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Abstract: In safety-critical systems such as industrial plants or aircraft, failure occurs inevitably during
operation, and it is important to prevent it in order to maintain high availability. To reduce this risk, a
lot of efforts are directed from developing sensing technologies to failure prognosis algorithms to
enable predictive maintenance. The success of effective and reliable predictive maintenance not only
relies on robust prognosis algorithms but also on the selection of sensors or data acquisition strategy.
However, there are not many in-depth studies on a trade-off between sensor quality and data storage
in the view of prognosis performance. The information about (1) how often data should be measured
and (2) how good sensor quality should be for reliable failure prediction can be highly impactful for
practitioners. In this paper, the authors evaluate the efficacy of the two factors in terms of remaining
useful life (RUL) prediction accuracy and its uncertainty. In addition, since knowing true degradation
information is almost impossible in practice, the authors validated the use of the prognosis metric
without requiring the true degradation information. A numerical case study is conducted to identify
the relationship between sensor quality and data storage. Then, real bearing run-to-failure (RTF)
datasets acquired from accelerometer (contact type) and microphone (non-contact type) sensors
are evaluated based on the prognosis performance metric and compared in terms of the sensors’
cost-effectiveness for predictive maintenance.

Keywords: prognostics; sensor quality; data interval; performance metric; accelerometer; microphone

1. Introduction

In many engineering systems, prognostics and health management (PHM) technolo-
gies draw extensive attention as a means to enable predictive maintenance. The steps of
PHM usually begin with data acquisition from sensors, where different kinds of condition-
monitoring data are captured and stored from various sensors that may contain health
condition information of the equipment in concern [1]. From the measured data, a health
indicator (HI) can be constructed to represent the health condition using signal-processing
techniques, feature extraction, and/or machine learning methods. Afterward, a remaining
useful life (RUL) until failure is predicted based on the degradation trend of the HI using
various prognostics algorithms.

While a lot of research has focused on the techniques for the latter two steps, fewer
investigations have been made to the first step, which includes data measurement man-
agement and the performance evaluation of various sensor technologies. It is evident
that acquiring many measurement data from high-quality sensors is an ideal situation
for building a successful PHM function. However, there are several practical issues to be
considered. First, more measurement data is directly related to higher data storage and
processing costs. In a similar context, high-quality sensors are known to be more effective
than low-quality ones, but they are expensive to purchase and their operating costs are
high [2,3]. Therefore, it would be beneficial to evaluate the trade-off between the sensor
quality and the amount of data storage to obtain reliable prognostics results.
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General methods of sensor evaluation and selection for prognostics are based on the
trend of measurement itself or the extracted HI. Liu et al. [4] proposed a permutation
entropy-based strategy to quantitatively select sensors that reflect the monotonic trend of
degradation to perform aircraft engine health prognosis. Moreover, they further used an
improved 2! permutation entropy method to optimize the number of selected sensors for
prognostics [5]. Zhang et al. [6] and Coble et al. [7] developed a sensor selection metric
that considers the trend consistency of sensor data among different systems and validated
it with engine simulation datasets. Kim et al. [8] proposed a latent linear model for HI
construction and used a lasso method to select useful sensor signals for the developed
model. Yu et al. [9] selected sensors with a monotonic trend prior to developing a single HI,
and then further evaluated the grey correlation analysis between the HI and each of the
selected sensors to decide the optimal sensor subset. Summing up the existing literature,
the main focus is found on evaluating the sensor performance in the prognostics using the
metrics of monotonicity, correlation, and robustness. However, it appears that there is a
lack of study in the context of two factors, namely the sensor quality and amount of data,
since they consequently affect the accuracy and the uncertainty of RUL prediction.

Few studies have considered the sensor quality in this aspect. Dawn et al. [10]
evaluated crack growth prediction and model parameters estimation performance us-
ing Bayesian inference when the observed data have noise and bias. In the results, the
authors were able to predict a crack with accuracy only if there were many data with large
noise. Camci et al. [11] focused on developing a guideline for practitioners on various types
of sensors used for railway turnout system monitoring. The RUL performance of each
sensor is evaluated and the additional cost factors of sensors are considered to make an
economic justification for the optimal sensor selection. However, the above studies aimed at
the sensor quality related to noise interference, but reducing the number of data to monitor
is not considered. More recently, Zhu et al. [12] proposed an active querying-based training
data selection mechanism in a Deep Learning (DL)-based prognosis to select the most
informative sample from unlabeled data. Kim et al. [13] proposed proper measurement
scheduling while maintaining the prediction uncertainty. These studies provide a revealing
insight on optimal data management but studies relating to sensor quality are still limited.
Moreover, the metrics to evaluate prognosis performance in the studies are based on true
degradation information [14,15], such as the true end of life (EOL), the true degradation
curve, or the historical run-to-fail data, which is challenging to assess in practice.

