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Abstract  The convolutional neural network-based deep generative model (DGM) is a 
powerful tool for handling image datasets that opens up strategies for fast synthesis of optimum
designs at unseen boundary conditions. Existing DGMs for design synthesis are typically based 
on O (10000) training data, which limits the engineering applications. This paper explores the
feasibility of improving DGM data efficiency with O (100) training data through prior constraints. A 
two-stage data-efficient deep generative model (DE-DGM) is proposed which leverages the first-
stage design synthesis from probabilistic proper orthogonal decomposition and the second-stage 
enhancement from encoder-decoder convolutional neural network. Four topology optimization 
cases have been adopted, including compliance minimization, heat conduction, airplane bearing
bracket design, and three-dimensional machine tool column structure design. The proposed DE-
DGMs could be trained with 100-200 data and synthesize the main features of the design at
unseen boundary conditions. The overall computation cost of warm-start topology optimization 
leveraging DE-DGM predictions reduces to 36 %-58 % of the standard cases. 

 
1. Introduction   

Topology optimization (TopOpt) computes the shape or material distribution within a prede-
fined feasible domain. Mathematically, TopOpt can be formulated as a high-dimensional con-
strained optimization problem rooted in finite element analysis [1, 2], where the objective func-
tion is to maximize the global performance of the design (e.g., stiffness). Currently, the main-
stream approaches for TopOpt can be broadly categorized into five classes: density-based [3-
5], grid-based [6, 7], moving boundary-based [8-10], load path-based [11], and optimal parti-
tioning methods [12]. 

In the past few decades, TopOpt has been widely studied and applied to a broad range of 
engineering problems, including static/dynamic mechanical structure design [13], eigenvalue 
problems [14], plastic deformation [15], design-dependent loadings [16], compliant mechanism 
design [17], and multi-physics problems [18]. With recent advances in additive manufacturing 
and the associated design schemes, TopOpt has demonstrated promising performance in pro-
ducing highly flexible and customized designs such as truss structures [19, 20]. 

Although TopOpt is a powerful design tool, a dedicated effort is needed to derive numerically 
stable results with affordable computational costs. Deep generative models (DGM) have been 
emerging to exploit a set of correlated legacy designs and predict near-optimal designs without 
recourse to simulations [21-28]. The DGMs are expected to enable fast design space explora-
tion without explicitly setting up simulations. In addition, DGM predictions can also serve as an 
initial guess for advanced TopOpt, such as multi-physics problems or dynamic problems. 

However, most of the existing DGMs are data-intensive and easily incur more than 10000 
training simulations, which is computationally challenging. Numerous efforts have been made 
to incorporate the physical insights of topology optimization into DGM for the purpose of im-
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proving its accuracy. For example, Cang et al. [29] proposed 
an intrusive scheme that leverages the simulation optimality 
criteria and adds simulations iteratively from random selection. 
Qiu et al. [30] developed a convolutional recurrent neural net-
work and predicted the temporal-spatial evolution of topology 
optimization. Lew and Buehler [31] combined variational 
autoencoders with the long short-term memory neural net-
works to predict the temporal-spatial evolution of topology op-
timization. 

In this work, we concentrate on non-intrusive techniques that 
are general to handle different types of design synthesis, in-
cluding the dataset from commercial software, historical de-
signs, and parametric optimizations. This paper addresses the 
data efficiency challenge by imposing theoretical constraints as 
prior information to mitigate the dependency on the training 
datasets. This is achieved by combining proposed probabilistic 
proper orthogonal decomposition (P-POD) with the convolu-
tional neural network (CNN). P-POD assumes a linear relation-
ship between the image dataset with changing boundary condi-
tion variables [32, 33]. The linearity assumption significantly 
reduces the size of the training dataset and avoids heuristic 
optimization of model training. The P-POD predictions are 
deemed as low-resolution due to the linearity assumption. An 
encoder-decoder convolutional neural network (ED-CNN) is 
then developed to enhance/transfer P-POD predictions for 
enhanced fine features. 

In this study, topology optimization serves as the data gen-
erator for legacy designs at changing boundary condition vari-
ables. P-POD generates the optimal linear subspace for a 
given set of field data. Then DGM adds non-linearity to P-POD 
predictions and synthesizes design at unseen boundary condi-
tions. The scientific contributions and novelty of this work are 
summarized as follows: 

1) A novel and data-efficient predictive framework for fast 
design synthesis at given boundary condition variables is pro-
posed. The generality has been validated with compliance 
minimization, heat conduction, airplane bearing bracket, and 
three-dimensional (3D) machine tool column structure design. 

2) The uncertainty quantification methods for design synthe-
sis, which serves as the foundation for risk management and 
model improvement, are developed. 

3) A two-stage deep generative model to model sparse im-
age datasets is proposed. Effective design synthesis could be 
produced with even 100-200 training data. 

