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Uncertainty Reduction for Model
Error Detection in Multiphase
Shock Tube Simulation
Uncertainty quantification (UQ) is an important step in the verification and validation of
scientific computing. Validation can be inconclusive when uncertainties are larger than
acceptable ranges for both simulation and experiment. Therefore, uncertainty reduction
(UR) is important to achieve meaningful validation. A unique approach in this paper is to
separate model error from uncertainty such that UR can reveal the model error. This
paper aims to share lessons learned from UQ and UR of a horizontal shock tube simula-
tion, whose goal is to validate the particle drag force model for the compressible multi-
phase flow. First, simulation UQ revealed the inconsistency in simulation predictions due
to the numerical flux scheme, which was clearly shown using the parametric design of
experiments. By improving the numerical flux scheme, the uncertainty due to inconsis-
tency was removed, while increasing the overall prediction error. Second, the mismatch
between the geometry of the experiments and the simplified 1D simulation model was
identified as a lack of knowledge. After modifying simulation conditions and experiments,
it turned out that the error due to the mismatch was small, which was unexpected based
on expert opinions. Last, the uncertainty in the initial volume fraction of particles was
reduced based on rigorous UQ. All these UR measures worked together to reveal the hid-
den modeling error in the simulation predictions, which can lead to a model improvement
in the future. We summarized the lessons learned from this exercise in terms of empty suc-
cess, useful failure, and deceptive success. [DOI: 10.1115/1.4051407]

Keywords: uncertainty quantification, uncertainty reduction, verification and validation,
compressible multiphase flow, shock tube experiment, simulation

1 Introduction

According to the ASME verification, validation, and uncer-
tainty quantification committee standards and AIAA verification,
validation, and uncertainty quantification guides [1,2], model vali-
dation is defined as the process of determining the degree to which
a model is an accurate representation of the real phenomenon,
from the perspective of the model’s intended uses. The purpose of
model validation is not only to assess the accuracy of a computa-
tional model but also to improve the model based on the valida-
tion results. Uncertainty quantification (UQ) has been recognized

as a key component in verification and validation [3], whose aim
is to build predictive computational models. Validation experi-
ments may include measurement variability and processing uncer-
tainty [4] while simulation predictions may include propagated
uncertainty and numerical and model form errors [5]. The valida-
tion assessment is often performed using validation metrics that
compare the uncertainties between simulation and experiment in
the form of probability distributions [6].

If uncertainties in simulation and experiment are larger than
errors, validation may not be useful even if two distributions are
overlapped. Therefore, in order to have a meaningful validation, it
is required to separate model error from uncertainty and reduce
the uncertainty to be less than the model error, which is a unique
approach in this paper compared to other approaches in the
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literature [7]. There are many different ways of reducing uncer-
tainty, such as using more samples to reduce statistical uncertainty
[8], bias correction [9], and model conditioning [10]. The objec-
tive of this paper is to share lessons learned from UQ and uncer-
tainty reduction (UR) of a horizontal multiphase shock tube
simulation, whose goal is to validate the particle drag force model
for the compressible multiphase flow. The initial UQ for the hori-
zontal shock tube experiment was presented by Park et al. [4].
The primary goal of this paper is to expose the model errors so
that the model can be improved to ensure the required prediction
capability of the simulation. This paper is an extension of our pre-
vious work on validation and uncertainty quantification of the
shock-tube simulation [11].

The rest of the paper is organized as follows: Section 2 explains
the multiphase shock tube simulation and experiment, which is an
intermediate stage of a compressible multiphase turbulence pro-
ject at the University of Florida. Section 3 summarizes the valida-
tion procedure and UQ, where the quantities of interest are
defined, and uncertain variables are quantified. Section 4 presents
three UR activities to reveal the model error in particle drag force,
followed by conclusions and a summary of lessons learned from
this work in Sec. 5.

