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Abstract: Prognostics and health management (PHM) has become an essential function for safe
system operation and scheduling economic maintenance. To date, there has been much research and
publications on component-level prognostics. In practice, however, most industrial systems consist
of multiple components that are interlinked. This paper aims to provide a review of approaches for
system-level prognostics. To achieve this goal, the approaches are grouped into four categories: health
index-based, component RUL-based, influenced component-based, and multiple failure mode-based
prognostics. Issues of each approach are presented in terms of the target systems and employed
algorithms. Two examples of PHM datasets are used to demonstrate how the system-level prognostics
should be conducted. Challenges for practical system-level prognostics are also addressed.

Keywords: system-level prognostics; performance; remaining useful life; dependency; multiple
components; challenges

1. Introduction

Condition-based maintenance (CBM) is a maintenance policy that maintains the
reliability of system operation and reduces the downtime of the system. Prognostics and
health management (PHM) has attracted much attention as the enabler of CBM. The PHM
aims to predict the remaining useful life (RUL) of the system and suggest an optimal
health management strategy. The PHM consists of four main stages: sensing, diagnostics,
prognostics, and health management, which are illustrated in Figure 1. In the sensing
stage, PHM engineers determine what to measure and which kind of sensors to install.
Health diagnostics is the process of evaluating the degree of damage significance and
identifying the root causes of failure. In other words, it focuses on the current operability
of the system at stake. On the other hand, health prognostics aims to provide information
about the future operability of the system. Prognostics includes establishing a failure
precursor which indicates an incipient degradation of the system and estimates the RUL
based on the current health state and expected future operating conditions [1]. Finally, the
health management of the system is performed based on the information obtained from
diagnostics and prognostics. Each step has its own challenges. For example, effective sensor
network design for sensing [2], feature extraction, observability analysis, and diagnostics
algorithm for fault diagnostics [3–5], development of prognostics algorithm [6], and proper
system operation strategy for health management [7]. In view of the CBM, however, the
prognostics is the most important since it enables the proactive maintenance plan [1,8].
This article focuses on the prognostics of complex systems that are encountered in the
real industry.

To date, there are many valuable review papers and books in the PHM with diverse
aspects such as the general process of PHM [1,9–15], pre-processing [16,17], and prognos-
tics algorithms [18–22]. For example, Lee et al. [1] provided a comprehensive review of the
PHM followed by an introduction of a systematic PHM design methodology for converting
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data into prognostic information. Lei et al. [14] provided a systematic review of machinery
prognostics from the data acquisition to the RUL prediction and summarized several prog-
nostics datasets commonly used for the research. An et al. [22] presented practical options
for prognostics to select an appropriate method for different applications. All the reviews
have provided successful case studies and useful descriptions of prognostics algorithms.
However, most of the reviews have focused on the component-level prognostics, such as
the bearings [23,24], gears [25,26], and batteries [27–29].
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As the industrial systems in the field become more complex, comprising of multiple
components, system-level prognostics is gaining much more interest from industry and
academia. A complex system is composed of many interlinked components, which makes
the system-level prognostics difficult [10,30]. It should be noted that the degradation and
health condition of the system is determined by its components, which means that the
individual degradation of components should be explored first and integrated to assess
the system performance [10,31]. From the research viewpoint, the system-level prognostics
has different characteristics from those of the component-level as summarized in Figure 2.
At the component level, a single or a set of sensors, such as vibration, acoustic emission,
and temperature sensors, can be used to monitor damage degradation. Since components
are relatively easy to test, a large number of failure data can be obtained from a testbed
for the algorithm development. In addition, a dedicated algorithm can be developed for
feature extraction of the target component. On the contrary, system-level prognostics
contains multiple sensors from various components. Dedicated algorithms may not work
in one way or the other in the system. Models are rarely available due to the system
complexity, which means that the data-driven method may be the only option. Few or no
failure data exist in the real operation or by the testbed. All these are the issues around the
system-level prognostics.
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Despite its importance and challenges, only a few reviews are found on the system-
level prognostics [30,32]. Li et al. [32] summarized prognostics algorithms for rotating
machinery. Bektas et al. [30] reviewed prognostics algorithms and RUL estimation of
complex systems under multiple operating regimes. However, these reviews have been
limited to the prognostics algorithms while missing the other more important issues in the
system-level prognostics. In fact, the algorithms in the review are not just limited to the
systems but are valid in the general sense. In light of this, the aim of this paper is to review
the current issues of system-level prognostics, survey how they have been addressed in
the literature, and suggest future challenges toward the practical applications. To achieve
this goal, the scope and definition of system-level prognostics in this paper are specified by
the following three points: First, the testing-based means the prognostics using the event
data, which are the end of life collected from the past operations or the reliability tests.
The life is estimated by statistical methods from the failure data. The reason to mention
this is because a considerable number of papers have addressed this for the system-level
prognostics, which is the population-based approach, hence, is not the scope of this paper.
Second, since the PHM is more concerned with the individual health of the system, the
survey is limited to the condition-based, which addresses the condition monitoring (CM)
data of individual systems [33,34]. As mentioned before, the true prognostics is about the
RUL prediction based on the health estimation so far. Upon the survey, however, it was
found that many have remained with the health index development of the system. In this
sense, the scope covers this as long as it deals with the system health inter-connected with
the components. Third, the scope addresses the issue of multiple failure modes, which may
occur in a single component. But it is treated as the topic of system-level prognostics as
well. The abovementioned three points can be summarized as follows:

• Condition-based prognostics, not testing-based prognostics
• Health index development for multiple component systems
• Prognostics of multiple failure modes

Under this background, this paper has surveyed literature, and categorized them
into four approaches: system health-index based, integration of components’ RUL into
the system, prognostics under influenced components, and prognostics of multiple failure
modes. The first focuses on health index development. The second deals with how the
components’ RUL are integrated into the system. The third handles the interdependency
between components. The fourth is for the multiple failure modes.

