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A B S T R A C T   

Condition monitoring data is an essential ingredient for prognostics and health management. To minimize un-
necessary inspections or measurements, it is crucial to evaluate the value of data to be measured in advance and 
determine the inspection or data measurement schedule. For this purpose, it is important to predict how much 
prognostics performance will be improved by adding additional data. Motivated by this objective, this paper 
proposes a new method that determines the future data measurement schedule which can reduce the uncertainty 
in prediction to the desired level. The proposed method decomposes the prediction uncertainty into epistemic 
and aleatory uncertainty, which are caused by the uncertainty of model parameters and the noise in the data, 
respectively. Then, contributions of these uncertainties to the overall prediction uncertainty in the future are 
analyzed. The next measurement schedule is determined such that the level of reducible epistemic uncertainty in 
the prediction is the same as that of aleatory uncertainty. The proposed method is applied to two different 
prognostics approaches: the model-based and data-driven methods. Two examples showed that the total number 
of inspections is reduced by about 85% while keeping the same level of prediction uncertainty.   

1. Introduction 

Prognostics and health management (PHM) estimates the system’s 
health condition and predicts the remaining useful life (RUL) to elimi-
nate unnecessary maintenance and prevent unexpected failure. It is well 
known that the PHM consists of fault diagnostics and prognostics, and 
numerous researches have been conducted in these two fields [1–3]. 
Although there are different aspects for these two functions, both of 
them use the condition monitoring data obtained via installed sensors or 
inspection. Therefore, appropriate data measurement is the key ingre-
dient to building successful PHM functions that satisfy the desirable 
requirements of users [4,5]. Among several issues related to data mea-
surement, this paper focuses on the data measurement schedule; i.e., 
inspection schedule. In this paper, the terminology of measurement and 
inspection are used as the same meaning. In the era of big data and in-
dustry 4.0, it is not surprising that many industries are trying to install 
sensors to target systems and gather condition monitoring data. In the 
view of decision-makers, however, there are several practical problems 
to be considered. First, the more data are monitored, the bigger data 
storage is required. Big data storage is directly associated with a high 
operating cost. Also, too frequent measurement or inspection strategy 
can result in frequent downtime, which makes PHM inefficient unless 

measurement does not interrupt system operation. Second, the condi-
tion monitoring data that is required for the PHM is degradation data 
over time. Many mechanical systems do not degrade fast, which means 
most monitoring data will not show noticeable degradation. In this 
sense, continuous data measurement may increase the required data 
storage and does not provide much benefit to PHM quality. Therefore, it 
would be beneficial to develop a proper methodology that determines an 
optimum data measurement schedule. 

