costs, except for the number of matrix equations that
need to be solved. The direct differentiation method solves the system of matrix equations
according to the number of design variables, while the adjoint variable method solves it according
to the number of performance measures.

4. Shape sensitivity analysis

The shape sensitivity formulation is more complicated than parameter sensitivity analysis, since
the design variable is the junction angle and the integration domain itself. In this section, the
material derivative approach [28] in continuum mechanics is used in the development of shape
sensitivity analysis. Even if the shape design variable is different from the parametric design
variable, the same form of the adjoint equation as Eq. (38) is obtained for the shape
design problem. Only the evaluation stage of the sensitivity coefficient is different for different
design variables.

4.1. Material derivatives

The first step in shape sensitivity analysis is to develop relationships between a variation in
shape and the resulting variations in functionals. Since the domain shape a structural or acoustic
component occupies is treated as the design variable, it is convenient to think of domain O as a
continuous medium, and to utilize the material derivative idea from continuum mechanics. Due to
the design change, a structural or acoustic domain O whose boundary is G; as shown in Fig. 4, is
perturbed to Oe whose boundary is Ge; in which e is a scalar parameter that controls the amount of
perturbation. Only a linear mapping relation will be considered in this paper, such that the
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relation between two configurations can be written as

Oeðx; eÞ ¼ OðxÞ þ eVðxÞ; ð56Þ

where VðxÞ is the design velocity field, which corresponds to the shape design variable. Note that
O0 ¼ O: Thus, the shape perturbation in Eq. (56) is similar to the dynamic process, with O playing
the role of time. If the shape design variable is compared with the parametric design variable, then
OðxÞ corresponds to uðxÞ; and VðxÞ corresponds to duðxÞ:

Using the shape design variable defined in Eq. (56), the material derivative of the solution to the
energy flow problem in Eq. (7) can be defined as

’e ¼ ’eðx : O;VÞ �
d

de
eeðx þ eVðxÞÞ

����
e¼0

¼ lim
e-0

eeðx þ eVðxÞ � eðxÞ
e

� �
; ð57Þ

where the superposed ‘‘dot’’ denotes the material derivative of the function. The energy density e
depends on the shape design variable in two ways. First, its value changes at a fixed point x due to
the design change. Second, its value changes due to the perturbation of the material point from x
to x þ eV : These two effects can be expressed in mathematical terms as

’eðxÞ ¼ lim
e-0

eeðxÞ � eðxÞ
e

� �
þ lim

e-0

eeðx þ eVðxÞÞ � eeðxÞ
e

� �
� e0ðxÞ þ re � VðxÞ; ð58Þ

where e0 is the partial derivative that is exactly the same as the variation in Eq. (31) for parameter
sensitivity analysis, and re � VðxÞ represents the convective component due to the shape change.
The reason for introducing the partial derivative is that it can commute with the gradient
operator, i.e., ðreÞ0 ¼ ðre0Þ: In the case of the material derivative, the following formula must be
used:

d

de
ree

����
e¼0

¼ r’e �re � rV : ð59Þ

Let c1 be a domain functional, defined as an integral over Oe; namely,

c1 ¼
Z Z

Oe

feðxeÞ dOe; ð60Þ

where fe is a regular function defined in Oe: Even if fe can be defined at a point, it is more
appropriate to define it as an integral form of Eq. (60), in conjunction with the weak formulation
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of EFA in Eq. (7). If the domain O is smooth, then the material derivative of c1 at O is

c0
1 ¼

Z Z
O
½ ’fðxÞ þ f ðxÞdiv V 	 dO: ð61Þ

The term div V ¼ ð@Vi=@xiÞ represents the effect of domain change. When the Dirac-d measure is
used to define c1 at a point (for example, the energy density at a node), this term vanishes. Note
that the notation c0

1 is used instead of ’c1 because in the case of a functional there is no difference
between partial and material derivatives.

Although many structural–acoustic functionals can be defined in the form of Eq. (60), there are
functionals that are defined as integrals over Ge: For example, the power flow term in Eq. (9) is
defined on the natural boundary, and the coupling relation in Eq. (10) is defined on the interface
boundary. In the case of a functional c2 that is defined on the boundary,

c2 ¼
Z
Ge

gðxeÞ dGe ð62Þ

the material derivative of c2 can be obtained from the results of Choi and Haug [28] as

c0
2 ¼

Z
G
½ ’gðxÞ þ kgðxÞVn	 dG; ð63Þ

where k is the curvature of the boundary and Vn is the normal component of the design velocity
on the boundary. The tangential component of design velocity does not contribute to the shape
change. If a constraint is imposed on the design velocity field VðxÞ on the boundary such that it
remains straight during design perturbation, then the curvature contribution in Eq. (63) vanishes.
The material derivative formulas in Eqs. (61) and (63) will be used to derive the shape design
sensitivity equation in the following sections.

4.2. Direct differentiation method

Similar to parameter sensitivity analysis, the direct differentiation method calculates the
material derivative ’e by solving the design sensitivity equation, which can be obtained by
differentiating Eq. (7) with respect to the shape design variable. For that purpose, let us define the
material derivative of those forms that appear in Eq. (7). After separating those terms that contain
’e (implicitly dependent terms) from those that contain V (explicitly dependent terms), the
following expressions can be defined:

d

de
aOeðee; %eÞ

����
e¼0

� aOð’e; %eÞ þ a0V ðe; %eÞ; ð64Þ

d

de
cOeð%eÞ

����
e¼0

� c0V ð%eÞ; ð65Þ

d

de
bGeðee; %eÞ

����
e¼0

� bGð’e; %eÞ þ b0V ðe; %eÞ; ð66Þ

where aOð’e; %eÞ and bGð’e; %eÞ are the same as aOðe; %eÞ and bGðe; %eÞ in Eq. (7) by replacing ’e with e;
respectively, and %e is independent of the shape design variable because it is an arbitrary test
function in the space Z: a0

V ðe; %eÞ; c
0
V ð%eÞ; and b0V ðe; %eÞ represent the terms that are explicitly
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dependent on the design velocity VðxÞ: If the solution e to the EFA is known, then these terms can
be readily calculated. Expressions of these forms will be derived in the analytical example of a
specific structural component.