The paper is organized as follows: brief reviews on the prognostics algorithms for
system-level prognostics are provided in Section 2. In Section 3, four approaches for
the system-level prognostics are explained along with their issues. In Section 4, existing
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datasets for system-level prognostics are introduced. Challenges for effective system-level
prognostics are presented in Section 5, followed by conclusions in Section 6.

2. Algorithms for System-Level Prognostics

While there have been similar papers that have reviewed algorithms for the system-
level prognostics [32], this section summarizes them once again very briefly for the purpose
of integrity as they appear in the subsequent sections. It is again emphasized that the
algorithms reviewed herein are not limited to the system. In general, prognostics algorithms
are categorized into physics-based and data-driven approaches [10]. Although some
literature mentions a third category such as knowledge-based or hybrid approach, this
paper classifies them into the data-driven because most literature does so. Physics-based
methods describe the evolution of damage using comprehensive mathematical models
based on the physics-of-failure and degradation of system performance. Commonly used
ones are the Paris model [35] and Huang model [36] in the case of fatigue crack growth.
They are usually combined with Particle filter (PF) [37] or Kalman filter (KF) [38] in order
to estimate the RUL before the crack reaches a critical size. In the case of complex systems,
however, physics-based approaches are not likely applicable due to the complexity of
systems inter-connected by multiple components. Data-driven approaches utilize the CM
data collected from the installed sensors and build mathematical models for the RUL
estimation. As it does not require domain or physical knowledge, many publications have
focused on this approach [39–42]. The performance of data-driven prognostics, however,
heavily depends on the number and quality of data, as it requires a large number of trend or
run-to-failure data for accurate model construction. Up to date, various types of prognostics
algorithms have been introduced such as PF [43–45], neural network [46,47], support vector
machine [48], survival analysis [49], and Cox’s proportional hazard model [50,51]. Among
them, several algorithms that have been used for system-level prognostics are briefly
introduced in the following section.

2.1. Particle Filter

Whether it is component or system, as long as a degradation model and CM data are
available, a physics-based approach can be used, which estimates the model parameters
representing the system health based on the CM data. As a means to this end, the particle
filter (PF) algorithm is the most commonly used [31,45,52], which is rooted in the Bayesian
inference as follows

p(θ|x) ∝ L(x|θ)p(θ) (1)

where θ and x represent the vector of unknown parameters and observation data, re-
spectively. The posterior distribution p(θ|x) is proportional to the multiplication of the
prior distribution and the likelihood function, which are expressed as p(θ) and L(x|θ) ,
respectively. The particle filter represents the distribution via a large number of particles.
It consists of two equations: recursive representation of the degradation model and the
measurement equation. The process is composed of three steps: (1) prediction of the
parameters at the current time step k from the previous k-1 using the recursive equation;
(2) update of the parameters using the likelihood function based on the measured data
at the current time; and (3) resampling of the updated particles based on their weights
derived from the likelihood. The resampled particles are used as a prior distribution at the
next time step. The process is illustrated in Figure 3.
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2.2. Artificial Neural Network

When there is no model available, the artificial neural network (ANN) is the viable
option, which is widely used for data-driven prognostics. It aims to map input data
such as various sensor signals and their time histories into the output data such as the
health degradation or the RUL. The ANN architecture contains three layers: input layer,
single or more hidden layers, and output layer, as shown in Figure 4. Each layer contains
neurons (nodes) and weights that are illustrated as circles and arrows, respectively. The
input nodes xi (i = 1, . . . , I) are multiplied by weights Wij to obtain the values nj, which
become the input to the activation function g at the hidden layer [53]. The same process is
performed when a hidden node j is mapped into the output node ok. Given the input and
output data, the ANN is trained to determine the optimum weights such that the network
describes closely the relationship between the input and output. To further improve the
accuracy, optimum number of hidden layers and nodes are determined as well via cross
validation. As an advanced ANN, recurrent neural network (RNN) [54], convolutional
neural network (CNN) [55], and long short term memory (LSTM) [56] have been widely
used for prognostics recently.

2.3. Similarity-Based Method

When a large number of run-to-failure data are available from the past operation, a
similarity-based RUL prediction method can be applied [57]. The method evaluates the
similarity between the current test data (to predict the RUL) and the past training data
(obtained until failure) to identify the best matching portion of the degradation trend and
use it for the RUL prediction of the current system. The RUL is estimated by the past
RULs of training datasets, which are weighted based on the degree of similarity. This is
quite a unique approach, distinct from the extrapolation methods like PF or ANN-based
training [58,59]. Figure 5 illustrates the similarity-based method, which indicates that when
the current health index data are located along the past training trajectory as shown in the
figure, the highest similarity is achieved. Then the RUL is determined by the past trajectory
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from the end of current data. The similarity is evaluated by the distance between two
trajectories, given by [47]

d(tr,te) =

√
n

∑
i=1

(tei − tri)
2 (2)

where te and tr represent the test trajectory and the corresponding training trajectory,
respectively, and n is the length of the test trajectory. As its prognostics performance
depends on the similarity evaluation, several references focus on establishing effective
similarity measures and quantification of uncertainty [47,60,61].

Sensors 2021, 21, x FOR PEER REVIEW 6 of 26 
 

 

 
Figure 4. Architecture of an artificial neural network. 