Motivated by the above issues, this paper evaluates the sensor performance in view of
the amount of data by varying the monitoring interval and the sensor quality by varying
the level of noise. In addition, the prognosis performance is evaluated using a metric
without true degradation information. Eventually, we want to answer the following two
questions: (a) how good sensors should be employed and (b) how often data should be
measured. The relationship between the sensor quality and the number of data is identified
through numerical study and real run-to-failure (RTF) datasets acquired from two different
type of sensors in a test rig, namely, the accelerometer [16] and microphone, in which the
former is the most common and inexpensive contact sensor, while the latter is a non-contact
acoustic sensor with higher cost and quality. The microphone is recently drawing attention
as an alternative means due to its advantage of low interference with external noises within
the system [17].

The rest of the paper is organized as follows. Section 2 presents the proposed methodol-
ogy and theoretical background for algorithms. Section 3 addresses the correlation analysis
between two different metrics and establishes a relationship between the two factors based
on the numerical study. Then, Section 4 presents the application with the bearing RTF
datasets of the designed experiment. Lastly, conclusions and potential future works are
presented in Section 5.
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2. Methodology

An overall framework of the study is described in Figure 1. In the beginning, sensor
performance is analyzed by simulation study as shown in the left part of the figure. First,
the two parameters related to the sensors, namely the level of noise and data intervals
(amount of data), are varied through numerical simulation to generate various datasets
of degradation. Then, two different metrics are introduced to evaluate the prognostic
performance. One is the true RUL metric evaluated based on the true information such
as the true EOL and the degradation curve, while the other is the time window metric
evaluated based only on the subsequent measurements. A correlation analysis between
the two is conducted to validate the use of the time window metric, and the relationship
between the two parameters is identified in view of the prognostic performance. Finally, the
bearing RTF experiment is conducted with two different types of sensors, an accelerometer
(contact) and a microphone (non-contact), as shown in the right part of the figure. Then,
the time window metric is applied to compare the performance of the two sensors.

Figure 1. The overall framework of the sensor evaluation.

2.1. Degradation Simulation

In this section, virtual degradation datasets are generated by numerical simulation
with different levels of noise and data intervals. The degradation function is assumed to
follow an exponential function since various components such as the battery and bearing
degradation are widely known to be degraded exponentially [18–20]. Thus, the degradation
model is given as

y = exp(bt) (1)

where t is the cycle, b is an exponential parameter set with a constant value of 0.02, and y is
degrading HI. The degradation data were generated for 100 cycles using Equation (1). Then,
the following measurement model was used to add random noise to the degradation data:

z = y + ε, ε ∼ U(−Lv.noise, Lv.noise) (2)

where ε is uniformly distributed with a certain level of noise. In this study, the degradation
data was generated with intervals (∆t) varying from 1 cycle to 8 cycles and four different
noise levels from 0.2 with the increment 0.1. The values for set data parameters are
summarized in Table 1.
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Table 1. Sensor data design parameters.

Lv. of noise ε ∼ U(−Lv.noise, Lv.noise)
Lv.noise = [0.2, 0.3, 0.4, 0.5]

Data interval ∆t = tk − tk−1,
∆t = [1, 2, 4, 8]

Considering four noise levels and four data intervals, a total of 16 cases were studied.
Figure 2a shows an example of the dataset with a small level of noise (0.2) and a small data
interval (∆t = 1). The black dots and dashed curve refer to measured data until 50 cycles
and the true degradation curve until the EOL, respectively. The green horizontal line is the
threshold at EOL, which is used to predict RUL. Figure 2b shows the case of a small level
of noise (0.2) and a large data interval (∆t = 8). Figure 2c,d are cases under a large level
of noise (0.5) with a small data interval © and a large data interval (d), respectively. Since
the randomness in the noise can lead to different prediction performances even under the
same parameter, 50 datasets were randomly generated under the same condition and used
to assess the performance of prediction.