Using the material derivative expressions in Eqs. (64)–(66), a design sensitivity equation is
obtained by differentiating the variational equation (7) with respect to the shape design variable.
After collecting the implicitly dependent terms on the left side and the explicitly dependent terms
on the right, the following design sensitivity equation is obtained:

aOð’e; %eÞ þ bGð’e; %eÞ ¼ c0V ð%eÞ � a0
V ðe; %eÞ � b0V ðe; %eÞ; 8%eAZ; ð67Þ

where the solution ’e is desired. By replacing ’e with e; the left side of Eq. (67) is the same as the left
side of Eq. (7); the design sensitivity equation uses the same coefficient matrix from EFA with a
different power input on the right side.

After calculating ’e; the sensitivity of a performance measure that can be written in the following
integral form:

c ¼
Z Z

Oe

gðee;reeÞ dOe ð68Þ

can be obtained using the relations in Eqs. (59) and (61) as

c0 ¼
Z Z

O
ðg;e � ’e þ g;re � r’eÞ dO

þ
Z Z

O
½g div V � g;re � ðre � rVÞ	 dO; ð69Þ

where it is assumed that g is continuously differentiable with respect to its arguments. From the
definition of function g; it is also assumed that the expressions of g;e and g;re are available. Thus,
from the design velocity field VðxÞ and from the solution ’e to design sensitivity equation (67), the
variation c0 can be readily evaluated using numerical integration and the chain rule of
differentiation.

4.3. Adjoint variable method

Recall that ’e and r’e implicitly depend on the design velocity field VðxÞ: The objective of the
adjoint variable method is to obtain an explicit expression of c0 in terms of VðxÞ; which requires
rewriting the first integral on the right side of Eq. (69) explicitly in terms of VðxÞ: For that
purpose, an adjoint equation is introduced by replacing ’e in Eq. (69) with a virtual energy density
%k ¼ f%l1; %l2;y; %lrg

T; and by equating the terms involving %k with the bilinear forms in Eq. (7), thus
yielding the adjoint equation for the adjoint variable k:

aOð %k; kÞ þ bGð %k;kÞ ¼
Z Z

O
ðg;e � %k þ g;re � r %kÞ dO; 8 %kAZ; ð70Þ

where the solution k ¼ fl1; l2;y; lrg
T is desired, which is the adjoint energy density associated

with the performance measure in Eq. (68). Note that adjoint Eq. (70) of the shape design problem
is exactly same as adjoint Eq. (38) of the parametric design problem. Thus, the same adjoint
variable can be used for either parametric or shape design problems without any modification.
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After following the same procedure described in Eqs. (39)–(41), the first integral on the right
side of Eq. (69) is explicitly expressed in terms of the design velocity field asZ Z

O
ðg;e � ’e þ g;re � r’eÞ dO ¼ c0V ðkÞ � a0

V ðe;kÞ � b0V ðe; kÞ; ð71Þ

where the right side is linear in VðxÞ and can be evaluated once it is determined that state variable
e and adjoint variable k are the solutions to Eqs. (7) and (70), respectively. Substituting the result
of Eq. (71) into Eq. (69), the explicit design sensitivity of c is obtained as

c0 ¼ c0V ðkÞ � a0
V ðe;kÞ � b0V ðe; kÞ

þ
Z Z

O
½g div V � g;re � ðre � rVÞ	 dO; ð72Þ

where the first three terms on the right depend on the specific problem under investigation.

4.4. Analytical example: plate component

In this section, explicit expressions of variations in Eqs. (64)–(66) are developed for the plate
component, since this component is commonly used in engineering applications. For notational
simplicity, expressions in this section correspond to a single component without inclusion of that
component’s index.

EFA in Section 2 is based on the flat plate component. A general, curved shell structure must be
approximated using plate components with junctions. To satisfy the plane constraint during the
design change, the design velocity field must be defined such that the perturbed geometry remains
a plane. In such a situation, shape perturbation can be represented by a pure domain change and a
rigid-body rotation. Fig. 5 shows a change in shape and a rotation of the flat plate component.
The constrained three-dimensional shape change is composed of the in-plane shape change VðxÞ
and the out-of-plane rigid-body rotation y: If a body-fixed local co-ordinate system Cðx1 � x2 � x3Þ
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is defined with the x3-axis as normal to the plate, then the in-plane design velocity VðxÞ can be
written by the two-dimensional vector VðxÞ ¼ fV1;V2; 0g

T in this local co-ordinate system. The
shape sensitivity formulations from previous sections can be applied to this two-dimensional
design velocity field for the plate component. The rigid-body rotation y changes the junction angle
between components, which is used in the variation of the junction matrix.

The coupling term bGðe; %eÞ is not a function of the component’s domain O because it is
calculated from the junction of semi-infinite plates. It is a function of panel thickness, material
property, and junction angle. As was shown in Section 3.5, the explicitly dependent contribution
of this coupling term only comes from the power transfer coefficient tij: Thus, the expression of
b0V ðe; %eÞ in Eq. (66) will be exactly same as b0

duðe; %eÞ if an appropriate t0ij is used for the junction
angle design variable, whose expression is presented in Appendix A.

The variation of the bilinear form aOðe; %eÞ and linear form cOð%eÞ depends on the shape design
velocity VðxÞ; but not on the rigid-body rotation y: According to the definition of the material
derivative in Eqs. (64) and (65), the explicitly dependent terms of these forms are obtained by
using Eqs. (59) and (61), as

a0
V ðe; %eÞ ¼

Z Z
O

c2
g

Zo
r%e � re þ Zo%ee

 !
div V dO

�
Z Z

O

c2
g

Zo
½ðr%e � rVÞ � re þr%e � ðre � rVÞ	 dO; ð73Þ

c0V ð%eÞ ¼
Z Z

O
½%eðrp � VÞ þ ð%epÞ div V 	 dO

�
Z
Gq

½%eðr #q � VÞ þ k%e #q	 dG: ð74Þ

As with parameter sensitivity analysis, the partial derivative of the input power and power flow
vanishes, i.e., p0 ¼ #q0 ¼ 0: Unlike parameter sensitivity analysis, however, c0V ð%eÞ does not vanish
because of the shape change. Since the result of the structural–acoustic problem is already
available, the variations a0V ðe; %eÞ and c0V ð%eÞ can be readily evaluated for a given design velocity V :
In the case of the adjoint variable method, a0V ðe; lÞ and c0V ðlÞ are evaluated with the adjoint
result l:

4.5. Finite element discretization

For a given shape design variable, the discrete design velocity vector V ¼ fV1;V2g
T and the

rigid-body rotation y must be defined at each node of the finite element. The design velocity within
the element is approximated by using the same shape function, as in Eq. (12), while the rotation y
remains constant. As with parameter sensitivity analysis, a simple built-up structure composed of
two single-element plate components is considered in the discretization.