2.3. Similarity-Based Method 
When a large number of run-to-failure data are available from the past operation, a 

similarity-based RUL prediction method can be applied [57]. The method evaluates the 
similarity between the current test data (to predict the RUL) and the past training data 
(obtained until failure) to identify the best matching portion of the degradation trend and 
use it for the RUL prediction of the current system. The RUL is estimated by the past RULs 
of training datasets, which are weighted based on the degree of similarity. This is quite a 
unique approach, distinct from the extrapolation methods like PF or ANN-based training 
[58,59]. Figure 5 illustrates the similarity-based method, which indicates that when the 
current health index data are located along the past training trajectory as shown in the 
figure, the highest similarity is achieved. Then the RUL is determined by the past trajec-
tory from the end of current data. The similarity is evaluated by the distance between two 
trajectories, given by [47] 

𝑑( , ) = (𝑡𝑒 − 𝑡𝑟 )  (2) 

where te and tr represent the test trajectory and the corresponding training trajectory, re-
spectively, and n is the length of the test trajectory. As its prognostics performance de-
pends on the similarity evaluation, several references focus on establishing effective sim-
ilarity measures and quantification of uncertainty [47,60,61]. 

Figure 4. Architecture of an artificial neural network.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 26 
 

 

 
Figure 5. Similarity-based RUL prediction. Asterisk markers represent the test trajectory. 

2.4. Cox Proportional Hazard Model 
Over the past years, the Cox proportional hazard model has been developed, which 

is quite different from the previous algorithms. While the former considers the RUL pre-
diction of individual assets using the CM data, the Cox model does this on a population 
basis using the statistical analysis, but accounts for the severity of degradation using the 
CM data. In fact, the model predicts the hazard (or failure rate) of a system by combining 
the historical failure data and online CM data [62]. In the model, the CM data, often called 
covariates, are used to reflect the severity from the baseline hazard rate. Then the hazard 
model, which represents the failure rate undergoing the conditions featured by the CM 
data, is defined as follows. λ(𝑡) = exp (𝐳 𝛃)λ (𝑡) (3) 

where λ(𝑡) represents the hazard rate at time t, λ (𝑡) is the baseline rate without the in-
fluence of covariates determined by the system lifetime data. 𝐳 and 𝛃 are the CM data 
and the corresponding vector of unknown parameters to be estimated by the maximum 
likelihood using the failure times and CM data [62,63]. 

3. Approach for System-Level Prognostics 
Based on the issues and challenges mentioned in the introduction, this section re-

views the approaches that have been addressed to solve the system-level prognostics. It 
can be grouped into four categories: (1) system health index-based, (2) integration of com-
ponents’ RUL, (3) prognostics under influenced components, and (4) multiple failure 
modes. To help readers understand, authors have added simple illustrative examples in 
each category. It should be noticed that each approach is not about a specific prognostics 
algorithm but the way to integrate the information from multiple components for system-
level information. In this paper, this process is called ‘systematization’. Therefore, any 
prognostics algorithms can be used before performing the systematization. 

3.1. Approach 1: System Health Index-Based Approach 
In the system health index-based approach, the health index is introduced to repre-

sent the degradation state of the system. Ideally speaking, the system health index should 

Time 

H
ea

lth
 in

di
ca

to
r

*
* *

*
*

**
*
* *

Training trajectory

Remaining useful life 

Test trajectory

Figure 5. Similarity-based RUL prediction. Asterisk markers represent the test trajectory.



Sensors 2021, 21, 7655 7 of 25

2.4. Cox Proportional Hazard Model

Over the past years, the Cox proportional hazard model has been developed, which
is quite different from the previous algorithms. While the former considers the RUL
prediction of individual assets using the CM data, the Cox model does this on a population
basis using the statistical analysis, but accounts for the severity of degradation using the
CM data. In fact, the model predicts the hazard (or failure rate) of a system by combining
the historical failure data and online CM data [62]. In the model, the CM data, often called
covariates, are used to reflect the severity from the baseline hazard rate. Then the hazard
model, which represents the failure rate undergoing the conditions featured by the CM
data, is defined as follows.

λ(t) = exp
(

zTβ
)
λ0(t) (3)

where λ(t) represents the hazard rate at time t, λ0(t) is the baseline rate without the
influence of covariates determined by the system lifetime data. z and β are the CM data
and the corresponding vector of unknown parameters to be estimated by the maximum
likelihood using the failure times and CM data [62,63].

3. Approach for System-Level Prognostics

Based on the issues and challenges mentioned in the introduction, this section reviews
the approaches that have been addressed to solve the system-level prognostics. It can be
grouped into four categories: (1) system health index-based, (2) integration of components’
RUL, (3) prognostics under influenced components, and (4) multiple failure modes. To help
readers understand, authors have added simple illustrative examples in each category. It
should be noticed that each approach is not about a specific prognostics algorithm but the
way to integrate the information from multiple components for system-level information.
In this paper, this process is called ‘systematization’. Therefore, any prognostics algorithms
can be used before performing the systematization.

3.1. Approach 1: System Health Index-Based Approach

In the system health index-based approach, the health index is introduced to represent
the degradation state of the system. Ideally speaking, the system health index should be
derived from the degradation of each component. This is however hard to achieve because
the relationship between the components and system is usually unknown. Under this
circumstance, the system health index-based method can be further divided into three
groups: (1) physical system performance (PSP)—physical outputs such as the flow rate
of a piping system or the generated power of wind turbine as an example, (2) virtual
system performance (VSP)—index representing the system health such as the probability
of system failure or distance from the normal; and (3) direct RUL of the system. Among
the three groups, the PSP, which employs a physical model, has a strength in both physical
interpretation and prediction accuracy. However, such a model is rarely available for
complex systems. Thus, the VSP and direct RUL are taken as more practical options, which
is also challenging since a large number of run-to-failure data are required.