Motivated by the abovementioned reasons, many researchers have 
aimed to determine the optimum inspection cycle. Inspection or mea-
surement policy can be generally categorized into two groups, i.e., 
corrective maintenance (CM) and preventive maintenance (PM) [6–8]. 
Although there is much literature regarding CM-based inspection 
scheduling, this paper focuses on the PM-based maintenance policy 
since it is well known that PM brings more benefits than CM in terms of 
condition-based maintenance. Recently, many researchers have inves-
tigated the optimum inspection/maintenance schedule considering the 
failure process of the machine [9–12], economic benefits [13–21], or 
system’s reliability [22–27]. In addition, some research have focused on 
joint optimization of production scheduling and maintenance [28–37]. 
For example, Papakonstantinou et al [10,11]. optimized inspection and 
maintenance strategies using stochastic models and real-time uncertain 
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data. For this purpose, they employed the partially observable Markov 
decision process (POMDP). However, the main drawback is that the 
model is hard to solve and requires large models which contain various 
types of health states. Yuan et al [12]. quantified the economic gain from 
an inspection and preventive maintenance program for managing an 
aging component population. They proposed a method based on the 
Bayesian value of information (VoI) with the gamma process of degra-
dation. However, they assumed that degradation data is free of mea-
surement noise. In addition, they did not consider how many 
unnecessary inspections can be removed. Nguyen et al [15]. proposed a 
method that improves the inspection/monitoring policy, reducing the 
maintenance and operating costs. They investigated different inspection 
policies for multiple degradation models of the system, and proposed 
prognostic model evaluation criteria. Based on the above information, 
they aimed to find the optimum inspection policy based on 
multi-objective optimization. Papakostas et al [16]. addressed the 
optimal maintenance scheduling based on the cost, RUL, operational 
risk and flight delay. Liu et al [17]. determined the inspection policy to 
minimize cost rate per time unit within the POMDP framework. Levitin 
et al [18]. optimized the inspection and mission policies by minimizing 
the expected costs related to inspection, mission failure, and failure of 
the system. Lin et al [19]. proposed the VoI-based inspection for the 
system that consists of multiple binary components. Wang et al [20,21]. 
proposed a cost-driven predictive maintenance policy based on the 
model-based prognostics framework which combines the extended 
Kalman filter and a first-order perturbation method. Based on the pre-
dicted reliability, they selected a group of aircraft panels that should be 
repaired at a scheduled maintenance stop to minimize the cost. Zhang et 
al [24]. developed a novel reliability-centered maintenance optimiza-
tion model for multicomponent reparable systems operating under 
s-dependent competing risks. Consilvio et al [26]. investigated a rolling 
horizon approach to suggest optimal predictive maintenance scheduling 
to reduce the risk of failure of the system. Shi et al [27]. developed a PM 
strategy optimization model by considering the lifecycle safety that is 
expressed as the joint time-dependent probability of failure in different 
time intervals. Lee and Mitici [38] introduced a multi-objective main-
tenance design method based on reliability and cost-efficiency. Cav-
alcante et al [39]. modeled inspections by using the delay time concept 
and focused on what maintenance to schedule at a known time. Mancuso 
et al [40]. presented a methodology supporting maintenance strategies 
for PHM-equipped systems. They built a probabilistic network model of 
the system between components, sensors, maintenance action, and in-
spection and optimized the target system’s inspection and maintenance 
strategy. Camici [41] presented a method suggesting maintenance 
scheduling of geographically distributed assets considering the pre-
dicted failure risks, travel and maintenance cost. Fanriat and Zio [42] 
suggested the VoI as a metric to schedule inspections. The next best 
inspection is determined based on the current condition and the ex-
pected gain (i.e., economic benefit) from possible inspections. Wang et 
al [43]. determined the optimal preventive maintenance thresholds by 
minimizing the system maintenance cost within the framework of the 
semi-Markov decision process. Shi et al [44]. developed a 
condition-based maintenance decision framework for a 
multi-components system subject to a system reliability requirement. 
Inspection time is determined when the predictive system reliability is 
below the reliability requirement. 

It is observed from the literature review that the keywords of existing 
methods are ‘optimization’ and ‘stochastic model (i.e., probabilistic 
model)’. They focused on building a functional relationship between 
prognostics information (i.e., RUL or future degradation) and economic 
benefit and suggested an optimal data measurement schedule. However, 
most of the studies suggested that a large number of historical data is 
required to build an effective model, and this problem becomes worse 
for the probabilistic model that consists of several different health states 
of the system. In addition, the recent literature shows that existing ap-
proaches do not consider the effect of actual degradation data obtained 

by inspection on uncertainty reduction associated with the probabilistic 
degradation model [44]. In other words, most of the researches has 
focused on quantifying the uncertainty to determine the optimal in-
spection schedule based on economic benefits. 

Rather than focusing on economic benefit and uncertainty quantifi-
cation, this paper aims to suggest the future measurement schedule 
depending on how much uncertainty due to the lack of knowledge can 
be reduced by obtaining data in the future. Up to date, none of the 
studies addresses this aspect when determining the inspection or mea-
surement schedule. In other words, this study is the first attempt to 
evaluate how much future uncertainty can be reduced and to determine 
the optimal future measurement time. Uncertainty can be categorized 
into aleatory and epistemic uncertainty, which are also called irreduc-
ible and reducible uncertainty, respectively. Data measurement or in-
spection can be interpreted as a mechanism to reduce epistemic 
uncertainty. For this purpose, identifying the source of uncertainty is the 
first step for appropriate uncertainty management. There have been 
representative studies that decompose the uncertainty into aleatory and 
epistemic uncertainty and evaluate their contributions. McFarland [45] 
presented an uncertainty decomposition method and applied it for 
sensitivity analysis of models with inputs relating to different uncer-
tainty sources. Sankararaman et al [46]. proposed a methodology that 
separates the contributions of aleatory and epistemic uncertainty to the 
overall uncertainty. 