4.5.1. Direct differentiation method
If the variation of the power transfer coefficient tij is calculated with respect to the design

variable y; then the explicitly dependent term of the power flow vector has the same form as in
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Eq. (49). That is,

b0
V ðe; %eÞEf %E1

%E2 g½J 0
12	

E1

E2

( )
; ð75Þ

where ½J 0
12	 is calculated from t0ij with the junction angle y as the design variable.

The discretization of the fictitious loads in Eqs. (73) and (74) can be obtained using the design
velocity V and the energy density e: With the plate component, for example, a0

V ðe; %eÞ and c0V ð%eÞ can
be approximated by

a0V ðe; %eÞ ¼
X2

i¼1

Z Z
Oi

c2
gi

Zio
½ðr%ei � rV iÞ � rei þr%ei � ðrei � rV iÞ	 dO

þ
X2

i¼1

Z Z
Oi

ð�
c2

gi

Zio
r%ei � rei þ Zio%eieiÞ div V i dO

Ef %E1
%E2 g

Fa
1

Fa
2

( )
; ð76Þ

c0V ð%eÞ ¼
X2

i¼1

Z Z
Oi

½%eiðrpi � V iÞ þ ð%eipiÞ div V i	 dO

�
X2

i¼1

Z
Gq

i

½%eiðr #qi � V iÞ þ k%ei #qi	 dG

Ef %E1
%E2 g

Fc
1

Fc
2

( )
; ð77Þ

where Fc
i � Fa

i is the nodal fictitious load vector of component i:
By replacing ’e with e; the left side of sensitivity Eq. (67) is the same as the left side of Eq. (7).

Thus, the approximated sensitivity equation has the same coefficient matrix as Eq. (20). The
global sensitivity matrix equation is obtained from Eqs. (67) and (75)–(77) as

K1 0

0 K2

" #
þ ½J12	

" #
’E1

’E2

( )
¼

Fc
1 � Fa

1

Fc
2 � Fa

2

( )
� ½J 0

12	
E1

E2

( )
; ð78Þ

where the nodal energy density variation f ’Eig is desired. After computing f ’Eg ¼ f ’E1
’E2 g

T; the
variation of the energy density is calculated using the same approximation method as in Eq. (12).
That is,

’ei ¼ fN ig
Tf ’Eig; ð79Þ

and the sensitivity of the performance measure in Eq. (69) is calculated using a chain rule of
differentiation and numerical integration. Note that the shape function of the finite element is
independent of the shape design variable because it is constructed on the reference geometry.
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4.5.2. Adjoint variable method

As was discussed in the previous section, adjoint Eq. (70) for shape sensitivity analysis is the
same as adjoint equation (38) for parameter sensitivity analysis. Thus, the same matrix Eq. (54)
can be used for shape sensitivity analysis. After solving the adjoint variable {k}, the performance
sensitivity in Eq. (72) is obtained using numerical integration as

c0 ¼
Z Z

O
½g div V � g;re � ðre � rVÞ	 dO

þ fK1 K2 g
Fc

1 � Fa
1

Fc
2 � Fa

2

( )
� fK1 K2 g½J 0

12	
E1

E2

( )
: ð80Þ

As shown in the above equation, the adjoint variable method still requires the calculation of the
fictitious load fFc � Fag and ½J 0

12	; which appear in the direct differentiation method. Thus, these
two methods have the same computational cost, except for the number of matrix equations that
must be solved.

5. Numerical examples

5.1. Calculation of power transfer coefficients

In order to validate the calculation method of the power transfer coefficient, the same example
carried out by Cremer et al. [32] and Langley and Heron [29] is tested. As illustrated in Fig. 6, two
semi-infinite plates are connected at a right angle. The same thickness (h ¼ 1:0mm) and material
properties (E ¼ 209GPa, n ¼ 0:3; r ¼ 7; 800 kg/m3) are used for both plates. An incident bending
wave with a frequency of o ¼ 26:687 kHz is considered. Since the plates are not co-planar, three
different types of waves are taken into account: ‘‘L’’ for the longitudinal wave, ‘‘S’’ for the shear
wave, and ‘‘B’’ for the bending wave. Thus, tBL

11 is the power ratio between the incident bending
wave and the reflected longitudinal wave, while tBS

12 is the power ratio between the incident
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Fig. 6. Power transfer coefficients between two plates connected at a right angle (h ¼ 1:0mm, o ¼ 26:687 kHz).
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bending wave and the transferred shear wave. The power transfer coefficients at a junction are
plotted as a function of the incident wave angle, as shown in Fig. 6, which agree with the results of
Cremer et al. [32], and Langley and Heron [29]. The area corresponding to each power transfer
coefficient must be integrated throughout the incident angle in order to calculate the power
transfer coefficient at the junction.

5.2. Parametric study of design variables

5.2.1. Two co-planar plates
In order to control power flow between structural members, it is necessary to control the power

transfer coefficient. Since the power transfer coefficient is the ratio between incident and
transmitted powers, a panel thickness change will affect the power transfer coefficient. Fig. 7
shows two co-planar plates with the same material properties (E ¼ 209GPa, n ¼ 0:3;
r ¼ 7; 800 kg/m3). An incident wave with a frequency of o ¼ 2:0 kHz is considered. The thickness
of Plate 1 changes from 0.5 to 1.5mm, while the thickness of Plate 2 is fixed at 1.0mm. Only
bending-to-bending power transmission is considered, because the plates are co-planar. When the
thickness of the two plates is the same (1.0mm), the power transfer coefficients tBB

12 and tBB
21

between Plates 1 and 2 become one, which means that energy density is continuous across the
junction. As the thickness begins to differ between the two plates, the values of the power transfer
coefficients change from one. The maximum change occurs when the thickness of Plate 1 is
0.5mm, and the value of tBB

12 is reduced to 70%.
To investigate further the effect of structural design variables on the power transfer coefficient,

variations of energy density as a function of panel thickness are studied for the co-planar plates, as
shown in Fig. 8. Unit power density (J/m2 s) is applied at the center of Plate 1. In Fig. 7, point 1
corresponds to the center of Plate 1, and point 2 corresponds to the center of Plate 2. The
hysteresis-damping factor of Z ¼ 0:01 is used for both plates. Initially, two plates have the same
thickness of 1.0mm. The energy densities at the center point of these plates are plotted by
changing the thickness of the left plate from 0.5 to 1.5mm. By reducing the thickness of the left
plate by 0.5mm, its energy density at the center increases by 30%, while the energy density at the
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center of the right plate decreases by 64%. Thus, in this simple example, the ratio of the energy
density change appears to be greater than the ratio of the design variable change.