Figure 6 shows the example of a DC motor to aid in explaining the system health
index-based method. It should not be confused that the motor here is regarded as a system
consisting of two components: permanent magnet and bearing, whose degradation affects
the system performance: the reduction in the output torque of the motor. Typically, the
velocity and current are obtained as the CM data. In the PSP method, system health (e.g.,
the output torque of DC motor, TO) is estimated via a physical system model, in which the
degradation of the components and the resulting system health are evaluated based on
the CM data. In the VSP method, virtual system health is commonly introduced between
1 (normal) and 0 (failure) or vice versa, and an empirical model is developed to relate
the CM data with the system health using the run-to-failure data set. For this, a machine
learning algorithm whose inputs are features extracted from signals and output is health
index between 0 and 1 is usually employed.
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While the overall summaries for each approach in the literature are given in Table 1, a
few papers are explained in more detail. In the PSP approach, Rodrigues [64] estimated
system RUL using the system-level performance indicator obtained by the system model.
He converted the health factors of individual components into the performance indices
and combined them into the system-level performance. Khorasgani et al. [31] developed
a two-step process for the system prognosis. In the estimation step, the system state and
degradation parameters are estimated based on the system model using the PF. Then in the
prediction step, the first-order reliability method (FORM) is applied to predict the system
RUL. In their work, the system EOL was defined based on the system performance, which
was calculated from the individual components and system degradation model. Wang
et al. [65] introduced a Bayesian network-based lifetime prediction method for systems,
which combines multiple sensor information and considers the interdependency between
accidental failure and degradation failure mechanism. Liu et al. [66] developed a dynamic
reliability assessment approach for the multi-state system by utilizing the system-level
observation history. The proposed recursive method dynamically updates the reliability
function of the system by incorporating system-level inspection data.

In the VSP approach, a virtual system health index is mainly introduced that varies
between 1 in the early period and 0 near the failure. Then, logistics regression [67] or
linear regression [68] are used as an empirical system model to convert the CM data
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into 1D system performance. The elevator door [67] or aircraft engine [68] are chosen
for the demonstration. Other researchers have employed the concept of distance from
the normal as the health indicator, which is determined by multivariable state estimation
technique (MSET) [69], auto-associative kernel regression (AAKR), or auto-associative
neural networks (AANN) [70,71]. The direct RUL method is similar to the VSP but the
RUL is employed directly instead of the VSP. That is, the CM data are directly related with
the RUL of target assets using artificial intelligence (AI) algorithms, such as multi-layer
perceptron (MLP) [72,73], convolutional neural network (CNN) [74,75], recurrent neural
network (RNN) [40,76], and long short-term memory (LSTM) [42,46,56], in which the
system-model is considered as a black-box. There have also been studies in which the
health index is first developed for the system, and the RUL prediction by the index is
followed using such as the particle filter [52], the similarity-based method [47,58,68], and
the ensemble approach [77]. It should be remarked that although these papers address the
system in their study, it is not strictly the system prognosis since they treat the system as a
single unit without considering the components.

Table 1. Summary of system health index-based approach.

Approach System in the Study Data Sources Prognostics Algorithm

Physical System Performance

Water piping system Direct CM Dynamic reliability assessment [66]

Pump system Direct CM Gamma process [64]
Similarity-based method [78]

Rectifier system Direct CM First-order reliability method (FORM) [31]
Air conditioning system Direct CM Gamma process [64]

Virtual System Performance

Punching system Direct CM Bayesian network [79]

Unmanned aerial
vehicle system

Direct/Indirect
CM data &

environmental data
Bayesian network [65]

Compressor system Indirect CM data Similarity-based method [80]
Train door system Indirect CM data Generative adversarial network [81]

Elevator door motion system Indirect CM data Autoregressive-moving average model [67]

Aircraft engine (CMAPSS) Indirect CM data

Similarity-based method [47,58,68]
Particle filter [52,82]

General path model [71]
Ensemble of data-driven algorithm [77,83]

Generative adversarial network [84]

Direct Remaining Useful Life Aircraft engine (CMAPSS) Indirect CM data

Multi-layer perceptron (MLP) [72,73]
Recurrent neural network (RNN) [40,76]

Long short-term memory (LSTM) [42,46,56]
Convolutional neural network (CNN) [74,75]

3.2. Approach 2: Integration of Components’ RUL into the System

The second approach is to integrate RUL information of individual components to
obtain the system-level RUL, rather than directly determining the system health index or
RUL as in approach 1. Figure 7 briefly illustrates the component RUL-based approach. In
the figure, two examples of the serial and parallel system are given, which define the system
failure based on the ‘AND’ and ‘OR’ gates of the fault tree diagram. For the gearbox system
in Figure 7a, failure of any components results in system failure. In this case, the union of
three RULs yields the system RUL. For the aircraft hydraulic system with redundancy, the
failure of all three sub-systems leads to system failure as shown in Figure 7b, which means
that the intersection of three RULs gives the system RUL.