Motivated by these methods, this paper extends the contribution 
analysis into the prediction uncertainty in the future and evaluates the 
reducibility of the prediction uncertainty. Then, the algorithm de-
termines the proper future measurement time to maintain the level of 
epistemic uncertainty within that of aleatory uncertainty. Since the 
prognostics algorithms are generally classified into model-based and 
data-driven approaches, this paper introduces two different inspection 
scheduling methods depending on the model-based or data-driven 
prognostics algorithm. The contributions of this paper are to consider 
the effect of data measurement on uncertainty reduction on model-based 
and data-driven prognostics methods, to identify the main contributor to 
the future prediction uncertainty in the extrapolation region, and to 
determine the future inspection schedule to reduce the prediction un-
certainty to the desired level. 

The paper is organized as follows, the theoretical background about 
uncertainty decomposition is explained in Section 2. The proposed 
methods of determining the data measurement schedule using model- 
based and data-driven approaches are introduced in Section 3 using a 
simple exponential function example. Then, the proposed method is 
applied to the real prognostics dataset in Section 4. Finally, the paper is 
concluded with discussions in Section 5. 

2. Uncertainty decomposition 

In general, uncertainty can be categorized into two groups: aleatory 
and epistemic uncertainty [47]. The former refers to the randomness of 
data that cannot be reduced, while the latter represents the uncertainty 
that is derived from the lack of knowledge, such as the uncertain pa-
rameters of the model. The epistemic uncertainty can be reduced by 
adding more data to estimate the parameters. Different from epistemic 
uncertainty, aleatory uncertainty is an inherent variation caused by the 
noise or the variability of data. Therefore, it is also referred to as vari-
ability. In many cases, two uncertainties are combined and result in 
overall uncertainty [48,49]. Since these two uncertainties are different 
in nature, however, it is important to decompose the overall uncertainty 
into aleatory and epistemic uncertainty to manage them effectively. 

This paper evaluates the contribution of each uncertainty source 
using the method proposed in the reference [46]. The contributions of 
aleatory and epistemic uncertainty to the overall uncertainty are 
analyzed using global sensitivity analysis (GSA). Consider a model with 
a vector of uncertain input variables X = {X1,X2,…,Xn} and output Y, 
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and each input variable has its own PDF function. In GSA, there are two 
effects; named the first-order indices and the total indices. The 
first-order sensitivity index of input variable Xi, which measures the sole 
contribution of Xi to the variance of the output, is calculated as: 

Si
1 =

VXi
(
EX− i

(
Y
⃒
⃒Xi

))

V(Y)
(1)  

where Xi is fixed first at a value and the expectation of the output is 
calculated by considering the variation in all other input variables 
(denoted as X− i). Then the variance of the expectation of output from 
different realizations of Xi is calculated and divided by the variance of 
output. A high value indicates that the variable contributes significantly 
to the variance of the output. In the same manner, higher-order sensi-
tivity indices which measure the interaction between variables can be 
calculated by fixing more than one input variable and subtracting in-
dividual effects. For example, the second-order sensitivity index, Si,j

2 is 
obtained by 

Si,j
2 =

VXi,j
(
EX− i,j

(
Y
⃒
⃒Xi,j

))

V(Y)
− Si

1 − Sj
1 (2) 

Lastly, the total sensitivity index, Si
T is expressed as the sum of the 

first-order and all the interaction effects of Xi. The total sensitivity index 
can be calculated as 

Si
T = 1 −

VX− i
(
EXi

(
Y
⃒
⃒X− i

))

V(Y)
(3) 

A low value of the total sensitivity index indicates that the contri-
bution of the input variable is not significant. Generally, the first-order 
and total indices are calculated together in GSA. Details about GSA can 
be found in [46,50,51]. 

It is noted that GSA cannot be applied for the case when two different 
sources of uncertainty are present. Sankararaman [46] proposed a 
method of combining both aleatory and epistemic uncertainties in GSA. 
To represent the aleatory uncertainty caused by the noise of data, an 
auxiliary variable, u, is employed. The concept of the auxiliary variable 
is based on the inverse transform sampling which is used to generate 
samples from the aleatory variable. A sample of u is drawn from the 
uniform distribution between 0 and 1. Then, the CDF of the random 
variable is inverted to find the corresponding samples of the random 
variable. Once the auxiliary variable is constructed, GSA can be per-
formed. Different from the traditional GSA, sensitivity is decomposed 
into ‘individual effects’ and ‘overall effects’ instead of ‘first-order effect’ 
and ‘total effect’. The individual (I) and overall (O) contributions of 
aleatory (U) and epistemic uncertainty (P) to the overall uncertainty in Y 
can be calculated as [46]. 