2 Shock Tube Experiment and Simulation

The physics of shock interaction with a cloud of particles has
many interesting applications, such as explosive volcanic erup-
tions, dust explosions in coal mines, and supernovae [12]. In addi-
tion, understanding this physics plays a key role in accurately
predicting explosive dispersal of particles and controlling and
designing the consequences of the explosion. The center for com-
pressible multiphase turbulence at the University of Florida is
developing software that can simulate a high-speed dispersal of an
annular, dry particle bed driven by a core of reacting explosive.
Figure 1 shows a blastpad experiment of explosive dispersal of
solid particles conducted at Eglin Air Force Base under the guid-
ance of the Air Force Research Laboratory [13]. This experiment
serves as a testbed for exploring the rich physics of compressible
multiphase instabilities and turbulence. The quantities of interest
(QoI) are the shock location and particle front location as a func-
tion of time, which will be compared with simulation predictions
for validation.

Many interesting and complex physics are present in the experi-
ment, including detonation chemistry, turbulence, particle colli-
sions, drag forces, real gas effects, shock–particle interactions,
and particle–gas interactions. Figure 2 shows eight physics models
for simulating the behavior of explosives, gases, and particles.
Among them, four key physics models were selected by the
authors based on their importance to achieving the prediction
capability of the simulation: (1) particle force, (2) particle colli-
sion, (3) compaction, and (4) multiphase turbulence.

Since the blastpad experiment in Fig. 1 is expensive, only a
small number of experiments are affordable. Therefore, simplified
experiments and simulations are planned to focus on individual
physics model validation while the effects of other models are
either controlled or ignorable. Among the eight physics models in
Fig. 2, in this paper, the multiphase shock tube simulation and
experiment are used to validate the particle drag force model (T6)
and the collision model (T4), which explain shock–particle and
particle–particle interactions. Since the QoIs strongly depend on
these two models, their accuracy is critically important to ensure
the prediction capability of the blastpad simulation. The shock
tube experiment is effective for these two models because the ini-
tial experimental conditions can be easily controlled such that the
interaction between shock particles and gas particles mostly con-
tributes to the QoI [14]. The effect of the compaction model is
minimized by using a relatively low volume fraction. In addition,
the effect of turbulence is ignorable by focusing on the motion of
particles in an early time.

The apparatus of the shock tube experiment conducted by San-
dia National Laboratories [14] is shown in Fig. 3(a). The shock
tube of 5.2 m in length is composed of the driver, driven, and test
sections. The particle curtain is located in the test section, where a
glass window on the side makes it possible to observe the particle
motion. The lime-glass particles in the reservoir fall through the
slit to form a particle curtain. A shock wave is generated due to
the pressure difference between the driver and driven sections
when the diaphragm between them bursts. The planar shock wave
travels through the driven section and is stabilized before arriving
at the test section.

When the shock moves in the flow direction, its interaction
with particles is observed through the side window in the test sec-
tion. The motion of the particle curtain is represented by the
upstream front position (UFP) and the downstream front position
(DFP) as a function of time as shown in Fig. 3(b). In addition, the
thickness of the curtain is calculated by the distance between the
two fronts. Initially, the curtain thickness is about 2 mm before hit
by the shock (Fig. 3(c)), while the curtain moves and expands
afterward (Fig. 3(d)).

Figures 3(c) and 3(d) show the schematic view of the glass win-
dow in the test section, where the black vertical bar in the middle
represents the particle curtain and dashed lines are the observation
window. The motion of the particle curtain is measured using
imaging techniques. More specifically, a Schlieren imaging sys-
tem [15] is used to capture the motion of the particle curtain and
shock. Figure 3(e) is a Schlieren image taken through the observa-
tion window. The rectangles with the dashed line of Figs. 3(c) and
3(d) show the coverage of the Schlieren image. In addition, an X-
ray radiography imaging system [16] is used to measure the vol-
ume fraction of the particle curtain. The Schlieren imaging system
can take an image every 24.4 ls, while the X-ray imaging system
can take a single image per experiment. Since the Schlieren and

Fig. 1 Explosive dispersal of a solid particle bed using compo-
sition B as an explosive and steel particles Fig. 2 Physics models involved in the blastpad simulation
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X-ray cannot be used simultaneously, either the curtain location
or volume fraction can be measured, not both.