The diagram can be generalized to the complex system by applying the fault tree
analysis (FTA), in which the component-level RULs are propagated to the system RUL by
the fault tree structure (see, e.g., Gomes et al. [85]). Ferri et al. [86] proposed a methodology
for maintenance planning in the view of system-level prognostics using the FTA. In the
end, the system-level RUL was used to identify optimum component combinations to
be repaired in order to maximize system safety. In this category, some literature has
employed a physical system model to determine the RUL of individual components.
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This approach, however, results in a higher computational burden as the number of
components increases. To overcome this issue, model decomposition methods have been
proposed by Daigle et al. [87–89], in which a distributed approach is developed for the
system-level prognostics by decomposing both the estimation and prediction problems
into computationally independent sub-scale problems. Then the system RUL is determined
as a minimum of the independent subsystem’s RUL. They have also developed PF-based
prognostics characterizing multiple damage progression paths based on the joint state-
parameter estimation [90]. Vasan et al. [91] proposed approaches based on decomposing
the system into multiple critical circuits and exploiting the parameters specific to the
system’s circuits. Chiachio et al. [92] introduced a mathematical framework for modeling
prognostics at a system level based on the plausible Petri net by incorporating maintenance
actions, various prognostics information, expert knowledge and resource availability.
Table 2 summarizes the component RUL-based methods for system-level prognostics.
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Table 2. Summary of component RUL-based approach.

System in the Study Algorithm Characteristics

Aircraft ECS Fault tree analysis &
Kalman filter [85]

Fault tree-based RUL fusion
Independent failure event

Aircraft hydraulic system Fault tree analysis & Kalman filter [93] Individual component’s RULs are estimated using Kalman filter
and system-level RUL is determined based on Fault tree analysis

Electrical power system Fault tree analysis [86,94] Fault tree-based RUL fusion
Optimum component combination to repair

Kalman filter [95] Individual component’s RUL is estimated using Kalman filter and
defined as system-level RUL

Four-wheeled rover Model decomposition [87] Decomposition of a large prognostics problem into several
Independent local subproblems

Pump Model decomposition [88]
Novel distributed model-based prognostics scheme

The system RUL is the minimum of all the distributed
subsystem RULs

National Aerospace System Model decomposition [89] Combining individually independent components RULs of aircraft
environmental control system

Centrifugal pump Particle filter [90] Individual component’s RULs are represented as particles and
system-level RUL are approximated by them.

RF receiver system Model decomposition [91] Decomposing a system-level problem into multiple
critical components

Numerical example Petri net [92] Incorporation of maintenance actions, various prognostics
information, expert knowledge and resource availability

3.3. Approach 3: Prognostics under Influenced Components

As mentioned before, system-level prognostics is difficult due to the inter-dependencies
between the “affecting” and “influenced” components in the system [10,31]. Such depen-
dencies may lead to the different degradation of the system than the case otherwise.
Figure 8 shows the gearbox system, which consists of gear and bearing, where the degra-
dation or fault of bearing affects the degradation of gear. In the figure, if the bearing stays
in the normal condition, the health trend of gear shows the normal degradation pattern.
When a fault occurs in the bearing, however, the degradation pattern of gear is changed,
i.e., is accelerated, and reaches the threshold earlier. This issue has already been studied
extensively in the field of maintenance strategies and policies with the topic of the multiple
components [96]. However, they did not consider the interdependency of the components
in the prognostics or RUL prediction.
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While the list of papers for this approach is given in Table 3, some of them are ex-
plained in detail as follows. Tamssaouet et al. [97–102] proposed a methodology based
on the inoperability input-output model to evaluate the system-level RUL in the situation
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where multiple interactions between components and the influence of the environment
exist. Liu et al. [103] introduced dynamic reliability assessment and RUL prediction of a
system that consists of a pump and valve. Parallel Monte Carlo simulation and recursive
Bayesian method are integrated for the purpose of failure prognostics under dependency
among components. Hu et al. [104] proposed a failure prognosis method using the dynamic
Bayesian network (DBN) for a complex system, which considers the interaction between
components and influence of protection action in the system during dynamic failure scenar-
ios. Maitre et al. [105] emphasized that when one component has a failure, the remaining
components compensate for the loss of the component and thus function in a ‘boosted’
mode. As a result, the component under ‘boosted’ mode shows a more severe degradation
than without it. Hafsa et al. [106] emphasized the importance of interactions between
components in RUL prediction. They proposed a method combining the probabilistic
Weibull and stochastic dependency model, which characterizes the effects of degradation
interaction derived from other components. Hanwen et al. [107] demonstrated that there
exists a noise that impacts the system with multiple components, as all the components
operate in the same circumstance and affect each other. They named this public noise. To
describe the degradation with public noise, Brownian motion that affects the degradation
of components was added to the Wiener process. Then, the degradations of the components
are jointly estimated by the KF, and the system RUL is determined by the minimum RUL
of components. Bian and Gebraeel [108,109] proposed a stochastic modeling methodology
considering interactions among the degradation of components in a system. They focused
on characterizing the relationship between the influencing and the affected component.

Table 3. Summary of prognostics of influenced components approach.

System in the Study Algorithm Characteristics

Tennessee Eastman Process Inoperability input-output model [97–102] Interaction between components
Influence of the environment

Pump & Valve Parallel Monte Carlo simulation &dynamic reliability
assessment [103,110,111] Interaction between components

Flue gas energy recovery system Bayesian network [104] Interaction between components
Influence of the protection

Lorry system Webuill model & Stochastic dependency model [106] Interaction between components
Blast furnace wall Multi-degradation modeling with public noise [107] Interaction between components

Hydraulic hybrid system Bond graph [112] Interaction between components
Dependency on operating mode

Gearbox Marshall-Olkin bivariate exponential distribution [113] Interaction between failure mode

Aircraft bleed system System redundancy & Adaptation of operational
modes in degraded functioning [105] Interaction between components

Cold box unit in petrochemical plant Regression [114] Interaction between components

Numerical simulation Structural impact measure [115]
Stochastic modeling of interaction [108,109] Interaction between components

