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Abstract

Silicon carbide fiber and silicon carbide matrix (SiC¢/SiC,,,) tubes produced through the chemical vapor infiltration process
have become a candidate cladding material in nuclear applications. The performance of this composite is influenced by many
variables such as braiding angle, porosity, material properties, etc., which vary over a range of values due to the inherent
fluctuations in the manufacturing process. In this study, the variability in elastic constants of SiC{/SiC,,, composite has been
quantified through multiscale finite element (FE) simulations, variable screening, and high-fidelity surrogate modeling. The
key variables dominantly affecting the elastic constants of SiC/SiC,, tubes were identified using global sensitivity analysis. A
surrogate to the high-fidelity FE-based model was used in Monte Carlo simulations to generate a hundred thousand samples
from which the uncertainty in elastic constants was assessed. It turned out that the coefficient of variation was less

than 10%.
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Introduction

Since the Fukushima Daiichi nuclear accident in 2011,!
there have been accelerated efforts to develop accident-
tolerant fuels (ATF) to enhance the safety and reliability of
light water reactors (LWR).”> In conditions that occurred
during the Fukushima accident, known as the loss of coolant
accident (LOCA), it is speculated that the temperature inside
the nuclear reactor core may have exceeded 1000°C. At
such high temperatures, the currently used Zircaloy material
is known to undergo significant degradation in the form of
loss of ductility, loss of creep resistance, rapid oxidation,
hydride formation, and oxide layer spallation.>~> Efforts to
identify alternate accident-tolerant materials have focused
on silicon carbide fiber and silicon carbide matrix com-
posites (SiC¢/SiC,,) manufactured through mechanical
braiding of SiC fibers followed by chemical vapor infil-
tration (CVI) of the SiC matrix. These composites have
impressive characteristics such as low neutron cross-
section, low coefficient of thermal expansion, and high
elastic modulus.®” Moreover, SiCy/SiC,, composite has
been engineered to exhibit pseudo ductility and improved
fracture toughness, unlike the monolithic SiC.* These

properties make the SiC¢/SiC,, composite an attractive
candidate to replace Zircaloy as a cladding material.®
However, these composites exhibit significant variability
in their microstructural features (e.g., porosity distribution,
fiber diameter, yarn angle, wall thickness) and mechanical
properties (e.g., Young’s modulus, shear modulus, and
Poisson’s ratio) all of which can lead to uncertainty in the
performance of the composite during service conditions.
Uncertainties are typically classified into aleatory (repre-
senting variability) and epistemic (lack of knowledge). For
the current analysis, the aleatory uncertainty can be due to
the variability in microstructure, geometry, and material
properties discussed above. Additional variability comes
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from the manufacturing process (variation in thickness,
porosity, imperfections in weave angles, etc.) and the
variability due to operating conditions (e.g., operating
temperature). Epistemic uncertainty stems from limited
knowledge of the statistical distribution that governs the
elastic constants of the composite and is due to the limited
number of samples that can be tested to get statistical in-
formation. The uncertainty can be (i) type of distribution
(e.g., normal, lognormal, or Weibull), (ii) parameters of the
distribution, such as mean and standard deviation in the case
of the normal distribution, and (iii) measurement uncer-
tainty associated with the fact that measurements are of
finite accuracy. Specific to this SiC¢/SiC,, composite,9
variability in individual SiC fiber properties and the CVI
SiC matrix have been documented. The residual porosity of
the SiCy/SiC,, composite and its distribution, which is
difficult to characterize, forms a major source of epistemic
uncertainty. Although experiments carried out by various
researchers have helped determine the range of elastic
constants of SiC¢/SiC,,, composite tubes,’ there have been
limited studies to identify the distribution of mechanical
properties of SiC¢/SiC,, tubes. In this paper, we intend to
identify the distribution of elastic constants of SiC¢SiC,,
tubes and quantify the concomitant coefficient of variation
(CV) which will help model the performance of SiC¢/SiC,,
cladding material in nuclear applications.

Despite the advances in testing and ultrasonic mea-
surements of ceramic matrix composites,'® '? the iden-
tification of the above distribution of properties and
geometric variables demands a prohibitively large
number of SiC¢SiC,, specimens and experiments. Ad-
ditionally, it is impractical to test the performance of SiCy/
SiC,, cladding material at every possible combination of
loads. Alternatively, a finite element (FE) based model
can handle a complicated combination of loads compared
to the simple uniaxial loads often used in experiments.
Furthermore, it is practically impossible to control the
values of relevant variables (such as porosity, Young’s
modulus, Poisson’s ratio, braiding angle, and others) in
the manufacturing process while these quantities can be
precisely accounted for in a numerical model. Such an
investigation can help decipher the relationships between
the input variables and elastic constants of the composite.
A two-scale homogenization is generally adapted to
analyze textile composites'>'* in FE-based micro-
mechanics. The microscale homogenization involves the
analysis of SiC yarn and the subsequent mesoscale
analysis is concerned with textile composites. The SiC¢/
SiC,, composites have been analyzed by Yamada et al.'?
to study the thermal diffusivity and thermal conductivity.
The effects of porosity on unidirectional SiC yarn were
studied by Chateau et al.'® by assigning negligible
stiffness values to finite elements representing voids in
the FE mesh of the volume element. In this study, we have

developed an FE-based multiscale methodology to
evaluate the effective elastic constants of the SiCy/SiC,,
composites acknowledging their key features such as
tubular geometry, residual porosity, and high yarn volume
fractions. The developed FE methodology is used to
identify the distributions of elastic constants of SiC¢/SiC,,
composites, namely Young’s moduli in the circumfer-
ential and longitudinal directions, Poisson’s ratio, and
shear modulus.