SI
U =

VUY (EX(Y|uY))

V(Y)
(4)  

SO
U = 1 −

VX(EUY (Y|x))
V(Y)

(5)  

SI
P =

VX(EUY (Y|x))
V(Y)

(6)  

SO
P = 1 −

VUY (EX(Y|uY))

V(Y)
(7)  

where X denotes the input variable associated with epistemic uncer-
tainty, and x means a particular realization of X. In practical applica-
tions, there are multiple sources of epistemic uncertainty. Details about 
how SI

P and SO
U are calculated will be explained in the following section. 

Fig. 1 illustrates the result of contribution analysis over time, which 
plots SI

P + SO
U(%). Based on the model parameters estimated at the cur-

rent time, a future prediction interval can be obtained. It should be 
noticed that the source of aleatory uncertainty is measurement noise 
that cannot be reduced even after the uncertainty in standard deviation, 
σ, is reduced. As mentioned above, the aleatory uncertainty is modeled 
with auxiliary variable, u, whose uncertainty remains constant over time 
since it follows uniform distribution between 0 and 1. Since the aleatory 
uncertainty cannot be reduced and remains the same over time, the 
epistemic uncertainty will become the main contributor to the overall 
uncertainty as the prediction interval increases. Therefore, when 
epistemic uncertainty becomes the main contributor to the overall un-
certainty, it is beneficial to measure data. 

3. Methodology 

3.1. Model-based approach 

In the model-based approach, it is assumed that the degradation 
model exists. To predict the future degradation behavior, the particle 
filtering (PF) algorithm is chosen in this paper, which is widely used in 
model-based approaches. It estimates and updates the unknown model 
parameters in the form of a probability density function (PDF). The PF is 
based on the Bayesian theorem: 

p(θ|z)∝L(z|θ)p(θ) (8)  

where θ and z are the vectors of unknown parameters and observations, 
respectively, p(θ) is the prior PDF of unknown parameters, L(z|θ) is the 
likelihood of observations given θ, and p(θ|z) represents the posterior 
PDF of θ given z. In time series, the posterior PDF at the current time step 
is used as a prior for the next step and recursively updates the estimation 
for uncertain parameters. In PF, model parameters are represented by 
particles (i.e. samples). Generally, PF is expressed by two equations, 
state model f(⋅) and measurement model g(⋅) [52,53], as 

xk = f (xk− 1, bk− 1, vk− 1) (9)  

zk = g(xk, σk) (10)  

where xk, bk, and zk represent the state, model parameter, and mea-
surement at kth cycle. The process noise and measurement noise are 
denoted as vk and σk, respectively. In practical applications, the process 
noise can be ignored since it can be included in the model parameter’s 
uncertainty [52,53]. In the following explanation, it is assumed that the 
measurement noise is normally distributed with a zero mean and stan-
dard deviation σk. 

To decompose the contributions of uncertainties, it is necessary to 
identify the relationship between input variables (uncertain parameters) 
and the output variable (measurement). For this purpose, the PF process 

Fig. 1. Contribution plot of epistemic uncertainty to the overall uncertainty.  
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is visually illustrated using a dynamic Bayesian network in Fig. 2(a). As 
shown in the figure, zk is a child node of xk and σk. However, considering 
the facts that model parameter, bk, and measurement noise, σk, do not 
change over time and xk is also a child node of xk− 1 and bk− 1, the rela-
tionship between each node can be illustrated in Fig. 2(b). Since the 
main interest of the proposed method is to identify the contribution of 
epistemic and aleatory uncertainty to overall prediction uncertainty 
(prediction interval), contribution analysis is conducted between xk− 1, 
bk− 1,σk and posterior prediction of zk. When the posterior prediction of 
zk follows a normal distribution, N(f(xk− 1,bk− 1),σk), there are epistemic 
uncertainties in f(xk− 1, bk− 1) and σk, and aleatory uncertainty caused by 
the measurement noise. Epistemic uncertainties are represented with 
particles (samples) of xk and σk at kth cycle, and they can be reduced by 
adding more data. In the case of aleatory uncertainty, the auxiliary 
variable is employed as mentioned in Section 2. When the posterior 
prediction of zk is calculated from the normal distribution, N(f(xk− 1,

bk− 1), σk), the samples of Uk generated from the uniform distribution 
between 0 and 1 are used to draw samples of prediction of zk using the 
inverse CDF sampling method. Since the samples of the auxiliary vari-
able are generated from the same uniform distribution, their relative 
contribution to the overall prediction uncertainty always remains the 
same. Therefore, the relative contribution is only changed by the change 
of epistemic uncertainty. In other words, even if the auxiliary variable 
does not represent the accurate magnitude of aleatory uncertainty, it is 

useful to quantify the relative magnitudes of aleatory and epistemic 
uncertainty. 