Developing generative models with sparse image datasets is 
a challenging task, as an initial effort; this work focuses on 
parametric boundary condition variables and evaluates its fea-
sibility from multiple perspectives. Four design problems with 
different physics and geometrical characteristics were adopted. 
The article is organized as follows, Sec. 2 discusses the tech-
nical background of DGM and proposes the two-stage DE-
DGM, Sec. 3 discusses the numerical experiments of DE-DGM 
for TopOpt with applications to compliance minimization, heat 
conduction and airplane bearing bracket design, Sec. 4 dis-
cusses a 3D numerical experiment of DE-DGM for TopOpt with 

application to machine tool column structure design, Sec. 5 
concludes the work with a summary and future work. 

 
2. Methodology 

In this section, the fundamental framework of DGM is out-
lined, and the two-stage DE-DGM proposed in this paper is 
introduced. 

 
2.1 Deep generative model 

In this work, DGM is referred to as an instance of the deep 
CNN to account for the spatial correlation between a given 
pixel and its neighboring pixels. In a CNN, a layer is a linear 
mapping, and non-linearity is introduced thereafter through the 
activation function. DGMs have shown superior performance in 
handling images, including vector-to-image, image-to-image, 
and image-to-vector problems. Typical DGMs include varia-
tional autoencoder (VAE) and generative adversarial network 
(GAN). VAE extends the autoencoder to generate new images 
from a low-dimensional latent space [34]. In comparison with 
VAE, GAN has demonstrated superior performance in model-
ing a variety of fine features and has become the main scheme 
for design synthesis [21, 22, 35, 36]. There are two neural net-
works in a GAN as shown in Fig. 1: the generator network and 
discriminator network, where the generator network is trained 
to predict/reconstruct the field information, while the discrimina-
tor network is trained to classify real and predicted images, 

Table 1. List of acronyms and abbreviations. 
 

ACD Absolute compliance difference 

CNN Convolutional neural network 

DGM Deep generative model 

DE-DGM Data-efficient deep generative model 
ED-CNN Encoder-decoder convolutional neural network 

FEA Finite element analysis 

GAN Generative adversarial network 
GP Gaussian process 

MMA Method of moving asymptotes 

POD Proper orthogonal decomposition 
P-POD Probabilistic proper orthogonal decomposition 

TopOpt Topology optimization 

VAE Variational autoencoder 

 

 
Fig. 1. Schematic diagram of a typical GAN. 
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respectively. For fast topology optimization, DGM is essentially 
an advanced surrogate that takes boundary condition variables 
as inputs and outputs the pixel-wise designs.  

The generative model maps a random noise distribution to 
the distribution of latent features observed from the image data. 
The training of the two networks proceeds alternatively to im-
prove either generator or discriminator. A typical loss function, 
shown in Eq. (1) [22], comprises a discriminator loss term and 
a generator loss term, where x  is sampled from the data 
distribution dataP , z  is sampled from the noise distribution Pz , 
and ( )G z  is the generator distribution. The noise input z  is 
considered as a latent representation and used for design syn-
thesis. For topology optimization, the latent representation is 
augmented with boundary condition variables such as loading. 
The CNN-based generator has synthesized conceptual de-
signs close to TopOpt simulations. A drawback of the CNN-
based generator is that it needs a large dataset before getting 
a meaningful model. Also, the training cost of deep CNN could 
be significant for a large dataset. 

 

data~ ~

min max ( , )

[log ( )] [log(1 ( ( )))] .
G D

P P

V D G

E D E D G= + −
zx zx z

  (1) 

 
2.2 Data-efficient deep generative model 

DGM synthesizes a category of designs with parametric 
boundary conditions. Typical parametric boundary conditions 
include load locations, load orientation, and length of fixed 
bound. The DGMs developed by Refs. [22, 35] and Ref. [21] 
were trained with 10000-100000 topology optimization data. 
We aim to reduce the number of training data through the in-
troduction of prior constraints. The proposed DE-DGM utilizes 
P-POD as the first-stage design synthesis. The linear assump-
tion of P-POD enables design synthesis with sparse training 
datasets. However, it is challenging for P-POD to capture the 
fine features also due to the linear assumption. The pixel-wise 
uncertainty of P-POD prediction (i.e., synthesized design) is 
derived for uncertainty quantification. We formulate an ED-
CNN for non-linear mapping of the first-stage synthesized de-
signs with enhanced fine features. The basic flowchart of the 
proposed DE-DGM is depicted in Fig. 2. 

2.2.1 The first-stage design synthesis from prob-
abilistic proper orthogonal decomposition 

P-POD decomposes a given set of structural designs into a 
linear combination of basic modes [37-39]. The basic modes 
are obtained through an optimizer with constraints to be nor-
malized and orthogonal. The pixel-wise scalar value represent-
ing designs (in the format of images) makes up a matrix 

( )
( )
( )

,
k k

i jP p= , where k  denotes the indices for images and 

( , )i j  ( i  = 1, 2, ..., I ; j  = 1, 2, 3, ..., J ) are the indices of 
the pixels. Each synthesized design ( )k

predP  is a linear combina-
tion of M  basis modes mϕ  and the corresponding coeffi-

cients ( )k
mc  as seen in Eq. (2) [39], where m  is the mode 

index. 
 