3.4. Approach 4: Prognostics of Multiple Failure Modes

In the PHM, identification of fault modes is the initial step toward successful prog-
nostics [58]. In many cases, the system contains multiple failure modes even for a single
component. In that case, the degradation of components or systems can show a different
pattern from those of single mode, which should involve identifying active failure modes
and tracking their progression. The case is illustrated by an example in Figure 9, where
the bearing faults can occur at different places with different progression paths such as the
outer race, inner race, and rolling element. The faults if occurred concurrently can interact
and accelerate the global degradation of the components [90].
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For accurate fault prognosis, the method should be able to address this aspect. Several
approaches have been studied to this end, most of which were however rooted in the
traditional reliability engineering such as a hazard model or survival analysis [116–119].
Ragab et al. [116] merged the logical analysis of data with a set of non-parametric cause-
specific survival functions and applied it to the bearing prognostics whose failure modes
were inner race, outer race, and rolling element faults. Zhang et al. [118] presented a
mixture Weibull proportional hazard model for the EOL estimation of mechanical system
that includes multiple failure modes and applied to a pump system that contains two failure
modes: sealing ring wear and thrust bearing damage. Historical lifetime and condition
monitoring data were combined into the traditional proportional hazard model. Blancke
et al. [120] introduced a multi-failure mode prognosis approach for complex equipment.
They used graph theory and stochastic models for diagnostics and prognostics, respectively.
Once the failure mechanism is detected by the diagnostic process, the prognostic algorithm
based on a stochastic model is used to predict the possible failure mode dynamically as new
data are acquired. The proposed algorithm was applied to a hydroelectric generator stator,
which contains more than 150 failure mechanisms associated with three failure modes.
While the above studies are based on the traditional reliability approach, there have been
other studies for the multiple failure modes prognosis by using the PF [90,121–123]. Daigle
and Goebel [123] used the PF for model-based prognostics of a valve system that contains
multiple failure modes. Zhang et al. [121] introduced PF-based multi-fault prognostics
of bearing degradation whose failure modes were grease damage, spall, and unknown
fault. They monitored features directly related to each failure mode and utilized them in
the PF framework. Table 4 summarizes the system-level prognostics considering multiple
failure modes.
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Table 4. Summary of failure mode-based approach.

System in the Study Algorithm Types of Failure Mode

Rolling element bearing Survival analysis [116]
Inner race fault
Outer race fault

Rolling element fault

Particle filter [121]
Grease breakdown

Spall
Unknown fault

Pump system Proportional hazard model [118] Sealing ring wear
Trust bearing damage

Electronic Throttle Control Proportional hazard model [117,119]
Accelerator pedal

Throttle Body
Other three failure

Valve system Particle filter [123]

Spring rate
Internal leak

Top (bottom) external leak
Friction

Ion mill etching system
(PHM Data challenge 2018)

Recurrent neural network (RNN) [124,125]
Long short-term memory (LSTM) [126]

Convolutional neural network (CNN) [127]

Flow pressure drop
Flow pressure high

Flow leakage

4. Datasets for System-Level Prognostics

So far, there have been many run-to-failure datasets published from several institu-
tions such as NASA Ames, FEMTO, and PHM society. However, most of the existing
datasets were associated with component-level problems such as bearing, battery, and filter
clogging. The main challenge in system-level prognostics research is the lack of available
datasets. So far, only two datasets are open to the public, to the authors’ knowledge. This
section summarizes these datasets and suggests which approaches are good to answer the
questions of the problem in view of system-level prognostics.

4.1. C-MAPSS Datasets

As mentioned in Section 3, C-MAPSS is a widely used public dataset generated using a
turbofan engine simulation model called C-MAPSS (commercial modular aero-propulsion
system simulation). This dataset simulates the degradation scenarios of turbofan engines
under different operating conditions. Each dataset consists of a unit ID, cycle index, three
values for the operational settings, and 21 time-series sensor measurements contaminated
with noise [128]. Table 5 summarizes the available datasets, whose details can be found
in references [129,130], and Figure 10 shows the diagram of C-MAPSS. To date, most of
the research using the C-MAPSS datasets has been conducted by approach 1, in which
the system is treated as a black-box, and focus is given to improving the RUL prediction
accuracy by the machine learning model. However, the true value of system-level prognos-
tics should be on the algorithm that can identify the faulty components and/or the fault
modes and track their contribution to the system performance. To accomplish the true
aim of system-level prognostics for the C-MAPSS dataset, not only the approach 1 (system
health index) but also the approach 4 (multi failure modes) should be considered in the
future to answer the following questions:

• Which fault mode of the system causes more degradation of the system?
• What is the relationship between component degradation and system performance?
• How can the failure thresholds be set for the components and system?
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Table 5. C-MAPSS datasets [131].

Dataset Training Data Test Data Operating Condition Fault Mode

FD001 100 100 1 1 (HPC degradation)
FD002 260 259 6 1 (HPC degradation)
FD003 100 100 1 2 (HPC and Fan degradation)
FD004 249 248 6 2 (HPC and Fan degradation)
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4.2. PHM Data Challenge 2018