Figure 2. Simulation degradation datasets: (a) low noise and large data; (b) low noise and small data;
(c) large noise and large data; (d) large noise and small data.

2.2. Regularized Particle Filter

The particle filter (PF) algorithm, also known as the Sequential Monte Carlo method,
is a widely used prognostic approach in many engineering problems such as Lithium-ion
batteries, induction motors, and PEM fuel cells [21–23]. PF recursively estimates and
updates the probability density function (pdf) of the unknown model parameters or states
of interest in the form of particles, based on the following Bayes’ theorem:

p(θ|z ) ∝ L(z |θ )p(θ) (3)

where θ is a vector of unknown parameters, z is a vector of measurements, L(z|θ ) is the
likelihood of obtaining measurement z given parameter θ, p(θ) is the prior pdf of θ, and
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p(θ|z ) is the posterior pdf of θ conditional on z. The standard PF consists of state transition
function f to predict the evolution of the state and measurement function h as follows:

xk = f (xk−1, bk, vk) = exp(bkdt)xk−1 (4)

zk = h(xk, nk) = xk (5)

where k is the time step index, xk is the state, bk is the vector of model parameters, zk is the
measurement data, and vk and nk are the process and measurement noises, respectively.
In practical applications, the process noise can be ignored since it can be included in the
model parameter’s uncertainty.

In this study, the exponential function was used for the transition function and the
process noise was ignored since it can be handled through the uncertainty in the model
parameters. For measurement, it was assumed that zk was the same as degradation data
including measurement noise from a Gaussian distribution, nk ∼ N(0,σk), where σk is
the unknown parameter of the standard deviation of the noise. Thus, the total unknown
parameters to be estimated were θ = [x, b,σ]T .

The process of the PF is composed of three steps at each iteration. First, in the
prediction step, particles in the previous time step are propagated through the transition
function to form particles at the current time, which is the prior pdf p(θ) at the current time.
Then, in the updating step, the likelihood of measurement data L(z|θ ) that represents each
particle’s weight is calculated. As a new measurement is used, the weight of each particle
is adjusted. A higher weight is assigned to the particles that have a higher similarity with
the measurement. Finally, in the resampling step, the particles are rearranged based on
the likelihood, such that they are duplicated or eliminated depending on the weight of the
particles by using the inverse cumulative distribution function (CDF) method [24,25]. The
resampled particles, which are the posterior distribution at the current time are then used
as the initial distribution for the next step prediction. More information about PF can be
found in An et al. [26].

Due to the resampling process, PF-based prognosis often suffers the problem of particle
impoverishment since the samples are drawn from a discrete distribution rather than a
continuous one. Consequently, after several iterations, the particles with small weights are
discarded and the particles with high weights are duplicated multiple times, which gives a
poor representation of the posterior distribution. To resolve this issue, a regularized Particle
filter (RPF), which is a modified version of PF, was used in the resampling step. Kernels
were generated at particle points and summed to generate the kernel density estimate
in RPF to have the advantage of approximating the weighted particles in continuous
distributions [27].

2.3. Prognostic Performance Metric

After predicting the future degradation using the RPF algorithm, two different prog-
nostic performance metrics were calculated: the RUL performance metric and the time
window metric. To compare the performance of both metrics, two measures were consid-
ered: the measure of the prediction accuracy and the measure of the uncertainty associated
with the prediction. The schematic illustration of each metric calculation is addressed in
Figure 3.

The RUL performance metric was calculated based on the result shown in Figure 3a.
The black dots and black dashed line represent the measured data until the current cycle
(M = 50 cycles) and the true degradation curve, respectively. Measurement data until M
cycles were used for estimating the distribution of model parameters. The red dashed line
denotes the prediction median at the future cycles, whose 90% confidence intervals are
shown in the shaded area. The horizontal green dotted line is the threshold until failure.
Since the true degradation curve crosses this line at 100 cycles, the EOL is 100 cycles. When
the predicted state reaches the threshold, we can obtain the distribution of EOL cycles. The
distribution of RUL can be obtained by subtracting this distribution from the current cycle,
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which is cycle 50. From the predicted RUL distribution, the accuracy measure can be calcu-
lated by Equation (6), which is an absolute error between the median of the predicted RUL
and that of the true RUL. Besides prediction accuracy, the level of uncertainty associated
with the prediction is also an important factor to assess the prognostic performance from a
conservative point of view. Therefore, the level of uncertainty was considered as normal-
ized C.I., which is defined as RULCI in Equation (7), where RULpred,5th and RULpred,95th
are the 5th and 95th percentiles of the predicted RUL, respectively. The performance of the
prognostic algorithm is considered to be good when both metrics are close to zero.