The uncertainty quantification in elastic constants of
SiC¢/SiC,, composite tubes is challenging due to the vari-
abilities in microstructure and properties at different length
scales. The variability is present at the individual fiber level
(material properties) at the yarn level (intrayarn micropo-
rosity and yarn properties), and at the composite level
(braiding angle, macroporosity, and volume fraction).
Therefore, it is necessary to include in the numerical
models, different scales to represent the effect of uncertainty
at corresponding scales.'”'®

The second challenge is the computational cost involved
inuncertainty quantification, which usually requires hundreds
of thousands of simulations. There are various methods
available for reducing the computational cost in uncertainty
quantification, such as surrogate modeling,'*® importance
sampling,”' > local expansion-based method,>*** polyno-
mial chaos expansion,”*>® etc. Since comparing different
methods is out of scope, surrogate modeling through a
polynomial response surface is used in this research. How-
ever, the proposed methodology should work with other
methods of uncertainty quantification as well.

The last but not the least of the identified challenges is the
ubiquitous ‘curse of dimensionality’. Even if the surrogate
model can be efficient to generate hundreds of thousands of
samples for uncertainty quantification, it can still be ex-
pensive to build a high-fidelity surrogate model of sufficient
predictive accuracy, especially when the number of input
variables is high, which is called the curse of dimension-
ality.>” Moreover, varying some of the variables (such as
yarn cross-sectional area, fiber volume fraction, and
braiding angle) is an arduous task in FE simulations as
changing these variables demands the generation of a new
FE mesh. In practice, however, not all input variables
significantly affect the uncertainty in elastic constants of
SiC¢/SiC,, composites. Therefore, it is possible to screen out
the input variables that do not have a significant contribution
to the output uncertainty. In this research, global sensitivity
analysis (GSA) is utilized to downselect dominant input
variables. GSA has been used to decompose the uncertainty
of the model output into the different sources in the model
inputs.**>' Among many GSA methods, variance-based
sensitivity methods are formulated based on conditional
variance, and sensitivities can be assessed by Monte Carlo
simulation or Latin Hypercube Sampling (LHS).>* The
Fourier amplitude sensitivity test indices®*** and the Sobol
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indices® 7 are commonly used to compute the sensitivity

indices, and we chose the latter in this study.

This paper is organized as follows. In ‘Methodology’,
various methods that have been used in this study are
presented, including the Mori-Tanaka method to account for
porosity, analytical and numerical methods of homogeni-
zation, global sensitivity analysis, surrogate modeling, and
uncertainty quantification using Monte Carlo simulation.
The ’Results and discussions’ include validation of FE-
based homogenization of SiC¢/SiC,, composites and fitting
the distribution of elastic constants using the Johnson
distributions. This is followed by ‘Conclusions’.

Methodology

Overview of the approach

A bird’s eye view of the methods/models used in this study
is schematically shown in Figure 1. The material properties
of the constituent SiC matrix were degraded to account for
porosity. The details of degrading the material properties
through the Mori-Tanaka method can be found later in this
section. The first task was to identify the significant vari-
ables influencing the elastic constants. For this purpose, an

analytical model called BraidCAM (discussed later) was
used to calculate the effective elastic constants. The pre-
dictions from the analytical model were used in global
sensitivity analysis to rank the input variables based on their
first-order Sobol indices.>> >’ The FE simulations are ex-
ecuted by varying the identified dominant input variables
and keeping the insignificant variables at their mean values
(or arbitrarily chosen constant values). The multiscale FE
methodology to calculate the effective elastic constants of
SiC¢/SiC,, composite tubes accounting for their nuances
such as tubular geometry and high yarn volume fraction is
explained in this section while the results of FE simulations
are verified with those of experiments in results and
discussions.

Often, some of the assumptions in analytical models are
driven by computational convenience rather than governing
physics and consequently, their predictions might be con-
sistently different from those of experiments. The chosen
analytical model in this study called BraidCAM, consistently
predicts higher values of elastic constants than experiments.’
Though the results of BraidCAM are not in agreement with
the experiments, the analytical model is still useful as its
results are strongly correlated with FE simulations as dem-
onstrated in the results and discussions section for the same
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Figure 1.

A bird’s eye view of the methods/models used in this study. RUC stands for the repeatable unit cell.
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values of dominant input variables. Thus, the quick com-
puting BraidCAM model was used in the sensitivity analysis.
The FE simulations can then be executed by varying only the
dominant input variables identified in sensitivity analyses.
Although accurate, FE simulations are time-consuming, and
it may not be feasible to execute hundreds of thousands of
simulations due to limitations in computational resources.
Hence, a polynomial response surface was used as a surrogate
for FE simulation. This polynomial regression is explained in
the later part of this section. The so-constructed polynomial
response surface was used in Monte Carlo simulations (MCS)
to calculate the effective elastic constants at random values of
dominant earlier. Once we have large data of elastic constants,
a Johnson distribution was fit that matches the statistics of
MCS-generated data. The uncertainty in elastic constants is
then quantified by calculating the coefficient of
variation (CV).

Application of Mori-Tanaka method to SiCSiC,,
textile composite

One of the salient microstructural features of SiC¢/SiC,,
composites is residual porosity. The existing literature indi-
cates the residual porosity in CVI SiC¢/SiC,,, composites to be
about 8%—17%.” During the CVI process, the SiC vapor which
deposits as the matrix material fails to reach all the space
between the fibers, resulting in residual porosity. The pores that
are found within a yarn are called intrayarn micropores. The
fraction of void volume of intrayarn micropores with respect to
the volume of yarn is termed intrayarn microporosity (¢™).
The pores formed between the yarns are called macropores
whose fraction (with respect to the volume of the composite) is
represented by macroporosity (¢™“°). Though this distinc-
tion can be found in the literature,***° there are not many
characterization studies that state the exact numerical values
for intrayarn microporosity and macroporosity as it is difficult
to differentiate between the yarn region and matrix region, and
hence, researchers often state the overall porosity of the
composite tubes in their works.***' The shape of the pores
could be complex and irregular, and their distribution could be
different even at the same level of overall porosity, which
makes it difficult to explicitly model the pores in FE analyses.