Although the differentiability of the energy density with respect to the design is not proved in
the theoretical sections of this study, the power transfer coefficient in Fig. 7 and the energy density
in Fig. 8 show smooth variations of the energy density as a function of the thickness design
variable.

5.2.2. Two angled plates

A change in the power transfer coefficient is more significant if the junction angle between two
plates is the design variable, because an incident wave will be transferred to different types of
waves. Fig. 9 charts the variation of the power transfer coefficient as a function of the junction
angle. The same thickness (h ¼ 1:0mm) and material properties (E ¼ 209GPa, n ¼ 0:3;
r ¼ 7; 800 kg/m3) are used for both plates. An incident wave with a frequency of o ¼ 26:687 kHz
kHz is considered. The results in Fig. 9 are in good agreement with the results of Langley and
Heron [29]. Even if the incident wave is assumed to be a bending wave, three wave types (bending,
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longitudinal and shear) are generated because the junction is not co-planar. However, it is clear
that when the junction angle is 0� or 180�, those two in-plane power transfer coefficients
vanish. As expected, the bending-to-bending power transfer coefficient becomes 1.0 when
the plates are co-planar (180�). In addition, the effect of the bending-to-bending power
transfer coefficient is dominant for an obtuse angle. As the junction angle changes from 84� to
180�, the bending-to-bending power transfer coefficient increases about seven times. Thus, the
junction angle design variable has a significant effect on the power flow between structural
members.

5.3. Sensitivity analysis of power transfer coefficients

5.3.1. Parameter design sensitivity (panel thickness)
The parametric study in Section 5.2 shows that the power transfer coefficients depend on design

variables. For example, Fig. 10 plots the variations of a bending-to-bending power transfer
coefficient as a function of thickness design variables. Two semi-infinite plates are connected at a
right angle. The thickness of Plate 1 (incident plate) is fixed at 1.0mm, while the thickness of
Plate 2 varies from 0.5 to 1.5mm. The same material properties (E ¼ 209GPa, n ¼ 0:3;
r ¼ 7; 800 kg/m3) are used for both plates. An incident wave with a frequency of o ¼ 2:0 kHz is
considered. Different from the co-planar plates in Fig. 7, the reflection power transfer coefficient
tBB
11 is greater than the transferred power transfer coefficient tBB

12 : In addition, the summation of
tBB
11 and tBB

12 is not one because the bending incident wave is transmitted as bending, in-plane, and
shear wave, although the bending-to-bending transmission is the dominant mode. The sensitivity
of these power transfer coefficients with respect to plate thickness is represented by the slope of
the curves in Fig. 10.

The analytical sensitivity of the power transfer coefficient is found by differentiating the
procedure for calculating the power transfer coefficient, as briefly summarized in Appendix A. In
order to verify the accuracy of the results calculated from the formula in Appendix A, Fig. 11
compares the analytical sensitivity results of the power transfer coefficients with the sensitivity
results calculated using the FDM. The finite difference sensitivity of tBB

11 ; for example, can be
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calculated from

tBB0

11 ðhÞE
tBB
11 ðh þ DhÞ � tBB

11 ðhÞ
Dh

; ð81Þ

where Dh ¼ 0:01mm is used. The sensitivity tBB0

11 from Eq. (81) is usually more accurate as
perturbation size Dh decreases. However, numerical noise becomes dominant if Dh is so small that
the change of tBB

11 becomes smaller than the machine’s significant digit. Thus, it is always difficult
to select the appropriate perturbation size in FDM. In Fig. 11, ‘‘tBB0

11 FDM’’ represents the
sensitivity of tBB

11 calculated using the FDM, while ‘‘tBB0

11 Analytical’’ represents the sensitivity of
tBB
11 calculated from the proposed continuum sensitivity formula in Section 3. As shown in Fig. 11,

the analytical sensitivity results agree with the finite difference sensitivity results.

5.3.2. Shape design sensitivity (junction angle)
The shape design variable in the plate-based built-up structure can be categorized by the change

in the structural domain and the junction angle. Since the power transfer coefficient is calculated
based on the connection between semi-infinite plates, the change in the structural domain is not
involved. Thus, in this section the junction angle design variable is taken into account to calculate
the sensitivity of the power transfer coefficient.

The same semi-infinite plates from Section 5.3.1 are used to validate the sensitivity results when
the junction angle is a design variable. The thickness of the two plates is fixed at 1.0mm, and the
junction angle changes from 0� to 180�, as plotted in Fig. 12. Although it is impossible to connect
two plates at an angle of 0�, this angle is plotted to be mathematically complete. As expected, tBB

11

vanishes when the junction angle becomes 180� because no discontinuity exists; no bending energy
will be reflected from the junction. The bending-to-bending power transfer coefficients change
rapidly near the junction angles 0� and 180�, while changing slowly between 40� and 140�. Thus, the
effect of junction angle design is significant when two plates are connected in a co-planar rather than an
orthogonal way. Again, the analytical sensitivity results agree with the finite difference sensitivity
results, as shown in Fig. 13. A small design perturbation of Dy ¼ 1� is used with the FDM.
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5.4. Design sensitivity analysis of energy density functions

The sensitivity results of the power transfer coefficient in Section 5.3 are obtained from the
analytical expression in Appendix A. However, the sensitivity of the energy density can only be
calculated by solving the sensitivity equation for the direct differentiation method, or by solving
the adjoint equation for the adjoint variable method. In this section, the accuracy of the energy
density sensitivity is compared with the sensitivity results obtained from FDM.