Figure 3. Illustration of two different prognostic performance strategies. (a) RUL performance metric;
(b) Time window metric.

RULerror =
∣∣∣RULpred,median − RULtrue

∣∣∣ (6)

RULCI =
RULpred,95th − RULpred,5th

RULtrue
(7)

The time window metric is different from the RUL metric as it directly uses the mea-
surements in a certain time window without the information of the true degradation [28].
The strategy is shown in Figure 3b, where the black dashed line is not the true degrada-
tion curve, but measurement data in the future. Since the true degradation value is not
available, the predictions can be compared with the subsequent measured data only. Thus,
the prediction accuracy and the level of uncertainty are assessed over a time window,
which is the range between the two vertical dashed lines in Figure 3b. The width of the
time window (Nt) is set based on how much early prediction is required for maintenance
scheduling. In the simulation study, the window was set to 50 cycles. The normalized
mean square discrepancy (NMSD) was introduced to assess the prediction accuracy using
the following equation:

NMSD =
1

Nt
∑Nt

i=1(zM+i − x̂m
M+i)

2

max
(

zM+(1:Nt)

)
−min

(
zM+(1:Nt)

) (8)

where M is the prediction start cycle, z is the measured data in the time window, and x̂m is
the predicted median of the degradation state by the prognostic algorithm. NMSD measures
the relative difference between subsequent measurements and the mean predictions. The
performance of the prognostic algorithm is considered to be good when NMSD is close
to zero.
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For the uncertainty measure, two indices were considered together. The first index E1
measures the relative width of the 90% C.I. with respect to the predicted median value for
each cycle and averages over the time window, as

E1 =
1

Nt

Nt

∑
i=1

(
x̂u

M+i − x̂l
M+i

)
x̂m

M+i
(9)

where x̂l and x̂u represent the 5th and 95th percentiles of the prediction, respectively. A
smaller E1 indicates a narrower C.I. over the prediction and lower prediction uncertainty.
The second index E2 measures whether the C.I. of the prediction covers the data and
how wide the C.I. needs to be to cover the data at each prediction point. Specifically, at
each prediction cycle in the time window, the minimal α% C.I. that can cover the data is
calculated. The discrete values of α are increased from 90 to 99 with one increment, and
E2 is calculated as 1− 0.01α, which varies between 0 and 0.9. Since a smaller α indicates
a more reliable prediction, a larger value is assigned for E2. If the highest α = 99 cannot
cover the data, E2 becomes zero.

E2 =

{
1

Nt
∑Nt

i=1(1− 0.01αM+i) , α = 90, 91, . . . , 99
0 , if required α exceeds 99

(10)

The above two indices evaluated the prognostic performance from the perspective
of uncertainty. A small E1 and a high E2 represent good prediction. Thus, the nonlinear
combination of E1 and E2, EI = E2/E1 was defined as an index to assess uncertainty
performance for the time window metric.

3. Numerical Case Study

In this section, we attempt to evaluate the correlation between the RUL performance
metric and the time window metric. Since the prediction performance of the prognostic
algorithm can differ by the randomness of noise even under the same noise level, the
correlation was analyzed using multiple randomly simulated datasets (50 datasets). If
the two metrics have a high correlation, the time window metric can be used with confi-
dence to assess the prediction performance using the measurement data only without true
degradation information.

The correlation was calculated between each component in metrics, the accuracy mea-
sure and uncertainty measure. The scatter plot and correlation coefficient value between
the two metrics under different levels of noise are shown in Figure 4. The first-row figures
present the scatter plot between RULerror and NMSD, and the second-row figures, between
RULCI and EI. The correlation between accuracy measures shows a very high correlation
regardless of noise levels: the smaller the RUL error, the smaller the NMSD value. Though
the uncertainty measure shows less correlation than the accuracy measure, the correlation
coefficient shows over 0.5 regardless of noise. Note that they show a negative correlation
since a higher EI means more reliable prediction, which corresponds to a smaller RULCI .
As such, the time window metric is shown to have a high correlation with the true RUL per-
formance and can be used as a prediction performance indicator when the true information
is unavailable.