In this study, we used the Mori-Tanaka method**™** to
account for the effect of pores in the SiC¢/SiC,, composite.
Considering the stiffness tensor of the trapped voids as zeros,
the stiffness tensor of the material system C” is given by*’

C" = (1= y,)-Coase: [(1 =)L+, = V)] (D)

where v, is the void volume fraction, Cpgs. is the stiffness
tensor of the material surrounding the pores, / is the fourth
order tensor, and Y is the Eshelby tensor that depends on the
shape of the voids. For spherical voids, it is given by**

Sv—1

Vo — 4 — Sy
151 =)

5;‘1‘5k1 + m

(5ik5j1 + 5i15/k) (@)
where v is the Poisson’s ratio of the material surrounding the
pores and ¢ is the Kronecker delta. In microscale homog-
enization, the elastic properties of the SiC matrix within the
yarn were degraded based on the estimates of microporosity,
while in mesoscale homogenization, the elastic properties of
the SiC matrix outside the yarn were degraded based on the
estimates of macroporosity. Rohmer et al.* estimated
the fiber volume fraction within a single yarn to be 52% and
the matrix volume fraction to be 36%. By neglecting the
presence of pyrolytic carbon interphase, the microporosity
could be calculated as 12%, even though the architecture of
the specimens considered in the current study is different
from the layer-to-layer interlock architecture of the SiCy/
SiC,, tubular specimens studied by Rohmer et al.*® In the
following calculations, it is assumed that the intrayarn
microporosity is constant at 12%. It was further assumed
that all of the intrayarn micropores are trapped in the matrix
meaning that the matrix was degraded according to equation
(1) with y,, = 0.25 (the fraction of volume of pores with
respect to matrix volume in the yarn) and the resulting
degraded matrix properties were used as input material
properties in microscale homogenization along with prop-
erties of the fiber.

The macroporosity (¢ was calculated by using the
following relation involving overall porosity (¢*!) and
microporosity (¢™"):

d)overall _ l//yam.d)micro 4 (1 _ wyam)d)macm (3)

where y,,,,, is the yarn volume fraction in the composite.
The yarn volume fraction is difficult to measure from the
specimens, however, Rohmer et al. studied the SiC¢/SiC,,
tubes with a designed fiber volume fraction of 35% and the
authors found the fiber volume fraction within a single yarn
to be 52%. As the fiber volume fraction of the textile
composite tube is the product of the yarn volume fraction
(Wyarm) in the textile composite and fiber volume fraction
within a single yarn, the yarn volume fraction can be es-
timated as v, = 67%.

The Mori-Tanaka method is used to account for both
intrayarn microporosity and macroporosity in microscale
and mesoscale homogenization methods, respectively. In
mesoscale homogenization, since all the macro-pores are
assumed to be present in the SiC matrix, the Mori-Tanaka
method is utilized to calculate the degraded matrix
properties to account for macroporosity. The properties of
SiC¢/SiC,, composites are calculated through homoge-
nization involving the degraded properties of the SiC
matrix and that of the yarn. The homogenization methods
could be analytical or based on FE simulations. Even
though the analytical homogenization models are based

macro )
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on simpler assumptions and may not necessarily capture
all the physical phenomena, they provide results quickly
compared to FE-based homogenization. Thus, the ana-
lytical homogenization model was treated as a low-
fidelity model and used to identify the dominant vari-
ables influencing the elastic constants of the textile
composite.

Analytical model to calculate the effective elastic
constants of SiCdSiC,, tube

An open-source analytical model called BraidCAM, de-
veloped by Melenka et al. was adapted to estimate the
elastic constants of the SiC¢/SiC,, tubular composites.47 In
this model, the stiffness tensors of each yarn and the matrix
in the unit cell are transformed into the global coordinate
system. The transformed global stiffness tensor of indi-
vidual constituents is multiplied with corresponding volume
fractions. The obtained products are then summed up to get
the stiffness tensor of the braided composite. The complete
details of this methodology can be found in the works of
Melenka et al.*® In the current research, the BraidCAM
model was used to predict the elastic constants of the textile
composite by volume averaging the stiffness of individual
constituents namely, yarn and matrix.

The five independent elastic constants of a transversely
isotropic SiC yarn are calculated from the elastic constants
of isotropic fiber and isotropic matrix as per the following
relations:

El,yurn = l//jEf + (1 - l//j)Em

1

E arn =E arn — — 7+ \

2,y ERY v B (1 — l/’_/’)

Ey E
1
GIZ, arn — T 71\
’ Yr + (1 — l//f) (4)
Gy G

m
*
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*

G
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, Er is the young’s modulus of fiber, G
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*
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where n = —5 L

4(1-v,,)

is the shear modulus of fiber, vy is the Poisson’s*ratig)k of ﬁbei,
y; is the volume fraction of fiber in SiC yarn, E,,, G,,,, and v,
are the degraded elastic constants of the SiC matrix based on
equation (1) using an intrayarn microporosity of 12% and
assuming that the pores are trapped in the matrix region as
detailed earlier. The obtained elastic constants of yarn are

now the input to the mesoscale homogenization of textile

composite. The stiffness of the matrix, which is the other
material variable, was degraded by using equation (1) but
based on the macroporosity fraction obtained from equation
(3). The elastic constants of the textile composite are cal-
culated based on transformation and associated volume av-
eraging of the stiffness of yarn and matrix in the framework of
the BraidCAM model.

Global sensitivity analysis to identify the dominant
variables by Sobol method

Many variables could potentially affect the elastic
constants of SiC¢SiC,, tube, such as fiber volume
fraction, yarn cross-sectional area, braiding angle,
Young’s modulus of SiC fiber, Young’s modulus of SiC
matrix, Poisson’s ratio of SiC fiber, Poisson’s ratio of SiC
matrix, and porosity. It is difficult to track the problem in
such a high-dimensional input space. Therefore, a sen-
sitivity analysis was carried out to determine the rank of
these input parameters so that the most influential or
dominant variables could be identified among the said
input variables. The sensitivity analysis was carried out
by using the Sobol method,*” which is briefly described
in the rest of this section. This methodology can be used
to quantify the contribution of each input parameter to
the variance of the output of the model. For a given
output of the model, f(x), the function may be decom-
posed as follows

1@ =+ YA+ 33 )

=1 i#j Q)

+ o s (X X2, X)