( )( )

1

M
kk

pred m m
m

P c ϕ
=

=∑ . (2) 

 
The basic modes and mode coefficients ( )k

mc  are obtained 
by minimizing the root-mean-square difference between the 
images and predictions as shown in Eq. (3) [39]. 

 
2

( ) ( )

1 1

min
K M

k k
m m

k m

P c ϕ
= =

−∑ ∑ . (3) 

 
The constraints for normalization and orthogonality are de-

fined in Eqs. (4) and (5) [39], respectively. 
 

( )
,

1 1

1
I J

k
i j

i j

p
= =

=∑∑   (4) 

,

,

( ) ( ) ,

1  if  
0 if  .

m p m p

m p

x x dx

i j
i j

ϕ ϕ δ

δ

=

=⎧
= ⎨ ≠⎩

∫
  (5) 

 
Due to the linear assumption, P-POD can avoid heuristic op-

timization and obtain the global optimum for mode coefficients. 
The main features of the design can be reconstructed with 
even a few training data. The first 10 varsd×  modes are adopted 
for design synthesis, where varsd  is the number of changing 

 
 
Fig. 2. Flowchart of the proposed DE-DGM. 
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boundary condition variables. 
P-POD mode coefficients at unseen boundary conditions are 

approximated with Gaussian process (GP). GPs have proven 
to be flexible and effective surrogate models for expensive 
non-linear responses [40-42], which makes it highly suitable for 
sparse data ( , )X Y  or ( ) ( )( , )i ix y , where ( )ix  is a vector of 
nd-dimensional inputs at the thi  data point and ( )iy  is the 
associated output ( i  = 1, 2, . . . , n). The GP is setup with the 
squared-exponential kernel as in Eq. (6) [41] due to its general-
ity, where m is the m-th dimension of inputs: 

 
( ) ( ) ( ) ( ) 2

10

1( , ) exp ( ) .
dn

i j i j
m m m

m

k x x x xβ
λ =

⎧ ⎫= − −⎨ ⎬
⎩ ⎭
∑   (6) 

 
Where 1 0/λ  and mβ  represent the process variance and 

the length-scale. The marginal likelihood of the GP requires 
inverting the covariance matrix K  defined in Eq. (7) [41], 
where ,i jδ  is an identity matrix: 

 

( )( ) ( )
, ,

1

1,i j
i j i jK k x x δ

λ
= + . (7) 

 
In GP, the parameters 0λ , 1λ , and mβ  need to be learned 

from the data. Specifically, the parameter mβ  controls the 
length scale in the m-th dimension, while the parameters 0λ , 

1λ  control the variance and noise in the GP. The marginal 
likelihood for GP with a given dataset ( , )X Y  is shown in Eq. 
(8) [41]. The model fitting is done with Metropolis-Hastings 
algorithm for estimating the posterior distribution of the pa-
rameters: 

 
11 1log ( | ) log log(2 )

2 2 2
T nP Y X Y K Y K π−= − − − . (8) 

 
The uncertainty of first-stage design synthesis is propagated 

from P-POD coefficients. The pixel-wise P-POD predictions 
(synthesized designs) are essentially a pixd -variates Gaussian 

distribution ( )( *), ( *)N x xμ ∑ , where pixd  is the number of 
image pixels, and *x  denotes the boundary condition vari-
ables. The P-POD mean prediction ( *)xμ  is shown in Eq. (9) 
[42], where ˆ ( *)mc x  is the predicted mode coefficients from 
GPs. 

 

1

ˆ( *) ( *)
M

m m
m

x c xμ ϕ
=

=∑ . (9) 

 
The covariance ( )*x∑  is a diagonal matrix while assum-

ing independent POD modes, and the diagonal elements 
( )( )*Var xμ  of ( )*x∑  are the pixel-wise uncertainty of 

synthesized designs. ( )( )*Var xμ  are calculated following 

Eq. (10) [42]: 

( )( ) ( )( ) 2

1

ˆ* *  
M

m m
m

Var x Var c xμ ϕ
=

=∑ . (10) 

 
2.2.2 The second-stage design synthesis from en-

coder-decoder convolutional neural network 
CNN-based generators like GANs have demonstrated prom-

ising performance in design synthesis. However, GANs are 
notoriously unstable to train, and they often suffer from mode 
collapse, where the generator converges to generate samples 
from one category of the data distribution but misses many 
others. Besides, O (10000) training points are typically needed, 
which makes GANs less feasible for practical engineering ap-
plications. 