Once the sources of uncertainty are identified, individual and overall 
contributions of aleatory and epistemic uncertainty can be calculated 
based on Eqs. (4)-7). For example, SI

U can be obtained by calculating the 
ratio of variances of posterior predictions with and without fixing 
auxiliary variable, u, at the particular sample. In Eq (4), V(Y) is the 
variance of prediction samples, including the effect of aleatory variable 
u. On the other hand, EX(Y|uY) is the expectation of posterior prediction 
samples when u is fixed at uY . Considering that u has an Ns numbers of 
samples, the same numbers of EX(Y|uY) will be obtained. Finally, the 
variance of an Ns numbers of expectation values becomes the numerator 
in Eq. (4). In the same manner, Sx, Sb, and Sσ can be calculated. Since 
multiple input variables are associated with the epistemic uncertainty, 
the individual and overall contributions of the aleatory and epistemic 
uncertainty are given in Table 1. Among the four effects of uncertainty, 
the individual effect of epistemic uncertainty, SI

P, is calculated first, then 
SO

U is obtained based on the relationship, SI
P + SO

U = 100%. This is 
because, different from reference [46], this paper does not consider the 
individual auxiliary variables for the three input variables (x, b and σ). 
This simplification cannot assess the contribution of individual auxiliary 
variables but can assess the combined contribution from the three var-
iables, which is enough for our purpose. It is also reasonable to consider 
a single auxiliary variable because three epistemic parameters (i.e., x, b,
σ) share the weights within the PF framework. To resolve this problem, 
SI

P which can be calculated accurately is used as a measure of the 
contribution of epistemic uncertainty. Then, SO

U is calculated from SI
P +

SO
U = 100%. 

To determine the future inspection schedule, the abovementioned 
contribution analysis is applied to the future prediction Fig. 3. illustrates 
the process of the proposed model-based inspection scheduling. Based 
on the current measurement data, PF estimates the unknown parame-
ters, θk = {xk, bk, σk} in the form of samples and predicts future θkp by 
using degradation model f(⋅). In this step, two points need to be noted. 
First, the model parameter, bk, does not change over time and σk also 
does not change because the measurement variability remains the same. 
Second, in the stage of uncertainty management where the contribution 
analysis is performed, the posterior prediction samples of xk and cor-
responding auxiliary variable Uk are employed to calculate SI

P(k) and 
SO

U(k). This process is made for the pre-defined prediction range. Within 
the prediction range, the first cycle, kp, where SI

P(kp) becomes larger 
than the pre-determined uncertainty threshold, s, is determined as the 
next inspection cycle. 

3.2. Data-driven approach 

For the data-driven approach, gaussian process regression (GPR) is 
employed since it is known as a powerful machine learning algorithm 
that can quantify prediction uncertainty. Different from the model- 
based method, it is not easy to determine the aleatory and epistemic 
uncertainty in a data-driven algorithm since there is no physical 
parameter. However, the hyperparameters in GPR are basically process 

Fig. 2. Uncertainty source identification.  

Table 1 
Individual and overall contributions of aleatory and epistemic uncertainty.  

Contribution measure Equation 

Individual effect of aleatory 
(SI

U)  
SU  

Overall effect of aleatory 
(SO

U)  
SU + SU,x + SU,b + SU,σ + SU,x,b,σ  

Individual effect of epistemic 
(SI

P)  
Sx + Sb + Sσ + Sx,b + Sb,σ + Sx,σ + Sx,b,σ  

Overall effect of epistemic 
(SO

P )  
Sx + Sb + Sσ + Sx,b + Sb,σ + Sx,σ + Sx,b,σ + SU,x + SU,b +

SU,σ + SU,x,b,σ   
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noise and measurement noise which is combined in the form of the 
covariance matrix. The GPR, f(x) is represented by the global function, 
m(x), and the covariance function, K(x,x), as follows [54–57]: 