Each term of the above decomposition can be expressed
as the following integrals*’

filx) = / £ Tldve —fo

k#i (6)
fi(xix;) = /f(x) [Tdxe — fo = fix) = fi (%)

ki

The above equations can only hold if the following
orthogonality criterion is satisfied:

/ TG o) = 09k =iy ois (7)

If equation (7) is satisfied, then one can assume that f'(x)
is square-integrable (i.e., f(x) can be squared and inte-
grated), which also means that f;; _;, in equation (5) is also
square-integrable. Squaring both sides of equation (5) and
integrating yields
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k
D= ZD,— + ZD[j + ZDW + ...+ Dok (8)
i—1

i<j i<j<l

where D is defined as the variance of the output, D; is the
partial variance corresponding to the subset of input i, Dj; is
the partial variance corresponding to the subset of ij, and so
on. The Sobol sensitivity indices can now be defined for
each subset of individual parameters as

Dil,“.,is

Sil, s T D (9)

Equation (9) is the ratio between the partial variance
subsets with respect to the variance of the output of the
model. These are called global sensitivity indices. The first-
order sensitivity indices are the main effect of the individual
parameters that are used to measure the fractional contri-
butions due to a single parameter to the output variance. For
example, S; = % would refer to the i’ input parameter’s
contribution to the output variance.

FE-based homogenization model for the effective
elastic constant of SiCfISiCm tube

The FE-based homogenization model has been used as a
high-fidelity model and is discussed in this section. A
multiscale homogenization was adopted in which a mi-
croscale homogenization predicts the effective elastic
constants of SiC yarn from the mechanical properties of SiC
fiber and SiC matrix, while a mesoscale homogenization
was used to evaluate the effective elastic constants of the
braided composite from the properties of yarn and matrix.

Microscale homogenization.

The SiC yarn is modeled as a transversely isotropic material
having five independent elastic constants. The constitutive
relationship of transversely isotropic material whose plane
of symmetry is 1-2 is given by

G CoCiCs 0 0 0 &n
o\ CiCCy 00 0 i
— 33
- 0 0 0 Cy 0 0 Yos
s 00 0 0 Cy O YE
Y12

¢, —C

L 712 ) 00 0 0 0 %

(10)

Thus, there are five independent stiffness coefficients for
a transversely isotropic material. The evaluation of elastic

constants from the stiffness tensor of equation (10) can be
found be textbook resources.””

In this study, a hexagonal repeatable unit cell (RUC)
was used as it captures the transversely isotropic nature of
the unidirectional composite better than other types of
RUCs.”! The hexagonal RUC, shown in Figure S1 (in
supplementary data), was modeled using the pre-
processing features available in ABAQUS 2019 soft-
ware. The fiber volume fraction within a yarn was as-
sumed to be 52% as reported in the literature.*® The
pyrolytic carbon interface of the composite was not
modeled in the current study as the analysis was in the
linear elastic regime. The microporosity is assumed to be
12%. It is further assumed that the pores are trapped in the
matrix. The Young’s modulus and Poisson’s ratio of the
CVI SiC matrix at zero porosity were considered to be
438.80 GPa and 0.17, respectively,’> which were used in
equations (1) and (3) to account for microporosity.
Young’s modulus and Poisson’s ratio of SiC fiber were
420 GPa and 0.18, respectively.® The outputs of micro-
scale homogenization are the elastic constants of the SiC
yarn. The relevant procedure and the boundary conditions
can be found in other works.’*** The similar boundary
conditions used in this study are shown in Table S1 (in
supplementary data). The obtained effective elastic con-
stants of yarn are now the input parameters in mesoscale
FE-based homogenization discussed in the rest of this
section.

Mesoscale homogenization.

In the mesoscale homogenization, the elastic constants of
the textile composite are evaluated, knowing the elastic
constants of the constituent SiC yarn and SiC matrix. It is
not a straightforward process to obtain an FE model of the
RUC of the textile composite due to the presence of un-
dulating and interlacing yarns. The tubular specimen
further adds to the complexity of the geometry. We use
open-source TeXGen’> software to generate the FE mesh
of flat RUC of textile composite. The desired curved RUC
is obtained by subsequent transformation of nodal coor-
dinates of TeXGen generated FE mesh of flat RUC. The
transformation procedure and the periodic boundary
conditions imposed on the curved RUC can be found in the
works of Nagaraju et al. °® Another challenge with SiCy/
SiC,, composite tubes is that of a high yarn volume
fraction of 67%. The modeling of such high yarn volume
fraction composites can be cumbersome in TexGen soft-
ware without yarn interpenetrations. This challenge was
addressed by identifying the excess matrix elements in the
FE model with a low yarn volume fraction and deleting
them until the yarn volume fraction reached 67% in
ABAQUS.”” This FE model obtained by this heuristic
approach is called the chipped-away model, schematically
explained in Figure 2. The excessive matrix elements were
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Figure 2. The schematic representation of the chipped-away model.

identified starting from the outer radius and removed until
the yarn volume fraction becomes the desired value. The
matrix elements on the boundary were not deleted as they
are needed to specify the periodic boundary conditions.
The effective elastic constants of the textile composite are
then obtained by simulating three tests namely, the internal
pressure test, longitudinal tensile test, and torsion test. In
each of these tests, the periodic boundary conditions are
imposed by using multi-point constraint equations in
ABAQUS software. The complete details can be found in
an earlier study®® in which the relationship between
macro-strains and micro-strains is shown to be

(11)

where ¢y is the macro-strain in the circumferential direction
of the tube, R,, is the mean radius, V is the volume of the
curved RUC e((f>, W@ (@) are the micro-strain, volume, and
radius of the centroid of the finite element e, respectively,
and 7 is the total number of elements in the FE model of the
curved RUC.

The remaining strain components, &, (macro-strain in the
longitudinal direction) and y;, (torsional strain) can be
calculated through similar formulae. The force resultants are
obtained from the micro-stresses as

R, <& aée>v(e>
No = A, 7(©)

(12)

e=1

where Ny is the force resultant along the circumferential
direction and 4,, = 2al,R,, is the area of the mid-surface of
the curved RUC. Similar formulae hold to calculate the
other force resultants N, and Ng,. The Young’s modulus

along the circumferential direction (Ey) was calculated in
the FE simulation of the internal pressure test as

E
0 &gl

13)
where &y is the macro hoop strain is given by equation (11)
and 7 is the thickness of RUC in the chipped-away model.