5.4.1. Parameter design sensitivity
Consider two plates that are placed at a right angle to each other from Section 5.3. In addition

to having the same thickness and material properties as in Section 5.3, these plates also have a
hysteresis-damping factor of Z ¼ 0:01: The dimension of each plate is 1m� 1m� 0.001m, and
100 finite elements are used to approximate each plate. Fig. 14 shows the plate geometry with 200
finite elements. A unit power density with frequency 2.0 kHz is applied at node 61, which is the
center of Plate 1. The objective is to estimate the variation of the energy density as a function of
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Plate 1’s thickness by using the sensitivity calculation method. Before calculating the sensitivity
information, the energy density distribution is plotted as a function of plate thickness and
frequencies, as shown in Fig. 15. Even if the continuity of energy density function is not
mathematically proven, Fig. 15 shows that the energy density function is a smooth function of
plate thickness and frequency.
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Fig. 16 plots the sensitivity of energy density functions with respect to the thickness design of
Plate 1. The location of point P1 is at the center of Plate 1, and the location P2 is at the center of
Plate 2. ‘‘DSA P1’’ is the design sensitivity of energy density at P1 calculated from the proposed
method, while ‘‘FDM P1’’ is the design sensitivity calculated using the FDM. A direct
differentiation method is used to calculate the sensitivity of energy density functions. As the
thickness of Plate 1 increases, more power is transferred to Plate 2. Thus, the energy density
sensitivity decreases at point P1, while increasing at point P2. However, this pattern trails off as
the thickness of Plate 1 approaches 1.5mm. It is interesting that the energy density of point P2
starts to decrease when the thickness of Plate 1 becomes 1.3mm. Thus, the maximum value of the
energy density’s sensitivity at point P2 can be expected at h1 ¼ 1:3mm.

Table 2 compares the sensitivity results of energy densities for those nodes along the centerline
of the plates (see Fig. 14). The same thickness of h1 ¼ h2 ¼ 1:0mm is used for both plates. The
energy density values are calculated from a frequency average that is over a one-third octave. The
first and second columns denote the node number and nodal energy density (performance
measure) in dB units, respectively. Performance changes are then denoted from the direct
differentiation method (column 3), the adjoint variable method (column 4), and FDM (column 5).
Column 5 is the ratio between columns 3 and 5, and column 6 is the ratio between columns 3 and
6. A small design perturbation of Dh ¼ 10�3 mm is used. The results from the two proposed
methods are compared with the finite difference results in the ratio column (%). Excellent
agreement is observed between the three methods. In fact, the sensitivity results from the direct
differentiation and adjoint variable methods are the same up to the significant digits shown in the
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table. Note that the energy density values of the two junction nodes 66 and 177 are different at
about 7.2 dB, which confirms the discontinuity of energy density across the junction.

As a final example of parameter design sensitivity analysis, a hysteresis-damping factor is
considered as a design variable. Fig. 17 compares the sensitivity of energy densities
from the proposed method and the FDM when the damping factor is the design variable.
The effect of the damping factor on the energy density function is always negative for
Plate 2. However, such an effect gradually decreases, and shows saturation as the damping
factor approaches to 0.1. The effect of the damping factor on Plate 1 is quite different
from its effect on Plate 2. At the very small value of Z (0.01–0.028), increasing the damping factor
reduces the energy density at Plate 1. However, at a high value, the damping factor actually
increases the energy density at Plate 1, and its effect is gradually reduced as the damping factor
increases.

The energy density’s dependence on the damping factor cannot be generalized because
observations in this section depend on excitation frequency, material property, and plate
dimensions. However, this example clearly shows that adding more damping material does not
always guarantee a reduction in the noise level of structural components. In order to control the
noise level, the effect of damping material must be fully understood in each component through
design sensitivity analysis.
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Table 2

Comparison of sensitivity results obtained from the proposed and the finite difference methods (y ¼ 90�; o ¼ 2:0 kHz)

Node c c0De Dc Dc=c0De� 100%

DDM AVM DDM AVM

56 0.91237945E+2 0.40465093E-2 0.40465093E-2 0.40473102E-2 100.02 100.02

57 0.91404763E+2 0.24799215E-2 0.24799215E-2 0.24805766E-2 100.03 100.03

58 0.91908154E+2 �0.19791083E-2 �0.19791083E-2 �0.19788282E-2 99.99 99.99

59 0.92790054E+2 �0.89176064E-2 �0.89176064E-2 �0.89178111E-2 100.00 100.00

60 0.94039969E+2 �0.16996344E-1 �0.16996344E-1 �0.16996976E-1 100.00 100.00

61 0.97291986E+2 �0.30821719E-1 �0.30821719E-1 �0.30822884E-1 100.00 100.00

62 0.93991173E+2 �0.17396825E-1 �0.17396825E-1 �0.17397454E-1 100.00 100.00

63 0.92655044E+2 �0.97446228E-2 �0.97446228E-2 �0.97448706E-2 100.00 100.00

64 0.91644878E+2 �0.30619330E-2 �0.30619330E-2 �0.30618179E-2 100.00 100.00

65 0.90977247E+2 0.14228950E-2 0.14228950E-2 0.14231904E-2 100.02 100.02

66 0.90623021E+2 0.32388008E-2 0.32388008E-2 0.32389950E-2 100.01 100.01

177 0.83403422E+2 0.42493917E-1 0.42493917E-1 0.42499934E-1 100.01 100.01

178 0.82417283E+2 0.42846442E-1 0.42846442E-1 0.42852465E-1 100.01 100.01

179 0.81461217E+2 0.43069418E-1 0.43069418E-1 0.43075445E-1 100.01 100.01

180 0.80537757E+2 0.43210071E-1 0.43210071E-1 0.43216100E-1 100.01 100.01

181 0.79655424E+2 0.43298517E-1 0.43298517E-1 0.43304548E-1 100.01 100.01

182 0.78829343E+2 0.43353900E-1 0.43353900E-1 0.43359932E-1 100.01 100.01

183 0.78082023E+2 0.43388322E-1 0.43388322E-1 0.43394355E-1 100.01 100.01

184 0.77443423E+2 0.43409373E-1 0.43409373E-1 0.43415406E-1 100.01 100.01

185 0.76948922E+2 0.43421734E-1 0.43421734E-1 0.43427767E-1 100.01 100.01

186 0.76633956E+2 0.43428182E-1 0.43428182E-1 0.43434215E-1 100.01 100.01

187 0.76525562E+2 0.43430179E-1 0.43430179E-1 0.43436213E-1 100.01 100.01
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5.4.2. Shape design sensitivity

The same plate example used in Section 5.4.1 is now used to calculate energy density sensitivity
with respect to the junction angle design variable. Fig. 18 illustrates the sensitivity of energy
densities at the centers of Plates 1 and 2. This plot represents the change of energy density per unit
radian angle change. Very high sensitivities are observed on Plate 2 near the junction angles 0�

and 180�. However, the energy density value of Plate 1 is always greater than the energy density
value of Plate 2.

