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Shape Design Sensitivity Analysis and Optimization
of Elasto–Plasticity with Frictional Contact

Nam H. Kim, ¤ Kyung K. Choi,† and Jiun S. Chen‡

University of Iowa, Iowa City, Iowa 52242

A shape design sensitivity analysis and optimization are proposed for the in� nitesimal elasto–plasticity with
a frictional contact condition. Rate-independent plasticity is considered with a return mapping algorithm and
a von Mises yield criterion. The contact condition is formulated using the penalty method and the modi� ed
coulomb friction law. A continuum-based shape design sensitivity formulation is developed for structural and
frictional contact variational equations. The direct differentiation method is used to compute the displacement
sensitivity, and the sensitivities of various performance measures are computed from the displacement sensitivity.
Path dependency of the sensitivity equation due to the constitutive relation and friction is discussed. It is shown
that no iteration is required to solve the sensitivity equation. Response analysis and the proposed sensitivity
formulation are implemented using the mesh-free method where the mesh distortion problem can be resolved.
Numerical examples show accurate results of the proposed method compared to the � nite difference method.
Dif� culties in the sensitivity formulation for the � nite deformation problem are discussed.

I. Introduction

B ECAUSE of the recent development of computational mechan-
ics, it is now possible to analyze practical examples of com-

plicated structural problems. Many design engineers, who are not
satis� ed with response analysis alone, have keen interests in the
methodology of the design. For more than two decades, signi� cant
research effort has been focused on the rate of response with respect
to the changes in structural shape under shape design sensitivity
analysis (DSA). Analysis of the design sensitivity information is
the most important and costly procedure in the automated optimum
design process. It supplies useful quantitative information to the
design engineer about the direction of the desired design change.
In a classical linear problem, DSA research has proved the differ-
entiability of the solution of the response analysis using the linear
operator theory and has derived speci� c sensitivity expressions for
various problems.1 A result worthy of attention in linear DSA is that
the original response and the sensitivity of the response belong to the
same kinematically admissible space and have the same regularities.

Owing to the development of the response analysis capability,
engineers have directed their interest to the nonlinear problems that
are dealt with ef� ciently. Because many design application prob-
lems are accompanied by plastic deformation, the design sensitivity
of nonlinear problems has been actively developed, and many re-
search results are reported. In the procedure of nonlinear response
analysis, the projection, called a return mapping, of the elastic trial
stress is carried out to satisfy the variational inequality (VI) through
an iteration in the stress space.2 The DSA, on the other hand, com-
putes the rate of change of the projected response in the tangential
direction of the constraint set without iteration. Note that the sensi-
tivity analysis is linear and can be computed without iteration even
though the response analysis is nonlinear.3 Unlike the nonlinear elas-
tic problem, the sensitivity equation of the plastic problem requires
sensitivity of the stress and internal evolution variables at the pre-
vious time. The sensitivity equation is solved at each time without
iteration, and the sensitivity of the stress and evolution variables are
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stored for the sensitivity equation at the next time step. For this rea-
son, the sensitivity equation at each load step computes the material
derivative of the incremental displacement and the material deriva-
tive of the total displacement can be obtained by summing all of the
material derivatives of the incremental displacements. The process
of the sensitivity computation is divided into two parts. The � rst
is computing the sensitivity of the incremental displacement, and
the second is updating the sensitivity of the stress and the evolution
variables using the incremental displacement sensitivity.

The Newton–Raphson iteration method is frequently used for re-
sponse analysis of a nonlinear variational equation using a tangent
operator. If the tangent operator is exact, this method guarantees
the quadratic convergence when the initial estimate is close enough
to the solution.4 Even if the tangent operator is not exact, the re-
sponse analysis may be converged by consuming a greater number
of iterations. However, in DSA, the inexact tangent operator causes
the error in the sensitivity results. In Ref. 3, the accuracy of the
sensitivity coef� cients using the consistent tangent operator and the
rate-form tangent operator are discussed. For the major research
results of DSA in plasticity, refer to Refs. 3 and 5–10.

Because most of the plastic deformations of materials occur
through contact with another structure, contact analysis is inevitable
in practical applications. Like the plastic case, the contact problem
is described by VI.11 This VI is equivalent to a constrained mini-
mization problem and can be solved by various approximation meth-
ods. The penalty method,11 Lagrange multiplier method,12 perturbed
Lagrangian method,13 and augmented Lagrangian method14 are typ-
ically used to solve the approximated minimization problem. For a
linear problem, it is proven that the projection of the response onto
the convex constraint set is directionally differentiable.15,16 Thus,
the solution of VI is directionally differentiable and the derivative
is the solution of another VI.17 When the penalty method is used to
approximate the response of VI, it is possible to show that the sensi-
tivity obtained by taking the derivative of approximated variational
equation approaches to the solution of the approximated sensitivity
VI as the penalty parameter increases.

Without mathematical support, taking the derivative of the ap-
proximated variational equation was attempted by several re-
searchers for nonlinear contact problems. Spivey and Tortorelli18

derived a sensitivity formulation of an elastic beam contact problem
with respect to the change of a rigid wall, and Pollock and Noor19

took derivatives of the � nite element equation to compute the sen-
sitivity of the response with respect to dynamic parameters. The
sensitivity formulation for the contact problem with respect to the
shape perturbation was reported recently by Choi et al.20 They took
derivatives of the contact variational form with respect to the shape
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design parameters and used the tangent operator of the sensitivity
equation that is consistent with that of the response analysis. The
sensitivity equation showed path dependency even for the elastic
material because of frictional contact.