An additional challenge in measurement is due to the gap
between the particle curtain and the sidewall. Figure 4 shows the
schematic top view of the test section with the particle curtain
where the curtain occupies about 80% of the width of the test sec-
tion. The gap allows the air bypassing around the particle curtain,
which makes the particles on both sides move faster than those at
the center. The two-dimensional simulation results in the xy-plane
in Fig. 4(b) support this behavior, where the particle motion on
the edge (y¼ 0.04 m) is faster than that at the center (y¼ 0 m).
The two vertical solid lines are UFP (red) on the left and DFP
(blue) on the right when all particles are considered. On the other
hand, the two dashed lines are UFP (green) on the left and DFP
(cyan) on the right when only particles near the center
(0� y� 0.01) are considered. These particle front lines are deter-
mined as the left and right 2.5 percentile of particle volumes.
Since the curtain movement can be observed through the window
on the side, it is difficult to observe the central portion of the parti-
cle curtain. Due to the placement of the particle reservoir and col-
lector, it is difficult to observe the particle movement in the
vertical direction. Since one-dimensional simulation assumes that
there is no variation through y- and z-coordinate direction, the gap
effect can be a major model error. This fact initially provoked
serious doubt about the comparison between the one-dimensional
prediction and the experiment with gaps because the former can-
not capture the gap effect.

3 Uncertainty Quantification and Validation Process

Both shock tube simulation and experiment include many sour-
ces of uncertainty. To have meaningful validation, one must

quantify them carefully. Figure 5 shows the validation and UQ
framework for the simulation based on reducing error and uncer-
tainty in both simulation and experiment. The major sources of
uncertainty in the experiment are measurement variability, sam-
pling uncertainty, and measurement processing uncertainty. The
first one is aleatory, while the other two are epistemic uncertainty.
The QoI can be different at different tests due to measurement
uncertainty, while the measurement may have a bias due to cali-
bration error, which is measurement processing uncertainty. These
errors and uncertainty are quantified by repeating experiments or
investigating the measurement process. In addition, the input con-
ditions and their uncertainties should be quantified so that they
can be used in the simulation. The major source of uncertainty in
simulation is the propagated uncertainty, which is the effect of
input uncertainty on QoIs. In addition, the stochastic variability
and discretization error in the numerical computation process
should be included. These errors and uncertainties are quantified
by running the simulation multiple times with different realiza-
tions of input uncertainty and performing convergence analysis.
When the difference between uncertainties in experiment and sim-
ulation is bigger than the difference in the mean values (model
error), it is difficult to identify the model error. In such a case, UR
is initiated to reduce the uncertainty in both the experiment and
simulation until they are less than the model error. If the model
error is larger than a threshold, model improvement is initiated to
reduce the model error. This process is repeated until both the
uncertainty and model error are less than a user-defined threshold.

A unique approach in this paper is the separated treatment of
model error from other sources of uncertainty. In the literature
[7,17], the model form error is generally considered as a part of
epistemic uncertainty, which is good for validating the prediction

Fig. 3 Schematic illustration of the shock tube experiment and particle curtain: (a) shock tube apparatus,
(b) particle curtain edge location curve, (c) Particle curtain before impact, (d) particle curtain before impact,
and (e) Shileren image compared to the size of the test section
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capability of simulation. However, to identify the model error,
which is the main goal of this paper, it would be necessary to sep-
arate the model error from other uncertainties. With the given
uncertainties in Fig. 5, the model error can be expressed as

emodel ¼ ðymeas þ esamp þ emeasÞ � ðymodel þ eprop þ enumÞ (1)

where ymeas and ymodel are, respectively, the means of measurement
and model prediction. In addition, esamp; emeas; eprop; and enum are,
respectively, sampling, measurement, propagated, and numerical
errors. All these four errors are modeled as uncertain variables
with mean values of zero. For example, measurement processing
uncertainty is a bias error. However, since we do not know its
exact value, it is modeled as a distribution with zero mean. Then,
the discrepancy between the means of experimental measurement
and the simulation calculation represents the model error, while
its uncertainty is the sum of all four uncertainties