The sensitivity results from the direct differentiation and adjoint variable methods are
compared with the finite difference sensitivity results in Table 3. The energy density and its
sensitivity are calculated when the junction angle is 90�. A small design perturbation of
Dy ¼ 1� is used for the FDM. At junction angle 90�, the sensitivity of Plate 1 (incident plate) is
positive, while the sensitivity of Plate 2 (recipient plate) is negative. Thus, the energy of Plate 1
increases, while the energy of Plate 2 decreases as the junction angle increases. Sensitivity
results from the direct differentiation and adjoint variable methods are again the same up
to the significant digits shown in Table 3, and excellent agreement is observed between all three
methods.

6. Conclusion

The design sensitivity formulation of the energy FEM is presented using the direct
differentiation and adjoint variable methods. Material property, panel thickness, junction angle,
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Table 3

Comparison of sensitivity results obtained from the proposed and the finite difference methods (y ¼ 90�; o ¼ 2:0 kHz)

Node c c0Dy Dc Dc=c0Dy� 100%

DDM AVM DDM AVM

56 0.91237945E+2 0.13120739E-3 0.13120739E-3 0.13124480E-3 100.03 100.03

57 0.91404763E+2 0.13120739E-3 0.13120739E-3 0.12949254E-3 100.03 100.03

58 0.91908154E+2 0.12396388E-3 0.12396388E-3 0.12399922E-3 100.03 100.03

59 0.92790054E+2 0.11339322E-3 0.11339322E-3 0.11342555E-3 100.03 100.03

60 0.94039969E+2 0.98517380E-4 0.98517380E-4 0.98545473E-4 100.03 100.03

61 0.97291986E+2 0.55350131E-4 0.55350131E-4 0.55365918E-4 100.03 100.03

62 0.93991173E+2 0.14324571E-3 0.14324571E-3 0.14328655E-3 100.03 100.03

63 0.92655044E+2 0.23895774E-3 0.23895774E-3 0.23902582E-3 100.03 100.03

64 0.91644878E+2 0.37350101E-3 0.37350101E-3 0.37360731E-3 100.03 100.03

65 0.90977247E+2 0.54398042E-3 0.54398042E-3 0.54413505E-3 100.03

66 0.90623021E+2 0.74303209E-3 0.74303209E-3 0.74324297E-3 100.03 100.03

177 0.83403422E+2 �0.41517066E-2 �0.41517066E-2 �0.41528708E-2 100.03 100.03

178 0.82417283E+2 �0.41409977E-2 �0.41409977E-2 �0.41421588E-2 100.03 100.03

179 0.81461217E+2 �0.41342314E-2 �0.41342314E-2 �0.41353905E-2 100.03 100.03

180 0.80537757E+2 �0.41299652E-2 �0.41299652E-2 �0.41311231E-2 100.03 100.03

181 0.79655424E+2 �0.41272831E-2 �0.41272831E-2 �0.41284402E-2 100.03 100.03

182 0.78829343E+2 �0.41256038E-2 �0.41256038E-2 �0.41267604E-2 100.03 100.03

183 0.78082023E+2 �0.41245601E-2 �0.41245601E-2 �0.41257164E-2 100.03 100.03

184 0.77443423E+2 �0.41239219E-2 �0.41239219E-2 �0.41250779E-2 100.03 100.03

185 0.76948922E+2 �0.41235471E-2 �0.41235471E-2 �0.41247031E-2 100.03 100.03

186 0.76633956E+2 �0.41233516E-2 �0.41233516E-2 �0.41245075E-2 100.03 100.03

187 0.76525562E+2 �0.41232910E-2 �0.41232910E-2 �0.41244469E-2 100.03 100.03
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and structural shape are taken into account as design variables, in addition to the hysteresis-
damping factor. The continuum approach is used to derive the design sensitivity formulation of
the structural component, while the discrete approach is used to obtain the design sensitivity of
the junction matrix, which is required in the coupling of different components. The analytical
expression of the power transfer coefficient is differentiated with respect to the design variables to
obtain the power transfer coefficient sensitivity. The design sensitivity results calculated from the
proposed method are compared with the finite difference sensitivity results with good agreement.
The proposed design sensitivity calculation method is integrated into the design optimization
process.
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Appendix A. Power transfer coefficient

In this section, the analytical methods for calculating the power-transfer coefficient tij and its
sensitivity with respect to panel thickness and junction angle are briefly summarized. The detailed
procedure for calculating tij can be found in [29]. In the plate structure, three types of incident
wave can be considered: bending, in-plane, and shear waves. In this section, the formulation with
the bending incident wave is developed. However, other types of waves can also developed using a
similar approach.

A.1. Calculation of power transfer coefficients

Consider two or more plate structures connected at a junction. An N number of plates
are connected at the junction. For convenience, Plate 1 has an incident wave, and Plates 2–N
are recipient. Fig. 19 presents the simple case in which N ¼ 2: In the derivation, index i

represents the incident plate, while index j represents the recipient plate. A body-fixed local
co-ordinate system xj � yj � zj is drawn for Plate j at the junction. The co-ordinate system
fixed in Plate i is denoted by xg � yg � zg: The objective is to calculate the power transfer
coefficient with respect to an incident wave with angle f; and then, to integrate it between ½0;p	
ranges.

The power transfer coefficients are calculated by applying a unit power to the incident plate,
and the reflected and transferred powers are calculated using the dynamic stiffness matrix method.
Since transferred powers are proportional to the wave amplitude, the wave amplitude of the jth
plate is first calculated as

aj ¼ G�1
j bj; ðA:1Þ
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where aT
j ¼ ½aL; aS; aB1; aB2	j is the wave amplitude of transferred waves to the jth plate, bT

j ¼
½ue; ve;we; ye	j is the edge displacement in the body-fixed local co-ordinate system, and

G j ¼

k jmS 0 0

jmL �k 0 0

0 0 1 1

0 0 mB1 mB2

2
6664

3
7775

j

: ðA:2Þ

When kB; kL; and kS are the wave numbers corresponding to bending, longitudinal, and shear
waves in Eqs. (A.10)–(A.12), respectively, mB1; mB2; mL; and mS are the negative roots of the
following equation:

m2
B1;2 ¼ k27k2

B;

m2
L ¼ k2 � k2

L;

m2
S ¼ k2 � k2

S:

ðA:3Þ

Since the edge displacement vector bj is represented in the local coordinate system xj � yj � zj; it
must be transformed into the global coordinate system by

bj ¼ RT
j a; ðA:4Þ

where aT ¼ ½ue; ve;we; ye	g is the edge displacement vector in the global co-ordinate system and

Rj ¼

1 0 0 0

0 cos yj �sin yj 0

0 sin yj cos yj 0

0 0 0 1

2
6664

3
7775; ðA:5Þ
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Plate i
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θj

φ
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xj, xg

yj

yg

Fig. 19. Two infinite plates with a junction.
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is the co-ordinate transformation matrix. Note that the xj-axis is parallel to the junction, as shown
in Fig. 19. From Eqs. (A.1) and (A.4), the wave amplitude can be expressed in terms of global
edge displacement as

aj ¼ G�1
j RT

j a: ðA:6Þ

Thus, the wave amplitude can be calculated from the edge displacement, which can be calculated
from the dynamic stiffness method.