f (x) ∼ GP[m(x),K(x, x) ] (11)  

where GP[⋅] represents the Gaussian Process and x is a input vector. 
Generally, the covariance function consists of two parts, K(xi,xj)= kf (xi,

xj)+ kn(xi,xj), where kf (xi, xj) is the functional part, while kn(xi, xj) is the 
noise part, 

kf
(
xi, xj

)
= σ2

f exp

{

−

(
xi − xj

)2

2h2

}

(12)  

kn
(
xi, xj

)
= σ2

n (13)  

where σ2
f , h, and σ2

n are hyperparameters to be estimated. Usually, these 
hyperparameters are optimized by maximizing the following log- 
likelihood function, L, given training data set, {(xi,yi)

⃒
⃒i = 1,2,…,N}. 

L = logp(y|x, θ) = −
1
2

log
(
det

(
kf + σ2

nI
))

−
1
2
yT[kf + σ2

nI
]− 1y −

N
2

log2π

(14) 

Once the hyperparameters are optimized, the posterior prediction at 
x′ is described by the following equation 

f |x, y, x′

∼ N(f ′

, cov(f ′

)) (15)  

where f ′

= kf (x
′

, x)[kf (x, x) + σ2
nI]− 1y is the mean prediction and 

cov(f ′

) = kf (x
′

, x′

) − kf (x
′

, x)[kf (x, x) + σ2
nI]− 1kf (x, x

′

) is the prediction 

Fig. 3. Measurement scheduling for model-based.  

Fig. 4. Measurement scheduling for data-driven.  
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variance. 
From the above equation, the uncertainty (i.e. variance) at new point 

x′ has a contribution from the functional part (σ2
f and h) and measure-

ment noise term (σ2
n). In the view of uncertainty management, the 

measurement noise is regarded as an aleatory uncertainty since it rep-
resents the randomness of the signal. In this manner, the ratio of σ2

n to 
the overall uncertainty, cov(f ′

) is defined as the contribution of aleatory 
uncertainty, SU in GPR and the corresponding contribution of epistemic 
uncertainty, SP can be defined as follows: 

SU =
σ2

n

kf(x′
, x′

) − kf(x′
, x)

[
kf(x, x) + σ2

nI
]− 1kf(x, x′

)
(16)  

SP = 1 − SU (17) 

Fig. 4 shows how to determine the future inspection schedule time, 
kp. In the estimation part, hyperparameters, θk = {σf , h, σn}, are esti-
mated whenever the observation zk comes in. Based on the trained GPR, 
the future f and RUL can be predicted in the prognostics part. Also, the 
prediction variance (i.e. overall uncertainty) at kp cycle can be calcu-
lated and the contributions of aleatory and epistemic uncertainty, SP(kp)

and SU(kp) are obtained. In the same manner with the model-based 
method, the kp cycle when SP(kp) becomes larger than the pre- 
determined uncertainty threshold s is suggested as the potential in-
spection cycle. 

4. Application 

4.1. Simulation data 

To verify the effectiveness of the proposed method. Synthetic 
degradation data are generated based on the following exponential 
function which is widely used in the field of battery degradation [53]: 

xk = a⋅exp(b⋅k) (18)  

where a and b are model parameters, and xk is the health condition of 
the target system at kth cycle. First, the true degradation data is 
generated with bTrue = − 0.005 and aTrue = 1. To simulate the mea-
surement environment with noise, normally distributed noise term, 

Fig. 5. Synthetic data generated from exponential degradation.  

Fig. 6. Prognostics and contribution analysis using general particle filter.  
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N(0, σ2) is added to the true degradation data with the magnitude of σTrue 
= 0.01 as shown in Fig. 5. In the simulation, the nominal condition is 
assumed to be 1 and the threshold for failure is set as 0.7. It is assumed 
that data is measured at every cycle. 