EðemodelÞ ¼ ymeas � ymodel (2)

VðemodelÞ ¼ VðesampÞ þ VðemeasÞ þ VðepropÞ þ VðenumÞ (3)

where Eð•Þ and Vð•Þ represent, respectively, the expected value
and the variance of an uncertainty variable. Figure 6(a) illustrates
the proposed method of defining model error. The model predic-
tion becomes a distribution whose mean is at ymodel and the var-
iance is the combination of that of propagated uncertainty ðepropÞ
and numerical errors ðenumÞ. The experimental measurement is
also a distribution whose mean is at ymeas, and its variance comes
from that of sampling uncertainty ðesampÞ and measurement proc-
essing uncertainty ðemeasÞ. It is noted that the uncertainty in
Fig. 6(a) is schematic and does not represent any specific distribu-
tion type. Traditionally, the model error is defined based on the

Fig. 4 The gaps between the particle curtain and the walls and the predicted effect of the
gap from 2D simulation: (a) top view of the gaps between the particle curtain and the side-
walls and picture in the test section and (b) predicted effect of the gap: the particles close to
the wall (y 5 0.4) moves faster than the particles at the center (y 5 0)

Fig. 5 Sources of uncertainty and errors, and uncertainty and error reduction cycles
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model’s accuracy. However, this is only possible when the level
of model error is known. Since the goal of this paper is to quantify
the model error, Eq. (1) is a proper way to estimate it with given
uncertainties.

The identification of the model error is the comparison between
the mean of model error in Eq. (2) and its uncertainty in Eq. (3).
The uncertainty can be measured in terms of the standard devia-
tion. When the uncertainty is larger than the mean, it is impossible
to identify the model error because the uncertainty covers the
mean of model error, as shown in Fig. 6(b). Therefore, to reveal
the model error, uncertainty in Eq. (3) must be reduced such that
the mean of model error can be estimated, as shown in Fig. 6(c).
Therefore, the “large uncertainty?” loop in Fig. 5 is repeated until
both uncertainties from experiments and simulations are less than
the mean of model error in Eq. (2). Once the uncertainty is
reduced enough, the “large error?” loop in Fig. 5 is repeated until
the level of model error is acceptable.

Table 1 summarizes important sources of uncertainty and error
in the shock tube experiment. Additional measurements were per-
formed to estimate uncertainty in particle diameter [21]. Schlieren
image analysis is used to estimate the uncertainty in the curtain
thickness [14]. X-ray image analysis is used to estimate the distri-
bution and uncertainty in the initial particle volume fraction [16].
All uncertainties are considered uniformly distributed as we were
able to identify their lower and upper bounds through measure-
ments. In the case of initial volume fraction, however, it was pos-
sible to identify its distribution based on an X-ray image, which is
detailed in Sec. 4.3. All the uncertainties except for measurement
bias are used for simulation inputs to calculate the propagated
uncertainty ðepropÞ, while the measurement bias is included in the

measurement uncertainty ðemeasÞ. First, a Kriging surrogate model
of the curtain location is constructed using the volume fraction,
particle diameter, and curtain thickness as input variables. Then,
the Monte Carlo simulation with 10,000 samples was used to gen-
erate samples of curtain locations. To obtain the sampling uncer-
tainty ðesampÞ, experiments are repeated four times. To understand
the influence of the unknown particle locations, we randomly
placed particles and made ten runs of simulations with different
random particle locations. The difference between the simulation
results was small enough that we concluded that the effect of the
randomness in the initial particle location on the QoI is negligible.
The discretization error has been studied by Nili et al. [22], and
the error from the numerical scheme will be discussed in Sec. 4.1
ðenumÞ. The error due to the gap effect is quantified by comparing
one- and two-dimensional simulations.