From the longitudinal tensile test, Young’s modulus
along the axis of the tube and the Poisson’s ratio are cal-
culated as:

N,
E, =2~ 14
7 ey.t ( )
—ey.t.E
Voy = % (15)

y

Finally, the shear modulus is calculated from the FE
simulation of the torsion test as

Ny

yﬁy

Gy = (16)

Thus, we can obtain the four elastic constants
(Eo, Ey, vy, Gyy) for SiCy/SiC,,, composite tubes accounting
for the given information of residual porosity, curved ge-
ometry, and high yarn volume fraction.

Construction of polynomial response
surface surrogate

A polynomial response surface (PRS) surrogate model is
often desired for computationally intensive analyses. A PRS
approximates the output of actual analysis through a linear
combination of chosen monomials which are functions of
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input variables. Suppose there are two input variables say x;
and x,, then one may select the PRS of the following form

)7:/7)0 + Bix1 + Boxa + Byxixa (17)

where  is the PRS prediction, and f; are unknown coef-
ficients. In matrix notation, the above equation can be re-
written as

ﬂl (18)

5/\:[1 X1 X2

The row vector [ 1 x; x; xyx2] is called the basis
function. Suppose we have 10 samples i.e., ten realizations
of input variables x|, x, and the corresponding output from
the actual analysis is y. Each of the ten samples could be
arranged as follows

(1) (1)

(1) I x X5 (D (D

Y BN xénxfz) Ao

y( ) _ 1 _Xl x2 xl xz ﬁl (19)
(io) . . . . IBZ

¥ | x(llo) xélo) xﬁlo)xgm) B

In compact form, the above equation could be repre-
sented as

Y = Xp (20)

In the above equation X is called the design matrix or
feature matrix. The vector of unknown coefficients f that
minimize the squared sum of differences between the
outputs of the actual analysis and PRS surrogates at the
10 training samples can be estimated by>®

B=(X"X)"'xTy @1)

The above solution is called the ordinary least square
solution. In this study, the PRS surrogates have been
constructed using the ordinary least square solution with
appropriately chosen basis functions.

Uncertainty quantification

In this section, the procedure for quantifying uncertainty in
elastic constants is explained. Although there are many
methods available for uncertainty quantification (UQ),
sampling-based methods are popular as they are indepen-
dent of underlying distributions. The main challenge of
sampling-based methods is that they require more than 10°
samples to identify the distribution of a quantity of interest.
A combined execution of FE-based microscale and mac-
roscale homogenization took approximately 20 min on a
computer with 32 GB of RAM equipped with an INTEL

i7 processor. Thus, executing 10° FE simulations to gen-
erate sufficient sample data may not be computationally
efficient. On the other hand, the low-fidelity analytical
homogenization models are not sufficiently accurate
enough. Hence, a natural alternative is to develop a fast-
computing surrogate model based on several FE-based
homogenization simulation results. Once a surrogate
model with good prediction accuracy is developed, it can be
invoked 10° times in Monte Carlo simulations (MCS) to
generate the samples to identify the distribution.

In the current study, a PRS was built by using 30 samples
of input variables, which were chosen based on the ex-
perimental design of Latin hypercube sampling (LHS). In
the LHS method, the sample locations were distributed
evenly over a sample space. A PRS with quadratic terms of
the input variables was developed based on the ordinary
least square solution. The performance of the PRS model
was evaluated by calculating the predicted residual error
sum of squares (PRESS), a form of cross-validation error.
The prediction accuracy of the PRS surrogate was assessed
by comparing the predictions of PRS with FE simulations at
8 different samples of input variables that were not used to
calculate the regression coefficients. After confirming that
the built PRS has a good predictive capability, it was used in
MCS to generate 10° samples from which the distribution of
effective elastic constants was identified, and uncertainty
was quantified by calculating the coefficient of variation
(CV). The CV is defined as the ratio of the standard de-
viation () of the data to their mean (u). The histogram plots
of the data generated from MCS were used to identify the
probability distribution that best fits the effective elastic
constants of the composite tube. The detailed results are
discussed in the next section.

Results and discussions

Verification of FE methodology

In this section, we will compare the prediction of the
multiscale FE model discussed in Section 2.5 with the
elastic constants of the SiC¢SiC,, tube obtained through
experiments. For this task, the mean values of elastic
constants of SiC fiber and SiC matrix were considered,
while overall porosity varied from 9% to 17% in increments
of 2%. The chosen architecture was a 30° two-dimensional
biaxial braided composite tube. As stated earlier, Young’s
modulus and Poisson’s ratio of isotropic SiC fiber were
420 GPaand 0.17, respectively. Young’s modulus of the SiC
matrix at zero porosity was assumed to be 438.80 GPa.>
The micro-porosity and yarn volume fraction were kept
constant at the reported values of 12% and 67%,"° re-
spectively. The calculated elastic constants are graphically
represented in Figure 3. From the literature for SiC¢/SiC,,
composite tubes, the expected range of Young’s modulus is
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Figure 3. The elastic constants (Young’s moduli in (a), shear modulus in (b), and Poisson’s ratio in (c)) were calculated at mean values of
material properties of SiC fiber and SiC matrix at different fractions of overall porosity. The shaded region denotes the experimental

range.

200280 GPa, the shear modulus is from 80-120 GPa and
no data is available on the Poisson’s ratio’ of the composite
tube. It can be observed from Figure 3, that the predictions
of the chipped-away model are close to the range reported in
experimental studies.®” Thus, the chipped-away model has
sufficient predictive capability to be used in subsequent
analyses. It is to be noted that the methodology of calcu-
lation of elastic constants of SiC¢/SiC,, tubes was impro-
vised to account for their unique characteristics such as
residual porosity, high yarn volume fraction, and tubular
geometry. It can be observed that Young’s modulus of SiC¢/
SiC,, tube is significantly lower than Young’s modulus of
constituent SiC fiber and SiC matrix at zero porosity.