4.1.1. Model-based inspection scheduling 
The objective of the model-based method is to identify model pa-

rameters, a and b, as well as the noise standard deviation σ using mea-
surement data. The initial distributions of three parameters are assumed 
as x0 ∼ U[0.9, 1.2], b0 ∼ U[ − 0.01, 0], and σ0 ∼ U[0.005, 0.015]. It 
should be noted that the model parameter a corresponds to the initial 

health condition, x0. Then, 10,000 samples of the three parameters are 
generated as particles in PF Fig. 6. shows the prediction results at t = 4 
and t = 17 when the inspection is conducted at every cycle; i.e., the 
contribution analysis is not applied. As shown in Fig. 6(a), the confi-
dence interval (C.I) of x becomes narrow as time passes, whereas the 
predictive interval (P.I) increases as t increases. This is because even if 
the difference between samples of model parameters is small, their effect 
on the prediction of x(t) becomes large as time increases Fig. 6.(b) il-
lustrates the contribution analysis at t = 4. Based on the P.I. and the 
sample distributions of b and σ, the contributions of the two un-
certainties can be computed for the future. The result indicates that the 

Fig. 7. Prognostics and contribution analysis of the proposed model-based method (s=0.5).  

Fig. 8. RUL prediction of model-based method.  
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epistemic uncertainty will not become dominant in the near future, such 
as t = 5 or 6, whereas after t=20, the epistemic uncertainty will be the 
main contributor to the prediction uncertainty. Therefore, it makes 
sense to have a measurement or perform the inspection at the time point 
to reduce the uncertainty by the chance of 90 % Fig. 6.(c) and (d) show 
the result at t = 17. The figures indicate that 95% C.I. becomes narrow, 
and the contribution SI

P is not dominant until t = 30. It means even if 
more data is gathered, the overall uncertainty will not be reduced 
dramatically before t = 30. 

Once the maintenance engineer decides to maintain the effect of 
epistemic uncertainty less than 50%, the inspection should be made at 
time t when SI

P(t) ≥ 0.5 Fig. 7. shows prediction and contribution 
analysis after applying the proposed model-based method Fig. 7.(a) and 
(b) show the result at t = 4 when the threshold, s = 0.5 Fig. 7.(a) shows 
that there was an inspection skipped in the past since the epistemic 
uncertainty was predicted to be smaller than 0.5. Also, the next sug-
gested inspection cycle is set as 6 and depicted as a black solid vertical 
line in Fig. 7(b). The results at t = 17 are shown in Fig. 7(c) and (d). As 
mentioned above, the inspection at t = 5 was skipped and other skipped 
measurements are illustrated as a blank circle in Fig. 7(c). Although 
fewer inspections are conducted than in Fig. 6, the 95% P.I. still covers 

the true degradation trend and shows good performance. 
Finally, the RUL prediction performance with/without the proposed 

method in model-based prognostics is compared in Fig. 8. Red circles 
indicate the time when the inspection is performed. The number of in-
spections is dramatically reduced compared to frequent inspection (in-
spection at every cycle), whereas the prediction uncertainty bound 
shows a similar range between the two results Table 2. summarizes the 
relationship between the number of measurements and the threshold. 
The table shows that as a conservative threshold is used, more data 
acquisition is required. 

4.1.2. Data-driven inspection scheduling 
As described in Section 3, GPR is employed as a data-driven method 

to predict future behavior and analyze the contributions of the aleatory 
and epistemic uncertainty to the overall prediction uncertainty. To 
emphasize the pure data-driven method, a constant function with zero is 
used as a global function and t is used as an input for the GPR Fig. 9. 
shows the result of prediction and contribution analysis of the expo-
nential degradation function using GPR. As shown in the figure, as more 
data are available, the contribution of epistemic uncertainty, SP, is 
smaller than SU in the near future. In the same manner with the model- 
based approach, it means to gathering data in the near future does not 
highly contribute to uncertainty reduction. 

Fig. 10 shows the result of the data-driven method after setting the 
threshold as 0.5, which means that the contribution of epistemic un-
certainty is maintained at less than 50%. As shown in Fig. 10(b) and (d), 
the proposed method can predict the inspection time when the epistemic 
uncertainty contributes more than 50%. In the same manner with the 

Table 2 
The number of required inspections for different levels of threshold (model- 
based).  

Threshold (s)  0 0.1 0.2 0.3 0.4 0.5 

Num. of inspection 70 49 32 25 20 13  

Fig. 9. Prognostics and contribution analysis using Gaussian process regression.  
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model-based method, the required number of inspections is reduced 
compared to Fig. 9. It should be noted that the prediction performance is 
poor compared to the model-based approach in Fig. 8. This is a natural 
drawback of a data-driven algorithm that does not have a physical 
degradation model. Nevertheless, the prediction uncertainty still covers 
the true future trend. 

Fig. 10. Prognostics and contribution analysis of the proposed data-based method (s=0.5).  

Fig. 11. RUL prediction of the data-driven method.  