4 Error and Uncertainty Reduction

4.1 Uncertainty Due to Bias From a Numerical Flux
Scheme. To calculate the propagated uncertainty, it is necessary
to run multiple simulations with varying input parameters accord-
ing to their uncertainty distribution. Since simulations are compu-
tationally expensive, surrogate models are often used to replace
them. During the design of experiments to build the surrogate
model, we observed inconsistencies in the simulation results.
Since the physical explanation of these inconsistencies was diffi-
cult, we conducted a parametric study to systematically investi-
gate this behavior. The parametric design of experiments was
conducted for three major sources of input uncertainty: particle

Fig. 6 Model error and associated uncertainty, calculated from the difference between mea-
surement and prediction: (a) model error and its uncertainty, (b) uncertainty is larger than
the mean, and (c) uncertainty is smaller than the mean

Table 1 Key uncertainty and error sources in the validation of the one-dimensional simulation

Uncertainty source Description

Measurement bias in particle front positions Systematic bias uncertainty because of the gap between the particle curtain and walls [�10,0]%

Initial particle volume fraction Uncertainty in initial volume fraction measurement process and local
variation in particle curtain [18,19] %

Initial particle positions Variability in initial particle positions

Particle diameters Variability in particle diameters [100,130] lm

Initial curtain thickness Variation in the curtain thickness [1.6,2.4] mm

Pressure at driver section Negligible measurement noise

Discretization Error due to temporal and spatial discretization

Model error Error in the drag force model [20]

Gap effect Error for not being able to measure DFP due to the gap

Numerical flux scheme Error due to numerical scheme
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volume fraction, curtain thickness, and particle diameter. Figure 7
shows the parametric design of experiments along four lines in the
three-dimensional parameter space, where simulation is conducted
at each circle. From the surrogate model, point A that shows a sig-
nificant deviation from the actual simulation is selected (volume
fraction of 23%, particle diameter of 110 lm, and curtain thick-
ness of 2.4 mm). The purpose is to confirm if the simulation
results along each line show a physically meaningful trend. Each
line is used to identify anomalies in simulation for the correspond-
ing parameter [23]. The QoIs (particle front positions) are calcu-
lated as the mean value over random initial particle positions.
Since the purpose was to investigate the inconsistency of simula-
tion results, the range of parameters is not the same as the vari-
ability of the input parameters reported in Table 1.

Figure 8 shows the results of QoI at 500 ls along the four lines
in Fig. 7. All four lines are normalized in the input variables,
where 1 denotes their individual starting points and 0 denotes the
ending point (point A). The values of different lines should have
the same results at the 0 point, which is f23%, 110 lm, 2.4 mmg.
Figure 8(a) shows that the DFP along the four lines is significantly
different; it varies in the range of 25 and 60 mm. The behavior of
the diameter line departs significantly from the other lines. The
discontinuity along the diameter line near the value 0.45 cannot
be explained physically. Since the trend is not consistent with
physics, it is concluded that it was caused by the numerical error.
The behavior was most likely to be associated with the advective

upstream splitting method plus (AUSMþ) scheme, a numerical
flux calculation scheme [24]. The flux of a cell is calculated con-
sidering Lagrangian particles traveling in the numerical cells, and
the particles are not always distributed evenly in a cell as
AUSMþ assumes. This AUSMþ assumption provoked numerical
instability when particles in one cell are extremely concentrated.
Thus, the AUSMþ scheme was upgraded to the AUSMþup
scheme to take into account the particle concentration in a cell
[19]. After upgrading the AUSMþup scheme, prediction along
the four lines is shown in Fig. 8(b), where the prediction uncer-
tainty is significantly reduced, and the behavior along the different
lines is consistent. After improving the numerical scheme, the
range of the DFP prediction is reduced to between 25 and 30 mm.
However, the prediction value itself at point A is changed signifi-
cantly: from 40 mm using AUSMþ to 27 mm using AUSMþup.
Therefore, by changing the numerical scheme, the numerical
uncertainty is significantly reduced while the model error itself is
increased. Therefore, the initial simulation with AUSMþ has a
large numerical uncertainty such that the model error was unclear
(see Fig. 9(a)) as the simulation results overlapped with experi-
ment results due to its large uncertainty. As Fig. 9(b) shows, the
inconsistency between the simulation and experimental results for
the AUSMþup scheme is slightly larger compared to the AUSMþ
scheme. This gives us a lesson that reducing uncertainty (numeri-
cal flux scheme) can reveal the hidden model error. In this case,
the model error and numerical scheme were compensating for
each other. It is noted that the results in Figs. 8 and 9 are slightly
different because Fig. 8 is the result for point A while Fig. 9 is the
result from three sources of uncertainty.