To address this issue, an ED-CNN is developed, as shown in 
Fig. 3. Encoder-decoder architecture has been shown to be 
superior with image reconstruction by gradually capturing the 
key features at different scales. The ED-CNN inputs include 
three channels from loading conditions, P-POD mean predic-
tions, and P-POD prediction uncertainty. The images are 
shaped with 64×64 pixels. For encoding layers, latent space 
transitions, decoding layers, and two blocks are utilized, re-
spectively. ReLU layers are used for non-linear mapping; the 
sigmoid layer is used to output the pixel-wise segmentation 
probability. The DGM is formulated as a binary image segmen-
tation problem to indicate with/without material for each pixel. 
The Softmax cross-entropy loss is calculated according to Eq. 
(11) [21]. 

 
, , , ,

2

, , , ,
1 1 1

ˆCELoss( , )

1 ˆlog( ) .
pixt

i j k i j k

dN

i j k i j k
i j kt pix

y y

y y
N d = = =

−= ∑∑∑
  (11) 

 
, ,i j ky  is the pixel-wise one-hot encoding label at thi  training 

data, thj  pixel, k  is the index of one-hot encoding, , ,ˆi j ky  is 

 
Fig. 3. Architecture of the proposed encoder-decoder convolutional neural 
network. 
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the Softmax prediction of ED-CNN. Compared with other im-
age reconstruction techniques based on root-mean-square 
error, our formulation using segmentation eliminates the exis-
tence of gray regions and produces a better characterization of 
the design boundary. Training is obtained with Adam optimizer, 
which is an advanced stochastic gradient descent method 
incorporating various enhancing concepts and heuristics, like 
momentum, adapting learning rate rules, subgradient principles, 
and Nesterov steps. 

 
3. Numerical experiments 

This section evaluates the performance of the proposed DE-
DGM for modeling sparse images. Three topology optimization 
cases are examined with distinctive geometrical characteristics. 

 
3.1 Topology optimization 

Topology optimization simulations are adopted as the design 
generator with changing boundary conditions. Density-based 
methods are the most widely used algorithm for topology opti-
mization [1, 2]. These methods discretize a specified domain 
into finite elements and usually treat each element as having 
variable density values. An objective function is defined based 
on the response of the structure under certain loads as shown 
in Eq. (12) [2]: 

 
min ( , )
. . ( ) ( )

         ( , ) 0
              0 1.

i

f U
s t U F

g U

ρ
ρ ρ

ρ
ρ

=
≤

≤ ≤

K
  (12) 

 
In this equation, ( , )f Uρ  is the objective function, ρ  is 

the vector of density design variables, U  is the displacement 
vector, K  is the stiffness matrix, F  is the force vector, and 
ig  are constraints. For a standard compliance minimization 

problem Tf U U= K , 0/ fg V V V= − ≤ 0, V  is structure 
material volume, 0V  is design domain volume, fV  is allow-
able volume fraction. 

Each finite element is assigned a design variable, namely 
density, where 0 means hole, 1 means solid. Density variables 
are penalized by a power law and multiplied with physical 
quantities such as material stiffness, cost, or conductivity as in 
Eq. (13) [2]: 

 
0( )E Eη ρ= .

 
 (13) 

 
For compliance minimization, E  is Young’s modulus of a 

finite element, 0E  is Young’s modulus of the material, ( )η ρ  
is the penalization function 3ρ , the density values of finite 
elements within a predefined radius are averaged/filtered to 
improve the numerical stability of topology optimization. Eq. 
(12) can be solved using optimizers such as optimality criteria 
methods. Please refer to Refs. [1, 2] to get more details on 
heat conduction and compliant mechanism. Three popular 
TopOpt problems are implemented to produce image dataset. 

 
3.2 Experimental setup 

The specific topology optimization boundary conditions per-
taining to each case are reported in Table 2. The boundary 
condition variables of the compliance minimization case in-
clude horizontal and vertical locations of the load ( ),x yf f , 
load orientation θ , length of the fixed bound h . For the heat 
conduction problem, the boundary condition variables are the 
locations of the heat sink. The airplane bearing bracket is con-

 
Table 2. Topology optimization domain and boundary condition variables of the 3 validation cases. 
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verted from a 3D application [43]. Three boundary condition 
variables are adopted to characterize the complex design en-
velope. 

Regarding the design of experiments, 50 varsd×  samples are 
selected from the Latin hypercube sampling, where varsd = 4 for 
compliance minimization and airplane bearing bracket, varsd = 
2 for heat conduction. Topology optimization simulations stop 
when the variation of compliance is less than 0.1 %. The DE-
DGM has 57574 trainable parameters and is trained with 
NVIDIA GeForce GTX 1050 Ti. Adam optimizer is used at a 
learning rate to be 0.0001. The training stops after 300 epochs. 