Correlation between low-fidelity and high-fidelity
models

The analytical model can provide the outputs quickly, but it
is based on an assumption of averaging the stiffness
methods which may not necessarily capture the physics
accurately. The FE-based homogenization model, on the
other hand, considers the characteristic features of textile
composite through explicit/implicit modeling. However, the
FE-based chipped-away model is computationally inten-
sive. To determine the relative performance, the results of
the low-fidelity BraidCAM model were compared with that
of the high-fidelity chipped-away model as shown in

Figure 4. It can be observed that there is a strong correlation
between the results of the analytical model and the FE-based
homogenization model. Although Poisson’s ratio does not
show a meaningful correlation, in general, its effect on
homogenization is ignorable. Thus, it is possible to use the
low-fidelity model to identify the dominant variables
without any loss of accuracy as it gives the outputs much
more quickly and it is easier to change the values of input
variables in the low-fidelity model compared to the high-
fidelity model.

Identification of dominant variables

Many manufacturing factors influence the uncertainty in the
elastic constants of braided composite tubes. Among them,
eight factors were selected based on our analysis of in-
formation available in the literature, which are summarized
in Table S2 (in supplementary data) with their lower and
upper bounds. Fiber volume fraction, yarn area, braiding
angle, and Young’s moduli of fiber/matrix were measured
directly using conventional characterization techniques.>
Poisson’s ratio and porosity were based on literature.’
Although all these variables can be used in uncertainty
quantification, it would be computationally intensive to
work with eight-dimensional space. This identification was
done by global sensitivity analysis, using a PRS surrogate
for the BraidCam model, involving identified eight input
variables. Once a small number of significant input
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Figure 4. These graphs show a strong correlation between the results of the low-fidelity analytical model and the high-fidelity FE model.
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(d) shear modulus.

variables are identified, a more accurate surrogate model
was generated using FE-based simulations in a lower-
dimensional space. To construct the PRS surrogate,
34 samples were obtained from the LHS method. The PRS
surrogate is useful to approximate the predictions of the
BraidCAM analytical model. Instead of simulating millions
of random realizations and then processing the results
through BraidCAM, we can use a PRS as an approximation
to mimic the results of BraidCAM while being computa-
tionally cheaper to evaluate. All input variables in Table S2
(in supplementary data) were normalized to be varying from
0 to 1, so that each input has the same weighting value in
constructing the response surface of the following form

Y =By + Bixi + Brxa + ... + Bexs (22)

where f; are the regression coefficients, x; are the nor-
malized input variables, and Y is the output of the response
surface. The goodness of the fit equations was assessed by
calculating the coefficient of determination, R*>. The sum-
mary of the statistics and the linear response surface co-
efficients are provided in Table 1. For all elastic constants,
there exists a high coefficient of determination (R* > 0.9)
with a low p-value (= 0) which indicates a strong linear
relationship exists between the elastic constants and the
chosen input variables for the multiple linear regression.
Furthermore, the magnitude of the coefficients for each
independent variable in Table 1 (f;) represents the size of the
effect that each variable has on the dependent variable.
Across all elastic constants, the regression coefficient with
the largest magnitude corresponds to the porosity (fg) by a

significant margin, followed by the elastic moduli of the
constituents: SiC matrix (85) and SiC fiber (8,).

The first-order Sobol indices were calculated using
equation (9) and are summarized in Table 2. These indices
represent the first-order effect that the desired input variable
has on the output’s variance. The Sobol indices were
normalized such that they sum to one as shown in each row
of Table 2. The larger the Sobol index, the greater the effect
that the input variable has. The most significant contribution
to the elastic constant variations is the porosity within the
composite (Sg). This is followed by the elastic modulus of
both the individual constituents (SiC matrix (Ss) and SiC
fiber (S4)). The rest of the variables do not play a significant
role in comparison and therefore can be fixed at their mean
value without affecting the uncertainty in the elastic con-
stants of SiC¢/SiC,, tubular composites.

Quantification of uncertainty

The methodology to quantify uncertainty discussed in
methodology is schematically shown in Figure 5. Having
identified the three dominant variables influencing the
elastic constants in the sensitivity study, we embark on
building a more accurate PRS with a reduced number of
input variables (Young’s modulus of SiC fiber (x;), Young’s
modulus of SiC matrix (x3) and overall porosity (x3)). The
objective is to build a more accurate PRS with a reduced
number of input variables which can be invoked 10° times
during Monte-Carlo simulations. The FE analysis was
executed at 38 realizations of dominant variables, out of
which 30 sample points were chosen through LHS design,
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Table I. The polynomial response surface statistics and coefficients.

R bo 2 2 2 B B 2 b 2
E, 0.9959 387.40 -2.18 —0.08 —0.40 4,95 25.07 0.22 1.01 —116.46
Ey 0.9959 387.31 -2.16 —0.06 -0.19 4,94 25.06 0.20 1.01 —116.49
Gy 0.9955 152.33 1.19 —0.04 —0.05 4,94 10.30 -0.13 041 —49.84
Vey 0.9894 0.0l 0.0l —0.001 —0.001 0.02 0.004 0.005 0.001 —0.021
Table 2. First-order Sobol indices.
S ) S3 S4 Ss Se Sy Sg
E, 333 x 107* .13 x 107 484 x 1077 0.002 0.044 341 x 107¢ 7.17 x 107° 0.9541
Ey 328 x 107* 245 x 107¢ 2.79 x 1077 0.002 0.044 2.84 x 107° 7.15x 107° 0.9542
Gy 545x 10°* 7.94x 1077 583 x 1077 0.009 0.041 631 x 10°¢ 648 x 107° 0.9500
Vey 0.193 416 x 107° 124 x 1074 0.331 0.019 253 x 107* 244 x 107° 0.456
Monte-Carlo
FE analysis @ Construct a PRS for simulations
randomly sampled each of the elastic Invoke the PRS 10°
30 data points constants times to get the
distribution
1. ¥, €Eg,, ~U(375, 465) 1. The PRESS error was 1. Elastic modulus of fiber
2. F € Epun ~ U(393, 483) negligible compared to the (%) ~ N(420, 30)
3. % € Por_level ~ U(10%,20%) PG, 2. Elastic modulus of matrix
- - " 2. Check the PRS @ 8 (%) ~N(438, 30)
data points: RMS (FEA- .
PRS) was negligible 3. Porosity levels
(%)~ U(10%,20%)
Figure 5. The approach to quantify uncertainty in elastic constants of SiC(/SiC,, tube.
while 8 sample pgints thaF involved the .lqwer and upper Y =B+ Bix1 + Poxs + Poxs + Poxixs + fixixs
bounds of the dominant variables were additionally added to (23)

the dataset. In the LHS design, the combinations were
sampled from uniform distributions of dominant variables.
The associated lower and upper bounds are shown in Table
S3 (in supplementary data).