After the implementation of AUSMþup, the model error and
uncertainty in the QoI were quantified. Figure 9(b) shows a com-
parison between the calculated and measured QoIs with uncertain-
ties. The uncertainties are accumulated from the uncertainty
sources in Table 1 by propagating them through the simulation.
Figure 10 shows the model error in DFP with uncertainty. The
contributions from different sources of uncertainty were indicated
with bands of different colors. The simulation sampling uncer-
tainty (red) represents the uncertainty in obtaining the mean front
position from the repeated simulation runs. The measurement
uncertainty (orange) is the uncertainty in the measuring process of
the front positions. Both uncertainties are too small to be shown in
the figure [14]. The largest contribution is from the uncertainty
due to the inconsistency between simulation and experiment due
to the gap. The second-largest uncertainty is the measurement
processing uncertainty in the initial volume fraction based on
X-ray images. The third-largest uncertainty is due to the limited
number of experiments and high variability between them.

Fig. 7 Design of experiments along four parametric lines
(blue: particle diameter change, red: particle curtain thickness
change, gray: particle volume fraction change, and magenta: all
three parameters change simultaneously)

Fig. 8 Variation of downstream particle front location along different lines of the 3D parametric design of
experiments: (a) using AUSM1 and (b) using AUSM1up

031004-6 / Vol. 6, SEPTEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/verification/article-pdf/6/3/031004/6726926/vvuq_006_03_031004.pdf by U

niversity of Florida Sm
athers Libraries user on 23 July 2021



Figure 10 shows that the error of the simulation has a wide distri-
bution because of the large uncertainty. For example, the range of
model error at t¼ 700 ls is [�2,8] mm, which represents uncer-
tainty. Therefore, it is inconclusive if the model error is small or
large. In Secs. 4.2 and 4.3, it will be discussed how to reduce the
uncertainties so that the model error can be revealed clearly.

4.2 Uncertainty in the Gap Effect. Based on the ordering of
uncertainty in Sec. 4.1, it was concluded that the gap effect is the
largest source of uncertainty in the one-dimensional simulation. It
is emphasized here that the uncertainty due to the gap was esti-
mated based on expert’s opinions. To assess the model adequacy
properly, it would be necessary to reduce the uncertainty associ-
ated with the gap effect. Two options are possible for UR: (a) use
a two-dimensional simulation that can model the gap, or (b) con-
duct a new shock tube experiment without having the gap [16].
The former can reduce the uncertainty by including the gap in the
simulation, while the latter can reduce the uncertainty by remov-
ing the gap from the experiment. Both options were explored in
this paper to quantify/reduce the uncertainty due to the gap effect.
The two-dimensional simulation was performed where the x-axis
is in the flow direction and the y-axis is in the depth direction of

the test section. DeMauro et al. [16] performed an additional
shock tube test by extending the particle curtain to the wall such
that no gap exists between the particle curtain and the wall of the
test section.

Figure 11 shows the comparisons and the corresponding error
estimates with uncertainty for the two options. Figure 11(a) shows
95% confidence intervals of QoIs when the gap effect is included
in the two-dimensional simulation. Both experiment and simula-
tion used the particle curtain covering about 80% of that of the
test section. Based on these results, Fig. 11(b) shows the distribu-
tion of the model error estimate. At 700 ls, the range of model
error was [13,17] mm. Due to UR, the uncertainty in model error
is reduced by 2.5 times, while the median of model error is
increased almost five times compared to that of Fig. 9(b). The rea-
son for having a large error in the 2D simulation results in Fig.
11(b) is due to an incorrect volume fraction model (top-hat distri-
bution) and the numerical scheme AUSMþ (AUSMþup was not
available for the 2D simulation). Figure 11(c) shows 95% confi-
dence intervals of QoIs when the gap effect is removed. That is,
the particle curtain fills the depth of the test section during the
experiment, which is then compared with a one-dimensional sim-
ulation. Figure 11(d) shows the corresponding distribution of the
model error estimate. At 700 ls, the range of model error is [4,8]