Using the time window metrics, prediction accuracy was analyzed under various
levels of noise and different data intervals until the current M cycles. A large interval means
a small number of data for prognostic performance evaluation. The overall results of NMSD
are presented in Figure 5. The left figure is the 3D plot of NMSD with respect to the two
parameters (level of noise and data interval), while the right is a 2D projection with respect
to the level of noise. The red circles and arrow show that Lv. 1 noise with ∆t = 4 has a better
prediction accuracy (smaller NMSD) than Lv. 3 noise with ∆t = 1. Other comparisons
between different level of noise show similar results. This can be interpreted as indicating
that a high-quality sensor with a lower number of data outperforms a low-quality sensor
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with a higher number of data. Therefore, a trade-off between the sensor quality and data
intervals can be possible.

Figure 4. Correlation between two different metrics under varying noise.

Figure 5. Prediction accuracy of datasets under various levels of noise with different data intervals.

4. Bearing Case Study

The bearing is one of the most critical components that leads to system failure, and
numerous studies have been conducted to prevent its failure [29–31]. Among available
sensors, the accelerometer is the most common and cost-effective sensor for health moni-
toring. However, it has drawbacks of structural interference with other signals due to its
attachment to the system. Recently, non-contact acoustic sensors such as a microphone
are drawing attention as an alternative since it is less affected by other signal interfer-
ence [32,33]. To thoroughly evaluate the prognostic performance of the two sensors with
different qualities, we conducted multiple run-to-fail (RTF) experiments using a testbed
mounted with a commonly used accelerometer and a high-quality microphone. The sensor
performance was evaluated using the time window metric from the previous section.

4.1. Experimental Setup

Figure 6 shows the bearing test apparatus in which the RTF tests were performed. The
apparatus consisted of sensors, test bearings, support bearings, motors, and DAQ boards.
The sensors used in this study were an accelerometer (KS77C.100 by MMF), a microphone
(PCB Piezotronics 378C01), and a thermocouple. The accelerometer was mounted to the
right of the test bearing housing and the microphone was installed at a horizontal distance
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of 100 mm from the test bearing. The thermocouple was located 15 mm upward from the
bearing. The cost of a microphone (1931 USD) was about 4 times higher than that of the
accelerometer (452 USD). The DAQ boards consisted of an NI Pxle-4464 and an NI-9212, in
which the former recorded acoustic and vibration signals at a sampling rate of 204.8 kHz,
and the latter recorded the temperature at a 100 Hz sampling rate. The first 1 s of every 10 s
was stored as one cycle using LabVIEW software.

Figure 6. The bearing testbed (a) Front view of the bearing test rig (b) Close up view of test bearing
and sensors (c) Close up view of support bearings and couplings.

The bearing was operated with 1700 rpm. A radial load was exerted by the mechanical
fastening of bolts to the bearing located at the end of the shaft with the magnitude of 75~80%
of the dynamic load rating of 7950 N to develop naturally growing defects. After a number
of trials to ensure that the faults were fully developed over cycles while maintaining safety,
the test was terminated when the acoustic pressure, acceleration, and temperature exceeded
the thresholds of 9 Pascal, 18 m/s2, and 80 ◦C, simultaneously. As result, three RTF test
datasets were acquired by two different sensor signals having different levels of noise and
patterns during degradation [17].

4.2. Sensor Performance Analysis

In general, the prognosis process requires extracting a proper health indicator (HI).
In this study, as a traditional time-based statistical feature, the root mean square (RMS)
of the signals is employed. Although there are many other HIs with better performance
in view of accuracy and earlier prediction, the RMS is employed here because the main
focus is on evaluating the prognostic performance of different-quality sensor data. The HIs
and raw signals for three different RTF datasets are presented in Figure 7, where the lines
with blue and red color are the HI from the vibration and acoustic signals, respectively.
Corresponding raw signals are plotted next to the HI plot. It is noticeable that the overall
vibration signals show high fluctuation and noise interference compared to the acoustic
signals. For RTF No.3, for example, the vibration HI shows not only large noise but also
high fluctuation on the degradation trend. As a result, it is observable that the signal
acquired by the microphone was less influenced by the noise from the system such as
friction between the shaft and the support bearing.
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Figure 7. Comparison of RMS and raw vibration and acoustic signals for three run-to-fail datasets.