A comparative evaluation was undertaken between DE-
DGM and StyleGAN. GAN and its variants have been widely 
used for image reconstruction. Rich boundary conditions can 
be modeled through proper training with a large dataset [22]. 
To the authors’ best knowledge, no explicit effort has been 
made on GAN for handling sparse image datasets (i.e., O 
(100) data). In this paper, we have adopted StyleGAN [44, 45] 
as a reference model to compare with. StyleGAN is a popular 
variation of GAN that attracts significant attention since its de-
velopment in 2019. StyleGAN remaps the latent code into an 
intermediate space for the disentangled representation of fea-

tures. Differing from inputting the following decoder directly in 
other conditional GANs, StyleGAN controls the style and local 
details of the synthesized image by adaptive instance normali-
zation. The dimensionality of the latent space and output chan-
nels has been adjusted to accommodate our specific cases. 
Pytorch implementation of the StyleGAN is adopted from 
https://github. com/rosinality/style-based-gan-pytorch. 

 
3.3 Model validation for compliance minimiza-

tion and heat conduction 

For compliance minimization, P-POD prediction (i.e., synthe-
sized design) at one test run is shown in Fig. 4. The P-POD 
mean predictions capture the main features. As expected, the 
fine features are missing and grey regions are observed at 
most pixels. The DE-DGM predictions eliminate grey regions 
by nature. The predicted standard deviation indicates higher 
uncertainty at the center region without running TopOpt simula-
tions. Fig. 5 compares the performance of StyleGAN, DE-DGM, 
and the truth (i.e., simulations) for compliance minimization. 
DE-DGM was developed upon the P-POD synthesized designs 
and synthesizes the major geometrical features. Sophisticated 

 

 
 
Fig. 4. Design synthesis from P-POD and DE-DGM for compliance minimization: (a) ground truth for compliance minimization; (b) design synthesis from P-
POD mean prediction; (c) design synthesis from DE-DGM; (d) design synthesis from P-POD prediction uncertainty. c in (a), (b) and (c) denotes the compli-
ance objection function value at the corresponding convergence time for each design. The blue line in (a), (b) and (c) on the left indicates the length of the 
fixed bound. The red arrow in (a), (b) and (c) indicates the location and orientation of the point load. 

 

 
 
Fig. 5. Comparison of StyleGAN, DE-DGM, and ground truth for compliance minimization; (a)-(e) predictions from StyleGAN and DE-DGM of cases 1-5 as 
well as ground truths. c in (a), (b), (c), (d) and (e) denotes the compliance objection function value at the corresponding convergence time for each design. 
The blue line in (a), (b), (c), (d) and (e) on the left indicates the length of the fixed bound. The red arrow in (a), (b), (c), (d) and (e) indicates the location and 
orientation of the point load. 
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features might get lost as shown in the 5th run in Fig. 5(e); the 
compliance of DE-DGM prediction is more than twice that of 
ground truth. For the five demonstrated runs, DE-DGM cap-
tures the overall design qualitatively. 

Regarding the StyleGAN predictions, various engineering 
setups of StyleGAN, including loss functions, learning rates, 
the number of epochs, the number of neurons, and the number 
of layers, were explored. StyleGAN predictions hardly capture 
the design variations and converge to the mean designs over 
all the training datasets as shown in Fig. 5. The original version 
of condition GAN is based on a latent space at a dimensionality 
of around 100000 [46]. The original StyleGAN has a latent 
space at the dimensionality 512 [44]. Effective characterization 
of such large latent spaces would require an enormous dataset. 
In this work, the latent space dimensions have been engi-
neered to range from two to four dimensions. However, the 
main architecture of StyleGAN was originally designed and 
evaluated on a large dataset. A specialized effort is needed to 
make StyleGAN work on sparse datasets. For a further quanti-
tative evaluation, we adopted 100 test runs from Latin hyper-
cube sampling. The absolute compliance difference (ACD) 
between ground truth and synthesized designs is shown in Fig. 
6(a). The average ACD for StyleGAN and DE-DGM is 6992 

and 73, respectively. Although DE-DGM is substantially more 
accurate than StyleGAN, large ACD are observed (i.e., a few 
hundred) in some test runs. The synthesized designs are ex-
pected to assist engineers for fast conceptual designs and 
design prototyping. Post-processing of the predicted designs is 
required through engineering judgment to perform finite ele-
ment analysis (FEA), especially at the boundary condition re-
gions. Or the DE-DGM predictions could serve as the initial 
guess of high-fidelity topology optimization. Topology optimiza-
tion simulations are conducted for 100 test runs, utilizing the 
initial density guesses generated from the DE-DGM predictions. 
The required computation cost (i.e., number of finite element 
analyses) of the warm-start topology optimization for reaching 
a superior compliance value (i.e., smaller than the compliance 
of standard cases) is recorded. Fig. 6(b) shows the computa-
tion cost of warm-start topology optimization relative to that of 
the standard case. The computation cost of warm-start topol-
ogy optimization reduces to 36 % of the standard case on av-
erage and almost all the test runs get accelerated. 