Fig. 9 Comparisons between the simulation and experiment in terms of downstream front position (DFP) and
UFP with propagated uncertainties for different flux schemes. Note that uncertainties due to the use of surro-
gate are not included because they were negligible: (a) AUSM1 and (b) AUSM1up.

Fig. 10 Error in the DFP prediction with uncertainties from the uncertainty sources in Table 1 note that uncer-
tainties due to the use of surrogate are not included because they were negligible
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mm; that is, the uncertainty is reduced by 2.5 times and the
median is increased by two times. Both options significantly
reduce uncertainty, while revealing model error.

An interesting observation from the new experiment is that the
influence of the gap was minimal contrary to the comments from
experts and the simulation study. Figure 12 shows a comparison
between the mean front positions of the experiments with and
without the gap. It clearly shows that the influence of the gap is
ignorable. This study provided a lesson that some epistemic
uncertainties are unintentionally exaggerated. Without quantifying
them, they can increase the prediction uncertainty. This corre-
sponds to the case when an erroneous estimate of uncertainty can
mislead the UQ process. The follow-up experiments without the
gap showed that the gap effect was ignorable.

4.3 Reducing the Uncertainty in the Initial Volume Frac-
tion. Since the largest uncertainty source, the gap effect, was
removed, the second-largest uncertainty source, the initial volume
fraction, became the next target for uncertainty reduction. The
particle volume fraction can be estimated using X-ray radiogra-
phy, where the intensity of the image is attenuated when the X-ray
beam passes through particles. DeMauro et al. [16] used the
Beer–Lambert law to estimate the volume fraction from intensity
measurements.

In all simulations so far, a constant volume fraction of 21% was
used through the curtain thickness, which was the maximum

volume fraction from the X-ray image processing [25]. However,
X-ray images showed that the particle volume fraction is not uni-
form through the curtain thickness. Rather, they showed a bell-
shaped density distribution, which was also observed by Wagner
et al. [25]. Therefore, the uniformity assumption with the maxi-
mum volume fraction uses many more particles than the

Fig. 11 Model error estimate with uncertainty after the uncertainty reduction: (a) comparisons between the 2D
simulation modeling the gap and experiment with the gap, (b) error in the 2D simulation and the corresponding
uncertainty, (c) comparisons between the 1D simulation and experiment without the gap, and (d) error in the 1D
simulation and the corresponding uncertainty

Fig. 12 Particle front locations from experiments with and
without the gap
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experiment. Such a conservative estimate of the volume fraction
makes the number of particles in the experiment different from
that in the simulation. To make the simulation condition consist-
ent with the experiment, it would be necessary to use a variable
volume fraction through the curtain thickness. A rigorous UQ
study was carried out to reduce the inconsistency in this paper.

An important issue is that the particle volume fraction cannot
be measured directly, but it is estimated based on image intensity
attenuation. The particle volume fraction was measured from X-
ray images through a calibration and fitting process [4], which
introduces another source of uncertainty, called measurement
processing uncertainty. The uncertainty in the process was propa-
gated to the uncertainty in the measured volume fraction. Finally,
a bell-shaped initial particle volume fraction shown in Fig. 13 was
identified along with measurement processing uncertainty. This is
a significant uncertainty reduction from the constant volume frac-
tion of 21% in the previous simulation.

After the error and uncertainty in the initial volume fraction
were reduced with the bell-shaped profile, Fig. 14 shows the com-
parison between experiment and simulation, where the uncertainty
in the error estimate has been reduced compared to Fig. 11(d).
After this uncertainty reduction, the error estimate at 700 ls
becomes [4,6] mm. Compared to the initial error estimate of [�2,
8] mm, the reduced error estimate provides much accurate infor-
mation about the prediction error in the simulation. Now, the
uncertainty in model error is less than the mean of model error.
Therefore, uncertainty reduction revealed the model error.