Table 3 
The number of required inspections for different levels of threshold (data- 
driven).  

Threshold (s)  0 0.1 0.2 0.3 0.4 0.5 

Num. of inspection 70 45 22 17 13 10  
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Finally, the RUL prediction results are described in Fig. 11. The result 
shows that the same uncertainty level can be achieved with fewer 
measurements when the proposed method is employed. Also, Table 3 
shows that as a more conservative threshold is used, more data is 
required to satisfy the uncertainty requirement. However, there is an 
important difference between model-based and data-driven methods. In 
the model-based approach, it was important to obtain samples at an 
early stage since the samples for model parameters are rapidly 
converged to the most likely samples. On the contrary, the data-driven 
method demonstrates that even if the number of inspections can be 
reduced, it is vital to measure the data at a specific interval to maintain 
the desired epistemic uncertainty. This is expected because the main 
source of uncertainty in the data-driven method is due to long-term 
extrapolation. 

4.2. NASA battery data 

NASA Ames Prognostics Center of Excellence (PCoE) published the 
lithium-ion battery degradation data sets. The battery was charged with 
a constant current (CC) mode of 1.5A until the voltage reached 4.2 V and 
then constant voltage (CV) mode is maintained until the current dropped 
to 20 mA. Discharge was carried out with CC of 2A until the voltage fell 
to the pre-defined setting. Battery #6 used in this paper was discharged 
until the voltage dropped to 2.5V. The degradation test is stopped when 

the capacity is reduced to 70% of the nominal condition. State of Health 
(SOH) is a widely used health indicator in the field of battery prognos-
tics. The SOH is defined as [55,58]: 

SOH =
Ci

C0
× 100(%) (19)  

where the capacity at ith cycle and initial state are denoted as Ci and C0, 
respectively. Since the nominal capacity is defined as 2Ahr, the capacity 
is normalized with 2 Fig. 12. shows the results before and after applying 
the proposed method. For the model-based approach, the same expo-
nential degradation in Section 4.1 is employed. However, there is a 
subtle modification of the data-driven method. The SOH includes several 
spike-shaped behaviors which are called capacity regeneration and they 
make the RUL prediction inaccurate [59,60]. Although there have been 
several studies to address this problem, it is beyond the scope of this 
paper. To simply deal with this problem, a linear global function is 
employed for the GPR in the data-driven method, which is why Fig. 12(f) 
and (h) show a linear trend in the extrapolation region. Other than that, 
all of the processes are the same as those in Section 4.1. As a result, the 
number of required inspections is reduced dramatically from 108 to 5 for 
the model-based and 54 for the data-driven method, whereas the un-
certainty bounds in the RUL plot are similar to the case when the data 
was measured every cycle. 

Fig. 12. Application to NASA Battey #0006.  
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5. Conclusions 

The main benefit of the PHM technique is the reduction of the system 
operating and maintenance costs. Many sources of economic cost, 
including data measurement, inspection, and data storage, appear in the 
era of big data. Therefore, it is crucial to evaluate the value of the data 
and identify how much the prediction performance can be improved by 
obtaining the data. This paper defines prediction performance as an 
uncertainty for the future. Global sensitivity analysis is utilized to 
quantify the contribution of noise in data and uncertainty in model 
parameters on the prediction uncertainty. Based on the contributions of 
aleatory and epistemic uncertainty to the overall prediction uncertainty, 
the proposed method suggests a future inspection schedule to maintain 
the pre-defined level of the desired epistemic uncertainty. For practical 
applications, the proposed methods are grouped into model-based and 
data-driven methods. Both methods showed that the number of data 
measurements can be significantly reduced while maintaining the same 
level of prediction uncertainty. 

Even if both methods showed a good result, there are still points that 
can be explored in future work. For the model-based method, mea-
surement scheduling is directly affected by the accuracy of the degra-
dation model. It is still a challenge to obtain an effective degradation 
model in practice. In the case of the data-driven method, the extrapo-
lation of GPR in the absence of global function becomes useless in long- 
term prediction. In addition, model-based and data-driven approaches 

commonly contain model uncertainty which is not yet explored in this 
research. Future work will include the limitations of the two approaches 
mentioned above and improve the proposed method to consider the 
various types of uncertainty including model uncertainty. In addition, 
the proposed method will be developed to be used for the multiple 
component systems, which contain multiple sensor data corresponding 
to various types of components. 
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