Subsequently, the heat conduction problem is examined, as 
illustrated in Fig. 7. The designs between heat conduction and 
compliance minimization have quite distinctive geometrical 
characteristics. The heat conduction problem grows tree struc-

 

 
 (a) (b) 
 
Fig. 6. The performance of fast design synthesis with DE-DGM for compliance minimization: (a) absolute prediction errors of compliance for StyleGAN and 
DE-DGM; (b) relative calculation time of warm-start topology optimization from DE-DGM prediction. 100 test runs are adopted. 

 

 
 
Fig. 7. Comparison of StyleGAN, DE-DGM, and ground truth for heat conduction: (a)-(e) predictions from StyleGAN and DE-DGM of cases 1-5 as well as 
ground truths. c in (a), (b), (c), (d) and (e) denotes the objection function value for each design. The red dot in (a), (b), (c), (d) and (e) indicates the location of 
the heat sink. 
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tures with different numbers of branches, and these branches 
have different locations. The structure scale decreases gradu-
ally when getting away from the heat sink. The DE-DGM pre-
dictions are fairly close to the ground truth and have smaller 
compliance values. The volume fractions of DE-DGM predic-
tions may be larger than the ground truth and lead to smaller 
compliance values. We do observe some fine features missing 
as a few end-branches got lost for the heat conduction problem. 
The ACD of StyleGAN and DE-DGM for the 100 test runs are 
shown in Fig. 8(a). The average ACD of DE-DGM is smaller 
than that of StyleGAN by an order of magnitude. TopOpt has 
been conducted with the initial density guess derived from DE-
DGM predictions. The computation costs of warm-start topol-
ogy optimization reduce to 38 % of the standard case on aver-
age as in Fig. 8(b). 

 
3.4 Fast design of airplane bearing bracket 

DE-DGM is a data-driven scheme in nature and its accuracy 
depends on the geometrical complexities of the design con-
cerned and the dimension of the boundary condition variables. 

In this section, we examine the fast design of an airplane bear-
ing bracket with four boundary condition variables to illustrate 
the application of DE-DGM with complex design domain enve-
lope [43]. 

The bearing bracket is a common component on control sur-
faces of various aircraft. As a dynamic component that inter-
faces with moving parts, it must conform to a certain geometri-
cal envelope. DE-DGM is expected to enable fast design of the 
bracket that adapts to a variety of geometrical envelopes. For 
3D topology optimization of the bracket with CalculiX finite 
element software [47], it takes 36 hours and 7.7 GB RAM for 
the second-order mesh with 166000 elements. Thus, we adopt 
the 2D version for preliminary validation. 

The DE-DGM is developed with 200 training data. As shown 
in Fig. 9, the DE-DGM predictions capture the main features 
fairly well and it is adaptive to the changing design do-
mains/envelopes. DE-DGM misses the lower support near the 
bearing in the third design, which increases the compliance 
value noticeably. The DE-DGM predictions may have smaller 
compliance values due to the increased volume fraction. Quan-
titative evaluations of StyleGAN and DE-DGM for 100 test runs 

 

 
 (a) (b) 
 
Fig. 8. The performance of fast design synthesis with DE-DGM for heat conduction: (a) absolute prediction errors of compliance for StyleGAN and DE-DGM; 
(b) relative calculation time of warm-start topology optimization from DE-DGM prediction. 100 test runs are adopted. 

 

 
 
Fig. 9. Comparison of StyleGAN, DE-DGM, and ground truth for airplane bearing bracket design: (a)-(e) predictions from StyleGAN and DE-DGM of cases 1-
5 as well as ground truths. c in (a), (b), (c), (d) and (e) denotes the compliance value for each design. The blue dot in (a), (b), (c), (d) and (e) indicates the 
center of the beam intersection area. The red arrow indicates the location of the point load. 
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are shown in Fig. 10(a). The average of ACD for DE-DGM is 
as small as 47. Large ACD are observed at some test runs (i.e., 
a few hundred). The computation cost of warm-start topology 
optimization for the 100 test runs is shown in Fig. 10(b). With 
42 % computation cost of the standard case on average, the 
warm-start topology optimization can produce a design with 
superior compliance value. 

The proposed DE-DGM can synthesize the main features of 
compliance minimization, heat conduction and airplane bearing 
bracket design with 50 varsd×  training data. In order to get a 
quantitatively accurate design, remodeling and post-processing 
of the synthesized designs are needed. The DE-DGM predic-
tions can be adopted as the initial guess for high-fidelity topol-
ogy optimization. Compared with the standard topology optimi-
zation, the warm-start cases have been shown to reach a su-
perior compliance with reduced computation cost, which is 
36 %-42 % for the three numerical cases. 