The edge displacement can be found by considering the equilibrium of the structure under the
force caused by the unit incident wave. The force equilibrium equation can be written as

XN

j¼1

RjK jR
T
j

( )
a � Ca ¼ Rif i; ðA:7Þ

where K j is the dynamic stiffness matrix, f i is the edge force caused by the incident wave, and N is
the number of plates connected at the junction. The expressions of K j and f i are provided by
Langley and Heron [29]. By solving Eq. (A.7) for a and substituting the result into Eq. (A.6), the
wave amplitude vector are obtained as

aj ¼ G�1
j RT

j C�1Rif i: ðA:8Þ

After calculating the wave amplitude aj; the power transfer coefficients can be calculated
through the integration over the incident wave angle as

tBB
ij ¼

1

2

R p
0

rj

ri

hj

hi

kBi

kBj

jaB2j j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk=kBjÞ

2
q

df;

tBL
ij ¼

1

4

R p
0

rj

ri

hj

hi

kBikLj jaLj j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk=kLjÞ

2
q

df;

tBS
ij ¼

1

4

R p
0

rj

ri

hj

hi

kBikSj jaSj j
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk=kSjÞ

2
q

df;

ðA:9Þ

where r is the material density, h is the plate thickness, and

kBj ¼
12rjo

2ð1 � n2j Þ

Ejh
2
j

 !1=4

; ðA:10Þ

kLj ¼
rjo

2ð1� n2j Þ

Ej

 !1=2

; ðA:11Þ

kSj ¼
2rjo

2ð1þ njÞ

Ej

 !1=2

ðA:12Þ

and k ¼ kBi cosf when the incident wave is the bending wave. As can be seen from Eqs. (A.9)–
(A.12), the power transfer coefficients are a function of material properties, plate thickness, and
junction angle, which are design variables.
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A.2. Sensitivity of power transfer coefficients with respect to junction angle

Let junction angles yj of Plate j be measured with respect to the incident plate. When the
junction angle is the design variable, only the wave amplitude in Eq. (A.9) depends on the design.
Thus, the sensitivity of the power transfer coefficients can be written as

tBB0

ij ¼
1

2

R p
0

rj

ri

hj

hi

kBi

kBj

@ aB2j

�� ��2
@yj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk=kBjÞ

2
q

dfdyj;

tBL0

ij ¼
1

4

R p
0

rj

ri

hj

hi

kBikLj

@ aLj

�� ��2
@yj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk=kLjÞ

2
q

dfdyj;

tBS0

ij ¼
1

4

R p
0

rj

ri

hj

hi

kBikSj

@ aSj

�� ��2
@yj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðk=kSjÞ

2
q

dfdyj:

ðA:13Þ

The derivative of the wave amplitude with respect to the junction angle can be obtained by
differentiating Eq. (A.8) as

@aj

@yj

¼ G�1
j

@RT
j

@yj

C�1Rif i � G�1
j RT

j C�1@C

@yj

C�1Rif i: ðA:14Þ

Note that Ri is independent of the junction angle because the angle of the incident plate is the
reference. From the definition in Eq. (A.7), the derivative of matrix C can be evaluated as

@C

@yj

¼
@Rj

@yj

K jR
T
j þ RjK j

@RT
j

@yj

: ðA:15Þ

Since the angle of Plate j changes, other recipient plates are independent of yj: Thus, the
summation used in Eq. (A.7) is not necessary.

A.3. Sensitivity of power transfer coefficients with respect to thickness

The sensitivity of power transfer coefficients with respect to the thickness design variable is
more complicated than the junction angle design variable. In this section, the thickness of
recipient plate j is considered as a design variable. A similar approach can be applied to the
thickness of the incident wave with algebraic messiness.

In the expression of wave amplitude, the matrices G j and C depend on the thickness hj: Thus,
the chain rule of differentiation yields

@aj

@hj

¼ �G�1
j

@G j

@hj

G�1
j RT

j C�1Rif i � G�1
j RT

j C�1@C

@hj

C�1Rif ; ðA:16Þ

where

@C

@hj

¼ Rj

@K j

@hj

RT
j ; ðA:17Þ
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@G j

@hj

¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0
kBj

mB1j

@kBj

@hj

�
kBj

mB2j

@kBj

@hj

2
6666664

3
7777775
; ðA:18Þ

where @kBj=@hj can be calculated from the expression in Eq. (A.10). In the derivation of
Eq. (A.18), the property @k=@hj ¼ @mLj=@hj ¼ @mSj=@hj ¼ 0 is used.

After calculating @a=@hj in Eq. (A.16), the sensitivity of tij can be calculated by differentiating
Eq. (A.9), which simply involves using the chain rule of differentiation.

References

[1] Z.-D. Ma, I. Hagiwara, Sensitivity analysis—method for coupled acoustic–structural systems Part 1: modal

sensitivities, Part 2: direct frequency–response and its sensitivities, American Institute of Aeronautics and

Astronautics Journal 29 (1991) 1787–1801.

[2] S. Wang, K.K. Choi, H. Kularni, Acoustical optimization of vehicle passenger space, 1994, SAE Paper No.

941071.

[3] R.R. Salagame, A.D. Belegundu, G.H. Koopman, Analytical sensitivity of acoustic power radiated from pates,

Journal of Vibration and Acoustics 117 (1995) 43–48.

[4] K.K. Choi, I. Shim, S. Wang, Design sensitivity analysis of structure–induced noise and vibration, Journal of

Vibration and Acoustics 119 (1997) 173–179.

[5] F. Scarpa, Parametric sensitivity analysis of coupled acoustic–structural systems, Journal of Vibration and

Acoustics 122 (2000) 109–115.

[6] J.H. Kane, S. Mauo, G.C. Everstine, Aboundary element formulation for acoustic shape sensitivity analysis,

Journal of the Acoustical Society of America 90 (1991) 561–573.