These bounds were based on the values reported in the
literature.®”>” The uniform distribution along with the LHS
method ensures that the selected combinations span the
expected range of dominant variables and chosen values are
not clustered close to each other. It can be observed that the
order of Young’s moduli is significantly different from that
of overall porosity. Thus, the dominant variables were
standardized by subtracting the mean from the values and
subsequently dividing the difference by the standard de-
viation. The FE-generated data at 38 design of experiment
(DOE) points were randomly split into a training set and a
test set. The training set consisted of 30 instances of
dominant input variables and corresponding FE results. A
quadratic PRS of the following form was fit to the elastic
constants by using the training set.

+ Bexaxs + fox; + Bxs + Box;

where y is the output response variable that denotes any
of the four elastic constants of the SiC¢SiC,, tube
(Eg,Ey,voy, Ggy), x; denote the standardized dominant
variables, and f; denote the regression coefficients that
were calculated by the ordinary least square solution. The
standardization of the dominant variables enables the
comparison among the calculated regression coefficients.
The PRS models were built separately for the 30° biaxial
braided tube and the 45° biaxial braided tube. The re-
gression coefficients of the two configurations are shown
in Table 3 and Table S4 (in supplementary data), re-
spectively. It can be observed that the regression coef-
ficients associated with the quadratic monomials
(B4 — Po) are smaller compared to the coefficients asso-
ciated with the linear monomials (f; — ;). It is further
noted that the regression coefficient associated with the
overall porosity (8;) is highest in magnitude, followed by
coefficients corresponding to Young’s modulus of the
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Table 3. The regression coefficients of equation (22) for 30° biaxial braided composite tubes.

Regression coefficients y=E y=E Y = vey y = Gy,
o 23431 244.98 0.174 104.61
B 4.53 6.44 1.07 x 10~ 2.92
By 12.87 11.87 —1.02 x 107* 491
Bs —26.31 ~23.14 1.98 x 10°* -8.83
Ba 0.28 0.16 847 x 107° 0.08
Bs -0.27 -0.23 772 x 107° —0.09
Be —1.65 —1.45 ~7.13 % 107° —0.56
i —0.17 —0.10 435 % 10°° —0.05
e —0.11 —0.05 281 x 10°° —0.03
Bs 1.54 .44 325x 10°¢ 0.57

matrix (f,) and that of the fiber (). This trend is
consistent with the Sobol indices discussed earlier.

The prediction accuracy of the surrogate model was
assessed by calculating the PRESS. The PRESS measure is
independent of the surrogate model. In the case of a PRS
surrogate, the PRESS is given by

1 & e 2
PRESS = d
(%)

where 7, is the number of training data points used in the
regression process, e; is the residual at i datapoint, cal-
culated as the difference between predictions of FE simu-
lations and PRS models, and H is defined as

(24)

H=Xx(x"x)"'x" 25)
where X is the design matrix, constructed such that row 7 is
the instantiated values of the basis function of standardized
dominant variables at i training data point. A surrogate
model shows good fidelity when its PRESS value is close to
zero. The PRESS values of PRS models of SiC¢/SiC,, tube
are shown in Table S5 (in supplementary data). It is evident
that the built PRS surrogates are a good fit by the low
PRESS values. The prediction capability of the PRS models
was assessed by comparing its prediction with FE simu-
lations at eight points in the test set, which is disjoint from
the training dataset. The root-mean-square (RMS) of dif-
ference in predictions of the FE model and surrogate model
were calculated and are as shown in Table 4. The values in
Table 4 are close to zero, which further confirms that the
built PRS surrogates are capable of good predictions. The
PRS models were used in MCS to identify the distribution
of elastic constants.

In MCS, the distribution of the output quantity such
as each of the elastic constants of the SiC¢/SiC,, tube can
be identified if the distributions of the dominant variables
are known. The assumed distributions of dominant
variables were

Young’s modulus of fiber — Normal (mean (u) = 420 GPa,
standard deviation (o) = 30 GPa)
Young’s modulus of matrix — Normal (mean (u) =438 GPa,
standard deviation (o) = 30 GPa)
Overall porosity — Uniform (Lower bound = 0.10, Upper
bound = 0.20)

A sample point was randomly generated from these
distributions and then standardized based on the corre-
sponding mean and standard deviations used to determine
the regression coefficients. The elastic constants were
predicted by using appropriate PRS models at the sample
point. This process was repeated 10° times to get the dis-
tribution of elastic constants. The histogram plots of 10°
samples for each of the elastic constants are shown in
Figure 6 and Figure S2 (in supplementary data) for 30°
braided tubes, and 45° braided tubes respectively. It was
found that a four-parameter Johnson distribution best fits the
samples when compared to the typical two-parameter dis-
tributions such as uniform distribution, Gaussian distribu-
tion, lognormal distribution, and others. There are three
families of Johnson distribution namely, S; distribution, S;,
distribution, and S distribution.®®®' The data was such that
the elastic constants were fit with bounded Sz Johnson
distribution except for Poisson’s ratio of 30° braided
composites for which S; Johnson distribution was a better
approximation. In Johnson distribution, J and y are the
shape parameters while & and A are the location and scale
parameters that correspond to the minimum value and range
of data respectively. Additional information on Johnson
distribution can be found in other works.®? These values
were found in the ‘R’ programming language by using the
‘SuppDists’ package.> The algorithm used the 5 order
statistics of the data to find these parameter values. The
Johnson distribution is a transformation of standard normal
distribution defined by:

Z=y+dlog(f(u)) (26)
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Table 4. The root-mean-square of the difference in predictions of FE simulations and PRS surrogate model.