 
4. 3D numerical experiment for a machine 

tool column 
To further verify the effectiveness of the proposed DE-DGM, 

a three-dimensional numerical case needs to be incorporated 
into the model validation process. 

 
4.1 Case introduction 

A machine tool consists of several major components, in-
cluding the bed, column, spindle box, spindle, and worktable. 
For the design of machine tool components, many designers 
still rely on empirical design and structural analogy. Topology 
optimization can purposefully improve the performance of 
structures, providing effective references for structural design 
of parts. This section focuses on the structural design of a ma-
chine tool column. The selected column model to be studied is 
as shown in Fig. 11(a). The model has dimensions of 500 mm 
in length, 500 mm in width, and 1250 mm in height, represent-
ing the initial design domain of the column. The installation of 
the spindle box corresponds to the loading position, and the 
connecting parts are simplified to the force-bearing surface in 
the loading condition.  

The material of the solid structure model of the column was 
set to cast iron. The density of cast iron (ρ) is 7.2×103 kg/m3, 
Poisson's ratio (μ) is 0.25, and the elastic modulus (E) was 140 

 
 (a) (b) 
 
Fig. 10. The performance of fast design synthesis with DE-DGM for airplane bearing bracket design: (a) absolute prediction errors of compliance for Style-
GAN and DE-DGM; (b) relative calculation time of warm-start topology optimization from DE-DGM prediction. 100 test runs are adopted. 

 

 
 (a) (b) 
 
Fig. 11. 3D column model: (a) selection of dimensions, stress surface, and constraint surface of the 3D column model; (b) selection of variable loading condi-
tions of the model. 
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GPa. The loading conditions of the column were set with fixed 
constraints on the bottom surface and applied forces and mo-
ments on the upper stress surface. The spindle box was in-
stalled on the stress surface of the column. Assuming the end 
of the spindle is oriented vertically downward, the cutting tool 
experiences a force in the upward direction at a 45-degree 
angle to the vertical direction. The force and moment applied to 
the stress surface of the column are defined as equivalent 
loads. The equivalent force is simplified as a concentrated load 
applied at the center of the stress surface, and the equivalent 
moment is applied across the entire stress surface. 

In this case, three variable conditions ( varsd = 3) were consid-
ered. The first variable condition involves the size of the con-
strained area on the bottom surface. The width of the con-
strained area remains constant, while the length (L) of the con-
strained area is changed to vary the constrained area size. The 
range of values for the length of the constrained area is [300, 
500] mm. The second variable condition pertains to the magni-
tude of the concentrated load (F), which can take values within 
the range of [10, 60] kN. The third variable condition focuses 
on the magnitude of the moment (M), which can vary within the 
range of [10, 60] kN·m. The distributions of the respective vari-
ables are illustrated in Fig. 11(b). 

 
4.2 Model modification 

Considering the applicability of the DE-DGM to 3D cases, 
some modifications are necessary to the model presented in 
Sec. 3. The first stage with the P-POD component remains 
unchanged. The second stage, which uses the ED-CNN mod-
ule, is extended to predict three-dimensional cases. Similar to 
the previous structure, the ED-CNN inputs include three chan-
nels from loading conditions, P-POD mean predictions and P-
POD prediction uncertainty. The initial input shape for training 
data is reset to voxels. For encoding layers, latent space transi-
tions, decoding layers, and two blocks are utilized, respectively. 
ReLU layers are used for non-linear mapping; the sigmoid 
layer is used to output the voxel-wise segmentation probability. 
The DGM is formulated as a binary segmentation problem to 
indicate with/without material for each voxel. The basic model 
framework is shown in Fig. 12. 

 
4.3 Model validation 

To validate the effectiveness of the proposed DE-DGM, ex-
periments were conducted on the 3D column case. Within the 
range of variable conditions, four groups of cases with struc-
tural representativeness were selected for experimentation. 
The validation process followed the following steps: 

1) 500 sets of variable combinations were obtained through 
Latin hypercube sampling, each comprising integer values for L, 
F, and M. 

2) The obtained 500 sets of data were used to build models 
and perform topology optimization computations using the 
method of moving asymptotes (MMA) algorithm. The results of 

the topology optimization were exported and matched with the 
corresponding variable conditions. 

3) After preprocessing the entire dataset, 200 sets of data 
were randomly selected as the training set, and 100 sets of 
data were used as the validation set. These datasets were 
input into the DE-DGM for training. Training stopped after 500 
epochs. 

4) With the trained model, the remaining 200 sets of data 
were used for prediction. The inputs consisted of variable con-
ditions, and the outputs were the corresponding predicted to-
pology optimization structures. These predicted structures 
were used as a warm-start for a second round of topology op-
timization using the MMA algorithm. Results and convergence 
speed were compared between the warm-start method and the 
non-warm-start method. 