In 2018, the dataset for the ion mill etch tool used in a wafer manufacturing process is
published by the data challenge committee in the PHM society. In a wafer manufacturing
process, the wafer is placed on a rotating fixture that is tilted at different angles. The wafer
is shielded from the ion beam until it is ready for the milling process to begin using a
shutter mechanism as shown in Figure 11. A Particle Beam Neutralizer (PBN) controls
the ion beam as it travels to the wafer surface. In this process, the wafer is cooled by a
helium/wafter system called flowcool. Many different types of failure mechanisms exist
in this flowcool system. The objective is to build a model from time series sensors data
collected from various ion mill etching tools operating under different conditions and
settings. The model should diagnose the health state of the system and determine the RUL
until the next failure of the system. The dataset corresponds to the 20 ion mill etch tools.
Each dataset consists of 24 variables: 5 categorical variables, 14 numeric variables related
to the operating conditions, and 5 sensor measurements. The committee mentioned that
the system faces three different failure modes: ‘FlowCool Pressure Dropped Below Limit’,
‘Flowcool Pressure Too High Check Flowcool Pump’, and ‘Flowcool leak’. Different from
the C-MAPSS data, these three faults do not correspond to the different subsystems or
components of the system. It is unclear whether the three failure modes are interdependent
or not since the dataset is obtained from a real industrial field. As a conclusion, approaches
1 (system health index), 3 (influenced components), and 4 (multi fault modes) should be
considered for this problem to answer the following questions:

• How to obtain a degradation model from the datasets which face three different fault
modes simultaneously?

• Which fault modes are interdependent or correlated?
• How to set the appropriate thresholds for the different fault modes?
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5. Challenges for Practical System-Level Prognostics

In Section 3, the current literature for system-level prognostics has been reviewed
and grouped into four approaches, discussing their pros and cons. In this section, several
challenges that should be overcome based on the review to accomplish the true aim of
system-level prognostics are suggested. The challenges are divided into two categories:
(1) systematization issues, and (2) general challenges. First, systematization issues arise
from the definition of the system. Different from the component-level prognostics which
typically consist of the three steps such as feature extraction, diagnostics, and prognostics,
the system-level prognostics requires an additional step named ‘systematization’ as shown
in Figure 12, which addresses the conversion of component-level information into the
system-level. In fact, the abovementioned four approaches are more or less about how to
perform ‘systematization’ in the system-level prognostics. Second is the general challenges,
which refer to the issues that are not limited to but become more significant in the system-
level prognostics, which is why this is addressed as a challenge of system-level prognostics.

5.1. Systematization Issues in System-Level Prognostics

In view of the systematization, the system-level prognostics has been classified into
four approaches: system health index, component’s RUL, influenced components, and
multi failure modes. For approach 1, system-level prognostics is conducted by analyzing
the system health index. Depending on the types of CM data, existing literature has uti-
lized either PSP or VSP methods. In the case of VSP, approach 1 benefits from its wide
applicability since it does not require a high level of physical interpretation of the system.
This means that approach 1 can be applied to a more complex system compared to the
other three approaches. In practice, however, a large number of run-to-failure data for the
CM and system degradation are needed to achieve satisfactory performance. Different
from approach 1, approach 2 does not focus on extracting the system health index but
integrates the component-level information to determine the system RUL based on the
FTA. Approach 2 benefits for the situation where the system health index is not defined,
or the system-level degradation model does not exist. However, domain knowledge and
understanding of the system are required to build the appropriate standard for system fail-
ure. In approach 3, the interdependency between components’ degradations is exploited to
make a more accurate RUL prediction. However, there is a practical difficulty in identifying
the relationship between the component’s degradation. Therefore, the complexity will
exponentially increase for the system with more than two or three components. Approach
3 will be suitable when the system consists of less than three components. Lastly, when
the system or component has multiple failure modes, they are classified as approach 4.
Different from the previous three approaches, this has been dealt with mainly in reliability
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engineering. Several algorithms have been derived from the reliability to apply to the prog-
nostics. However, it is still very challenging to obtain the degradation pattern for different
types of failure modes. Thus, approach 4 is appropriate when the system faces a failure of a
particular component with multiple failure modes. As the approach becomes complicated,
its applicability is limited to a simple system. It is important to select an appropriate ap-
proach considering the trade-off relationship between the level of complexity of the target
system and approach. Table 6 summarizes the main characteristics of the four approaches
with the titles A1~A4. Pros of each approach provide the opportunities of the system-level
prognostics beyond the component-level prognostics. For cons, it describes the existing
drawbacks of the listed approaches and suggests the challenges for each approach. Once
the user defines the goal or the type of system-level prognostics, it is possible to utilize the
existing algorithms or approaches.
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5.2. General Challenges for System-Level Prognostics
5.2.1. Big Data Management

As the sensor technology and the capacity of data storage are improved, the industry
moves toward the era of big data, which enables engineers to develop PHM algorithms
for complex systems more easily. Despite this advantage, however, there are still several
issues to be explored in view of data management such as data storage and quality as-
sessment. For instance, in the case of bearing prognostics, as the sampling rate of data
acquisition becomes higher, the data size becomes bigger. Incessant data acquisition from
the beginning to the end of life may not be a practical choice. To accomplish efficient data
management, PHM designers should provide a practical standard for the time interval or
amount of data suitable for the prognostic study. However, there is not enough literature
on this subject. For example, Nguyen et al. [132] proposed a methodology for improving
the inspection/monitoring policy to reduce the operation and maintenance costs but also
ensure information quality. Jia et al. [133] introduced a method that assesses the data suit-
ability for PHM based on detectability, diagnosability, and trendability which correspond
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to the performance of fault detection, diagnosis, and prognosis. More research is called for
investigating this issue in big data situations for practical system prognostics.

Table 6. Pros and cons of four system-level prognostics approaches.

Method Pros Cons

A1

• Various types of prognostics algorithms can be applied once
the one-dimensional performance is obtained.

• High level of system interpretation is not required.

• Inappropriate classification of failure mode may
reduce accuracy.

• Threshold setting for VSP can cause a wide
uncertainty in RUL prediction.