[7] D.C. Smith, R.J. Bernhard, Computation of acoustic shape design sensitivity using a boundary element method,

Journal of Vibration and Acoustics 114 (1992) 127–132.

[8] K.A. Cunefare, G.H. Koopman, Acoustic design sensitivity for structural radiators, Journal of Vibration and

Acoustics 114 (1992) 179–186.

[9] T. Matsumoto, M. Tanaka, Y. Yamada, Design sensitivity analysis of steady–state acoustic problems using

boundary integral equation formulation, JSME International Journal Series C 38 (1995) 9–16.

[10] B.U. Koo, Shape design sensitivity analysis of acoustic problems using a boundary element method, Computers

and Structures 65 (1997) 713–719.

[11] N.H. Kim, J. Dong, K.K. Choi, N. Vlahopoulos, Z.-D. Ma, M. Castanier, C. Pierre, Design sensitivity analysis for

sequential structural–acoustic problems, Journal of Sound and Vibration 263 (2003) 569–591.

[12] D.J. Nefske, J.A. Wolf, L.J. Howell, Structural–acoustic finite element analysis of the automobile passenger

compartment: a review of current practice, Journal of Sound and Vibration 80 (1982) 247–266.

[13] R. Lyon, Statistical Energy Analysis of Dynamical Systems: Theory and Application, The MIT Press, Cambridge,

MA, 1975.

[14] F.J. Fahy, Statistical energy analysis: a critical review, The Shock and Vibration Digest 6 (1) (1974) 14–33.

[15] R. Lyon, R.G. DeJong, Theory and Application of Statistical Energy Analysis, 2nd Edition, Butterworth-

Heinemann, Boston, MA, 1995.

[16] L.K.H. Lu, Optimum damping selection by statistical energy analysis, Statistical Energy Analysis, Winter Annual

Meeting, Boston, MA, 1995, pp. 9–14

[17] S.A. Rybak, Waves in plate containing random inhomogeneities, Soviet Physics and Acoustics 17 (1972) 345–349.

ARTICLE IN PRESS

N.H. Kim et al. / Journal of Sound and Vibration 269 (2004) 213–250 249



[18] V.D. Belov, S.A. Rybak, B.D. Tartakovskii, Propagation of vibrational energy in absorbing structures, Soviet

Physics and Acoustics 23 (1977) 115–119.

[19] D.J. Nefske, S.H. Sung, Power flow finite-element analysis of dynamic-systems—basic theory and application to

beams, Journal of Vibration, Acoustics, Stress, and Reliability in Design 111 (1989) 94–100.

[20] J. Wohlever, R.J. Bernhard, Mechanical energy flow models of rods and beams, Journal of Sound and Vibration

153 (1992) 1–19.

[21] O.M. Bouthier, R.J. Bernhard, Models of space-averaged energetics of plates, American Institute of Aeronautics

and Astronautics Journal 30 (1992) 616–623.

[22] O.M. Bouthier, R.J. Bernhard, Simple–models of the energetics of transversely vibrating plates, Journal of Sound

and Vibration 182 (1995) 149–166.

[23] P. Cho, R.J. Bernhard, Energy flow analysis of coupled beams, Journal of Sound and Vibration 211 (1998) 593–

605.

[24] N. Vlahopoulos, L.O. Garza-Rios, C. Mollo, Numerical implementation, validation, and marine applications of

an energy finite element formulation, Journal of Ship Research 43 (1999) 143–156.

[25] F. Bitsie, R.J. Bernhard, Sensitivity calculations for structural–acoustic EFEM predictions, Noise Control

Engineering Journal 46 (1998) 91–96.

[26] R.J. Bernhard, J.E. Huff, Structural–acoustic design at high frequency using the energy finite element method,

Journal of Vibration and Acoustics 121 (1999) 295–301.

[27] G.A. Borlase, N. Vlahopoulos, An energy finite element optimization process for reducing high-frequency

vibration in large-scale structures, Finite Elements in Analysis and Design 36 (2000) 51–67.

[28] K.K. Choi, E.J. Haug, Shape design sensitivity analysis of elastic structures, Journal of Structural Mechanics 11

(1983) 231–269.

[29] R.S. Langley, K.H. Heron, Elastic wave transmission through plate/beam junctions, Journal of Vibration and

Acoustics 143 (1990) 241–253.

[30] K. De Langhe, P. Sas, D. Vandepitte, The use of wave-absorbing elements for the evaluation of transmission

characteristics of beam junctions, Journal of Vibration and Acoustics 119 (1997) 293–303.

[31] N. Vlahopoulos, X. Zhao, T. Allen, An approach for evaluating power transfer coefficients for spot-welded joints

in an energy finite element formulation, Journal of Sound and Vibration 220 (1999) 135–154.

[32] L. Cremer, L. Heckel, E.E. Ungar, Structure-Borne Sound: Structural Vibrations and Sound Radiational Audio

Frequencies, 2nd Edition, Springer, Berlin, 1988.

[33] P.E. Cho, Energy flow analysis of coupled structures, Ph.D. Thesis, Purdue University, West Lafayette, IN, 1993.

[34] M. Gelfand, S.V. Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, 1963.

ARTICLE IN PRESS

N.H. Kim et al. / Journal of Sound and Vibration 269 (2004) 213–250250


	Energy flow analysis and design sensitivity of structural problems at high frequencies
	Introduction
	Overview of EFA
	Energy flow equation
	Finite element discretization
	Power transfer matrix

	Parameter sensitivity analysis
	Definition of a variation
	Direct differentiation method
	Adjoint variable method
	Analytical example: plate component
	Finite element discretization
	Direct differentiation method
	Adjoint variable method


	Shape sensitivity analysis
	Material derivatives
	Direct differentiation method
	Adjoint variable method
	Analytical example: plate component
	Finite element discretization
	Direct differentiation method
	Adjoint variable method


	Numerical examples
	Calculation of power transfer coefficients
	Parametric study of design variables
	Two co-planar plates
	Two angled plates

	Sensitivity analysis of power transfer coefficients
	Parameter design sensitivity (panel thickness)
	Shape design sensitivity (junction angle)

	Design sensitivity analysis of energy density functions
	Parameter design sensitivity
	Shape design sensitivity


	Conclusion
	Acknowledgements
	Power transfer coefficient
	Calculation of power transfer coefficients
	Sensitivity of power transfer coefficients with respect to junction angle
	Sensitivity of power transfer coefficients with respect to thickness

	References