In the test set, four sets of data were selected with significant 
differences in the topology optimization structures for compari-
son. The predicted results by DE-DGM and their corresponding 
real structural data are shown in Fig. 13. By comparing the 
results of the upper and lower rows separately, it is evident that 
DE-DGM is capable of predicting the corresponding structures 
based on the given variable conditions. These predictions are 
in close alignment with the results obtained from the MMA 
applied to the test dataset. 

To ensure stability, the material area in the output from DE-
DGM was enlarged, and MMA was used for topology optimiza-
tion again in the remaining area. The comparison between the 
topology optimization structures based on DE-DGM predictions 
and the results obtained solely using the MMA algorithm is 
illustrated in Fig. 14. It can be observed that in these four cases, 
the overall trends remain consistent before and after incorpo-
rating DE-DGM predictions. This suggests that the predictions 
made by DE-DGM have a certain level of guiding significance, 
and in most cases, they do not lead the structural optimization 
into local optima. 

Due to the substantial computational complexity associated 

 
Fig. 12. Architecture of ED-CNN for 3D cases. 
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with 3D topology optimization, the current analysis focuses on 
a random selection of ten data sets to compare computational 

speeds, as shown in Fig. 15(a). The objective function values 
obtained after 100 iterations of the MMA algorithm when used 

 
 
Fig. 13. Comparison of DE-DGM prediction results with test set results. 

 

 
 
Fig. 14. Comparison of topology optimization results with warm-start and no-warm-start. 

 

 
 (a) (b) 
 
Fig. 15. The performance of fast synthesis with DE-DGM for 3D column case: (a) selected ten sets of test data; (b) relative calculation time of warm-start 
topology optimization from DE-DGM prediction. 
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independently were recorded. Using these values, the iteration 
counts at which they were achieved in the MMA algorithm's 
convergence curves after warm start were determined. Based 
on this information, the computational speed improvement was 
calculated, and an average reduction in computation time to 
58 % of the original time was obtained, as shown in Fig. 15(b). 
Due to the relatively large number of grids and design variables 
associated with 3D cases, the computational workload was 
substantial. Therefore, the introduction of DE-DGM predictions 
did not yield as pronounced an effect on speeding up computa-
tions as observed in the previous section for two-dimensional 
cases. Additionally, an insufficient number of training epochs 
for the DE-DGM will result in reduced accuracy. A conservative 
approach to utilizing prediction results will also increase com-
putation time in subsequent steps following the warm start. 

 
5. Conclusion and future work 

This paper proposes a two-stage data-efficient deep genera-
tive model for fast design synthesis/prototyping. Existing GAN-
based DGMs are usually trained with O (10000) data, which 
limits engineering applications. The proposed DE-DGM dem-
onstrated the feasibility of fast design synthesis based on 100-
200 training data for 2-4 changing boundary condition variables. 
This was achieved through the introduction of prior constraints 
from P-POD. P-POD model was developed for first-stage low-
fidelity design synthesis. The uncertainty of P-POD mode coef-
ficients was modeled and propagated to the synthesized de-
signs. Pixel-wise uncertainty of the synthesized designs could 
serve as the foundation for risk management and model im-
provement. Then these predictions (synthesized designs) are 
transferred to an encoder-decoder convolutional neural net-
work for non-linear enhancement of fine features. The ED-CNN 
is formulated as image segmentation to categorize each 
pixel/voxel to zero/one (with/without material). The developed 
DE-DGM has demonstrated reasonable performance in syn-
thesizing topology optimization with applications to compliance 
minimization, heat conduction, airplane bearing bracket design, 
and 3D machine tool column structure design. The DE-DGM 
predictions could guide design prototyping, or serve as an ini-
tial guess for high-fidelity topology optimization. The computa-
tion cost of warm-start topology optimization with initial density 
guess from DE-DGM predictions is 36 %-58 % of the standard 
cases. 

It is encouraging to see the possibility of developing DE-
DGM with O (100) data. Future research is needed to evaluate 
the technique with real designs, which could be more expen-
sive 3D designs and more sophisticated boundary condition 
variables. A two-stage training process is developed in this 
paper. An end-to-end framework with simultaneous training 
might produce better results. To achieve this goal, more effort 
is needed to couple DE-DGM training tightly with the first-stage 
prior constraints. This work focuses on non-intrusive tech-
niques which are general to handle different types of design 
synthesis, including the dataset from commercial software, 

historical designs, and parametric optimizations. It is possible 
to incorporate physical insights with DGM for improved accu-
racy. One potential direction is to couple compliance calcula-
tion with DGM training and explicitly tackle the compliance gap 
between simulations and DGM predictions. Latin hypercube 
sampling is adopted in this paper for the design of experiments. 
Adaptive sampling/active learning might be developed to re-
duce the size of the training dataset. An initial effort has been 
made to ascertain the uncertainty associated with synthesized 
designs in this issue. More research is needed for adaptive 
sampling of topology optimization designs. 
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