Elastic constant

30° biaxial braided tube

45° biaxial braided tube

Ey (GPa) 0.11
E, (GPa) 0.10
vy 0.00
Gy (GPa) 0.04

0.11
0.11
0.00
0.05

Table 5. The parameters of Johnson distribution for the elastic
constants of 30° braided composite tubes.

Parameters Ey E, Voy Gy,
y 0.3039 0.3452 0.0000 0.3916
o 1.1107 1.2431 1.8543 1.3633
¢ 177 188 0.1738 8l
A 128 127 0.0004 54
Type Ss Ss St Se
Eg
| %7:3\
; &
g
% 4
g J
150 200 250 300
GPa
ng
% =
g |
38 é
g4

0.1735 0.1740 0.1745 0.1750 0.1755

where Z~N(0,1) and u = =, x is a random variable and

f(u) = u for S; Johnson distribution or

f(u) = - for S Johnson distribution.

The Johnson parameters were as shown in Table 5 and
Table S6 (in supplementary data) respectively for 30° and
45° braided SiCy/SiC,, tubes. It is evident that fit parameters
approximate the MCS-generated data as the blue curve in
Figure 6 and Figure S2 closely follows the height of the
histograms. The uncertainty in each of the elastic constants
was quantified by calculating the coefficient of variation
(CV) which is defined as the ratio of standard deviation to
the mean of the concerned elastic constant. The higher the
CV, the greater the uncertainty surrounding the mean of the
elastic constant. The CV values calculated from the MCS-
generated data are shown in Table 6. It can be noted that the
CV values are about 10%, meaning that the elastic constants

Ey
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Density

0.005

0.000

200 350

Density
0.03 0.04

0.02

0.01

0.00

T T T T T T 1
70 110 120 130 140

2

GPa

Figure 6. The histogram plots of elastic constants of 30° braided composite tubes. This data was obtained through MCS. The blue curve
represents the Johnson distribution fit whose parameters are given in Table 5.
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Table 6. The coefficient of variation (in %) of elastic constants
from the MCS-generated data.

30° braided composite 45° braided composite

Ey 10.58 10.95
E, 9.20 10.80
Voy 0.14 1.93
Goy 8.5 9.72

have a relatively lower spread around their mean values.
The CV of Young’s modulus of constituent materials (both
SiC fiber and SiC matrix) is about 7.15% which only
reached about 10% at the macroscale level of the com-
posite tube. Finally, to further validate the approach
adopted in the above analysis, we perform a similar
analysis on a different composite and compare the results
with those available in the literature. Singh et al. *
evaluated the CV of elastic constant E, of 55° triaxial
braided SiC¢/SiC,, tubes through experiments carried out
at different laboratories. A total of 43 samples were tested
at 7 different laboratories. To compare the approach of this
study with that of Singh et al., the RUC of 55° triaxial
braided composite tube was considered. The uncertainty in
elastic constant £, of this tube was calculated as described
in the current section. The mean value of the MCS-
generated data of £, was 236 GPa while the mean of E,
from the round-robin study of Singh et al. was 202 GPa.
The CV from MCS-generated data was 10% compared to
that of 20% reported in the round-robin study. In exper-
iments, Singh et al. discussed that uncertainty involving
the identification of linear elastic regime in the stress-strain
plots of SiC¢/SiC,, tubes might have played a role in the
calculation of CV. The measurement uncertainty often
shows up in experimental studies. However, it was ob-
served that the mean values of elastic constants of MCS-
generated data from the current research study are in good
agreement with the results in the round-robin study.*’

Conclusions

An FE-based homogenization approach was discussed that
predicts the elastic constants of SiC¢/SiC,, tubes. The Mori-
Tanaka homogenization model was used to account for
porosity which is easier than explicit modeling. The ac-
curacy of the FE-based homogenization approach to cal-
culate the elastic constants of SiC¢/SiC,, tubes was assessed
by comparing its predictions with experimentally estab-
lished ranges reported in the literature. Thus, the developed
FE method is proven to predict the elastic constants of
various architectures of SiC¢/SiC,, composites.

Through the global sensitivity analysis, it is demon-
strated that Young’s modulus of fiber, Young’s modulus of
the matrix, and residual porosity contribute significantly to

the variation observed in the elastic constants of SiC¢/SiC,,
composites. In this study, a linear polynomial expression
was used as a surrogate for the BraidCAM model in sen-
sitivity analysis while a quadratic polynomial expression
was used as a surrogate for FE-based homogenization. The
quadratic polynomial facilitated the quick generation of
samples in the MCS. Based on the samples generated in
MCS, it was found that the four-parameter Johnson dis-
tribution explains the statistics of the elastic constants of
SiC¢/SiC,, composite tubes. The difference in parameters of
Johnson distribution, for chosen 30° biaxial braided tubes
and 45° biaxial braided tubes, is less than 10%. This study
does not consider the interaction between porosity and
braiding angle which can potentially lead to a greater dif-
ference in the parameters of Johnson distribution between
30° and 45° biaxial braided tubes. Based on the adapted
computational framework in the sensitivity analysis, the
braiding angle is not considered to be a key variable in
determining the elastic constants of SiC¢/SiC,, composites.

Furthermore, in MCS the CV of constituent SiC fiber and
SiC matrix was about 7%. This value is comparable to the
CV of elastic constants of SiC¢/SiC,, tubes which is about
10%. This observation suggests that the variability in elastic
constants of SiC¢/SiC,, tubes at the mesoscale is not sig-
nificantly different from the CV observed at the microscale.
Lastly, the parameters of the Johnson distribution that
represent the statistics of elastic constants were reported,
which could help model the performance of SiCySiC,,
cladding material.
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