A2

• An algorithm can be developed from the component level.
• In the absence of a system-level degradation model,

component-level RUL can be integrated to calculate the
system RUL

• Domain knowledge should exist to build the
relationship between components and the system.

• All components are assumed to be independent.

A3
• Component degradation that is accelerated by a linked

component can be prevented.
• It is challenging to model the dependency between

degradations of components

A4
• By monitoring potential failure modes of the system

individually, this method can suggest which parts of the
system should be repaired.

• A large number of data and information is required
corresponding to various failure modes.

5.2.2. Prognostics under Data Deficiency

There is no doubt that components or systems are not allowed to run to failure in
the field. Therefore, run-to-failure data are rare. As a result, it is desired to develop an
RUL estimation approach when limited data are available. There are few publications
that acknowledged this challenge and proposed approaches. Sobie et al. [134] introduced
a simulation learning method that trains fault diagnostics algorithms with data which
is generated by simulation from bearing dynamic models. Hu et al. [135] considered
degradation data that reached predefined failure threshold as labeled data, whereas data
without it as unlabeled ones. To utilize two different datasets, they proposed a co-training-
based data-driven prognostic algorithm, denoted by COPROG, which uses two individual
data-driven algorithms with each predicting RULs of censored units. Once the suspension
units are labeled by a data-driven algorithm, another data-driven algorithm is trained by
the training data labeled by the other. An et al. [136] demonstrated the method of utilizing
accelerated life testing (ALT) degradation data for the prognostic of a system. Depending
on the degradation model and loading conditions, four different ways of utilizing ALT data
for prognostics are discussed. Kim et al. [137] proposed the data augmentation technique
utilizing the run-to-fail (RTF) data obtained from different operating conditions. To predict
the RUL under data deficiency, existing RTF data is mapped into the current operating
condition and virtual RTF data sets are generated. Data deficiency is considered the major
and basic obstacle to prognosis. Although there have been few publications, most of them
were applied to component-level prognostics. As systems require higher safety operation
and reliability, data deficiency becomes a more serious challenge at the system level. For
this reason, data deficiency challenges should be overcome from components to systems.

5.2.3. Online Performance Assessment and Correction

There are several prognostics metrics to evaluate the performance of prognostics
algorithms, such as prognostic horizon (PH), α− λ performance, relative accuracy (RA),
and convergence [138]. Traditional metrics focused on the offline analysis of prognostics
algorithms using the run-to-failure data made in the past. In other words, these metrics
are only available when the run-to-failure data exist. In practice, however, industrial
systems are not allowed to operate until failure, and thus, it is difficult to employ the offline
prognostics metric. Driven by this, the online performance assessment method is highly
desired to evaluate the prognostics accuracy based on the current degradation trajectory.
For this purpose, Hu et al. [139] proposed online metrics to evaluate the performance of
model-based prognostics by monitoring only the current degradation trajectory without
failure. Wang et al. [140] proposed a ranking method of PHM algorithms based on discrep-
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ancy without true failure data. As the system becomes more complex and requires higher
safety operations, online performance assessment will be established as an essential tool
for the application of prognosis.

5.2.4. Uncertainty Management

The prediction of RUL is accomplished based on several prior steps, such as data
collection, signal processing, feature extraction, and prognostics method selection. Each
of these steps contains its own uncertainty, which propagates to the estimation of RUL.
Uncertainty should be properly managed so that the uncertainty in RUL and the associ-
ated risk can be maintained below an acceptable level [141]. There are three main topics
associated with uncertainty: (1) quantification, (2) propagation, and (3) management. Most
of the existing research has focused on uncertainty quantification and propagation, which
correspond to the process of identifying the various sources of uncertainty and combining
them into the uncertainty in RUL prediction. System-level prognostics contains more
uncertainty sources than component-level prognostics, such as uncertainties derived from
multiple components or subsystems. Therefore, understanding how the uncertainty in
a specific component propagates to the system quantifies the risk in system-level prog-
nostics and allows system operators to determine which components should be repaired
or inspected to obtain the desired system operating time. In addition, the system-level
PHM process includes uncertainty from various functions, such as data acquisition, signal
processing, fault diagnosis, and fault prognosis. Identifying these sources and their contri-
bution to system-level RUL prediction can help PHM designers to obtain a final output
with confidence by managing reducible uncertainties. For example, if acquired data shows
an unacceptable level of uncertainty, maintenance engineers can update the sensor kit or
increase the sampling rate to improve the quality of data [142].

5.2.5. Strategy Transforming Scheduled Maintenance into Predictive Maintenance

In many industrial applications, the scheduled maintenance policy is already es-
tablished. PHM is an important step to change the traditional scheduled maintenance
policy for predictive maintenance. In practice, however, abrupt changes in maintenance
policy can cause several side effects associated with safety and cost. Furthermore, the
changes in maintenance strategy require approvals from various stakeholders such as man-
ufacturers, maintenance operators, repair, and overhaul (MRO), and the federal aviation
administration (FAA) [143]. Therefore, a systematic methodology for a gradual change
from traditional scheduled maintenance to predictive maintenance is required.

6. Conclusions

In this paper, a review of the prognostics of multiple components systems, which
are widely used in the industry, is provided. Different from component-level prognostics,
system-level prognostics involves complex failure phenomena and interaction between
components. To help understand this complexity, authors categorized existing approaches
in the field of system-level prognostics into four groups: (1) health index-based approach,
(2) components’ RUL integration, (3) influenced components, and (4) multiple failure
modes. Each method has its own pros and cons, depending on available information and
data. Engineers can choose the best method based on the available information and data of
the specific system. Furthermore, general challenges that are not just limited to but signifi-
cant to the system-level prognostics are summarized, hoping to inspire future research.
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