After UR for the initial volume fraction, the largest remaining
uncertainty is the sampling uncertainty, which can only be
reduced by increasing the number of experiments. Since all
experiments were already finished, it was impractical to have
more experiments. In addition, the uncertainty in the prediction
error in Fig. 14(b) is small enough to reveal the model error.
Therefore, it is determined to stop the UR process.

5 Concluding Remarks and Lessons Learned

In this paper, the importance of UR is emphasized as a tool to
expose the model error in the validation process of the multiphase
shock tube simulation. The model error is separated from episte-
mic uncertainty such that the UQ process yields the error estimate
with uncertainty distribution. Initially, the error estimate was not
informative due to the large uncertainty in it. Therefore, a series
of uncertainty reductions has been conducted until the uncertainty
in the model error becomes much smaller than the error itself. The
possible sources of error and uncertainty were (a) inconsistency
between simulation and experiment, (b) lack of knowledge in
physics, and (c) inaccurate information in simulation inputs. It has
been shown that removing error and uncertainty does not always
improve the prediction accuracy due to the canceling effect
between different errors. Initially, the error estimate for the DFP
at t¼ 700 ls was [�2, 8] mm while the measured mean DFP was
65 mm. After rigorous uncertainty reduction, it was [4,6] mm,
which revealed the model error.

The next step will be to improve the particle force model of the
simulation so that the discrepancy between the simulation and
experiment can be reduced. However, the particle force model is
composed of five subforce components: quasi-steady force model,
pressure gradient force model, added mass force model, inviscid
viscous force model, and particle collision model. The improve-
ment of the individual models can be planned based on the impor-
tance of them on achieving the desired prediction accuracy. A
systematic approach is considered based on the idea of global sen-
sitivity analysis [26].

The lesson learned through UR in this paper is illustrated in
Fig. 15. In this paper, success is defined when the experimental
results do not contradict the simulations because the uncertainty is
larger than the difference between the two means. Failure is
defined when the experimental results are clearly different from
the simulations because the uncertainty is smaller than the differ-
ence between the two means. Figure 15(a) illustrates a scenario
where uncertainties in both simulation and experiment are so large
that validation is not useful. This was the case when the initial
shock tube simulation was finished. Uncertainty is considered too

Fig. 13 Initial particle volume fraction profile with measure-
ment processing uncertainty

Fig. 14 Using one-dimensional simulation with the reduced uncertainty in the volume fraction: (a) compari-
sons plot and (b) error in the 1D simulation and the corresponding uncertainty
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large when the trend of prediction/measurement cannot be deter-
mined when parameters change. For both simulation and experi-
ment, the dashed line represents the mean prediction or
measurement, while the range represents uncertainty associated
with predictions or measurements. Even if the two distributions
are almost overlapped, it cannot confirm that the model has a pre-
diction capability. This case is called “empty success” since it
does not yield a meaningful conclusion. Once the uncertainties in
both simulation and experiment are reduced enough, it is possible
that the validation may reveal the model error as shown in
Fig. 15(b). This was the case when the shock tube simulation and
experiment went through the rigorous UR process. Uncertainty
needs to be reduced until the trend of function can be clearly
shown when parameters change. Even if the validation fails, it
provides useful information for improving the model. Therefore,
this case is referred to as “useful failure”. The definition of valida-
tion in ASME standards and AIAA guides includes the model
improvement process, which is only possible after rigorous UR.
When multiple models are involved in simulation, it is possible
that errors may cancel each other. When the error from one model
(e1) is compensated with that of other models (e2), the final pre-
diction looks accurate. However, improving the second model
may increase the magnitude of the prediction error. We call it
“deceptive success,” as shown in Fig. 15(c). This happened before
an additional experiment was conducted with the gap. It is neces-
sary to conduct a series of uncertainty reduction to have meaning-
ful validation.
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