The prognosis performance for each sensor was calculated using the time window
metric. The window size (Nt) was fixed at 50 cycles and initial prediction started from
50 cycles (M). Then, the performance metrics such as the accuracy (NMSD) and uncertainty
(EI) were calculated for every cycle until failure. For example, Figure 8a,b shows the
prediction results by the vibration sensor for RTF No.1 data when M is 50 and 95 cycles,
respectively. Figure 8d,e are the prediction results by the acoustic sensor. The black and red
dots denote the measurements until the current cycle and future cycles in the time window,
respectively. The red dashed line and red shaded areas are the predicted median and 90%
C.I. in the future. Figure 8c,f are the NMSD and EI calculated at each cycle from 50 to
95 cycles. The calculated NMSD and EI results obtained in Figure 8a,d are the first values
for the vibration and acoustic sensors in Figure 8c,f, respectively. In order to compare
the prognostic performance of the sensors, the values of NMSD and EI were averaged
over all subsequent cycles, respectively. In the case of the acoustic sensor, the results were
also obtained for different data intervals to examine its effect accordingly. The results are
presented in Figure 9, in which the first- and second-row figures show the average NMSD
and EI for the vibration and the acoustic sensors, respectively. In the figures, the first two
bars are the results with data at every cycle, whereas the remaining three are the acoustic
results with intervals of 2, 4, and 8 cycles (1/2, 1/4, 1/8 reduction in the number of data).
The results indicate that, in terms of prediction accuracy, the NMSD of the acoustic sensor
is smaller, hence, more accurate, than that of the vibration sensor in all the datasets, even
when we use 1/8 amount of data for the prediction. In case of the uncertainty measure EI,
the results of the acoustic sensor are higher than that of the vibration sensor when using the
data with every cycle in all the datasets, which means that the reliability is higher. However,
the value gets smaller for 1/4 data in RTF No. 2, and for 1/8 data in RTF No. 2 and 3, which
means that the reliability becomes lower as the number of data are reduced. In summary,
1/2 (half) data are sufficient or even 1/4 (quarter) data are favorable for the acoustic sensor
for prognosis in comparison with the results by the vibration sensor.
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Figure 8. Prediction by the vibration sensor for RTF No.1 data at (a) 50cycle and (b) 95cycle; (c) NMSD
calculated at each cycle from 50 to 95 cycles; Prediction by the acoustic sensor for RTF No.1 data at
(d) 50cycle and (e) 95cycle; (f) EI calculated at each cycle from 50 to 95 cycles.

Figure 9. Average NMSD (a) and EI (b) of the vibration sensor, acoustic sensor, and acoustic sensor
with different data intervals (1, 2, 4, and 8 cycles).

In order to achieve economic feasibility when employing an acoustic sensor, it may be
necessary that the cost benefit of reduced data storage or inspection interval is evaluated as
a trade-off to the higher cost of the sensor. This is, however, not addressed in this study.
Nevertheless, the microphone, which has smaller noise, performs better in prediction even
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with four times fewer data than the accelerometer. Considering the cost occurrence due to
false prediction and data storage for long-term monitoring, the microphone could be more
cost-effective than implementing an accelerometer.

5. Conclusions

In this paper, a study toward a trade-off between sensor quality and data amount in
the view of prognostic performance was addressed by numerical study and real application.
First, the two parameters related to the level of noise and data intervals were considered
to evaluate various datasets of degradation. Next, a correlation analysis between two
different metrics was conducted to validate the use of the time window metric, which is
only based on the subsequent measurements, without true run-to-failure data. Through the
numerical study, the relationship between noise and data intervals was identified in view of
the prognostic performance. In the real application study, two different sensor signals were
obtained from a bearing degradation experiment. The results showed that the non-contact
type microphone, which has a smaller level of noise, shows superior performance in overall
prediction even with a quarter of the data than those of the accelerometer.

However, there still remains a number of critical challenges in order to build a guide-
line for practitioners. The cost of data storage or inspection needs to be considered in more
detail to verify the economic feasibility of using high-cost sensors. The experiments of the
two sensors were conducted in a controlled lab environment. Thus, other factors such as
external noise and microphone placement distance should be considered additionally to
evaluate the robustness of sensor performance. In addition, it is worth looking into the
existing research gaps of the DL-based method in the perspective of data acquisition since
it highly depends on the training datasets. Nevertheless, this study is a first step toward
setting a guideline for the practitioners when establishing the data acquisition system
for PHM.
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