During the process of shape design change, the conventional � nite
element method often has a mesh distortion problem. That is, the
regular mesh shape at the original design becomes distorted through
the optimum design process, and the reliability of the analysis results
is reduced for the new design. The mesh-free methods that were
developed recently can be used to relieve the mesh dependence
of the analysis. In the mesh-free method, the structural domain is
discretized, not by the � nite element, but by a set of particles. For
a detailed theory and application of the mesh-free method, refer to
Ref. 21 and references therein.

In this paper, continuum-based shaped DSA and optimization
methods are proposed for the in� nitesimal elasto–plasticity with a
frictional contact condition. The rate-independent elasto–plasticity
is considered with the return mapping algorithm and von Mises
yield criterion. The contact condition is formulated using the penalty
method and the modi� ed coulomb friction law. The continuum-
based shaped design sensitivity for mulation is used for the structural
and frictional contact variational equation. The direct differentia-
tion method (DDM) is used to compute the displacement sensitivity
and the sensitivity coef� cients of various performance measures are
computed from the displacement sensitivity. The path dependency
of the sensitivity equation from the constitutive relation and friction
is discussed. The sensitivities of the stress and internal variables are
stored to construct the linear sensitivity equation at the next load
step. It is shown that no iteration is required to solve the sensi-
tivity equation. Analysis and the proposed sensitivity formulation
are implemented using the mesh-free method. Numerical examples
show the accurate results of the proposed method compared to the
� nite difference method. A design optimization problem for a metal
ring contact problem is solved to show the feasibility of proposed
method. Dif� culties in the sensitivity formulation for the � nite de-
formation elasto–plasticity are also discussed.

II. Variational Principles for Elasto–Plasticity
with Contact

A. Rate-Independent Elasto–Plasticity Model
Physically, a plastic deformation can be explained by atomic dis-

location. An elastic deformation corresponds to the variation in the
interatomic distance without causing atomic dislocation, whereas a
plastic deformation implies relative sliding of the atomic layers and
a permanent change of the shape without changing the structural
volume. A plastic behavior can be ef� ciently described by the de-
viator of the tensors, which preserves the volumetric components.
The deviatoric stress and strain tensors are de� ned as

s ´ ¾ ¡ 1
3

tr(¾)1 = Idev : ¾ (1)

e ´ " ¡ 1
3 tr(")1 = Idev : " (2)

where tr( ² ) is a trace operator, 1 is the second-order unit tensor,
Idev = I ¡ 1

3 1 ­ 1 is the fourth-order unit deviatoric tensor, ­ is the
standard tensor product, I is the fourth-order unit symmetric tensor,
and (:) is the contraction operator of tensors.

From the assumption of small elastic strain, the strain and its rate
can be additively decomposed into elastic and plastic parts as

" = "e + "p , Ç" = Ç"e + Ç"p (3)

where superscript e and p denote elastic and plastic parts, respec-
tively. For the elastic part, it is usually assumed that there exists an
elastic strain energy function such that the stress can be determined
by taking a derivative of the elastic energy function with respect to
the elastic strain. Here the elastic part is assumed to be linear and

W ("e) = 1
2 "e : C : "e = 1

2 (" ¡ "p) : C : (" ¡ "p) (4)

¾ =
@W ("e)

@"e
= C : "e = C : (" ¡ "p ) (5)

Ç¾ = C : ( Ç" ¡ Ç"p ) (6)

where C = ( k + 2
3
l )1 ­ 1 + 2 l Idev is the fourth-order isotropic con-

stitutive tensor, and k and l are Lame’s constants. The rate of stress
can be decomposed into volumetric (pressure) and the deviatoric
parts from Eq. (6), respectively, as

Çp = 1
3

tr( Ç¾) = k + 2
3
l tr( Ç") (7)

Çs = 2l ( Çe ¡ Çep) (8)

For rate independent plasticity, the von Mises pressure insensitive
yield criterion with the associative � ow rule is the most well-known
method used to describe the material behavior after elastic deforma-
tion. Accordingly, the yield criterion or yield function is formulated
as

f (´, êp) ´ k ´ k ¡ 2
3
j (êp ) = 0 (9)

where ´ = s ¡ ®, where ® is the back stress that is the center of the
yield surface (elastic domain) and is determined by the kinematic
hardening law, j (êp ) is the radius of the elastic domain determined
by the isotropic hardening rule, and êp is an effective plastic strain.
The combined isotropic/kinematic hardening law is used in Eq. (9).
The elastic domain generated by the yield function in Eq. (9) forms
a convex set as

E = {(´, êp) j f (´, êp) · 0} (10)

In mathematical terms, the plasticity can be thought of as a projec-
tion of the stress onto the yield surface. Because the yield surface
is convex, the projection becomes a contraction mapping, which
guarantees the existence of the projection.

It is assumed that there exists a � ow potential such that plastic
strain is proportional to the normal of the � ow potential. If the plastic
� ow is assumed to be associative, then the � ow potential is same as
the yield function. Thus,

Çep = c
@f ( g , êp)

@´
= c

´

k ´ k
= c N (11)

where N is a unit deviatoric tensor and normal to the yield surface
and c is a plastic consistency parameter, which is nonnegative. If the
status of material is elastic, c must be zero, and it is positive for the
plastic status. The plastic strain rate is in the direction normal to the
yield surface and has the magnitude of plastic consistency parame-
ter c . As the material experiences plastic deformation, the internal
parameter (back stress, effective plastic strain, etc.) is changed by
the hardening law. The rate of back stress can be determined by the
kinematic hardening law

Ç® = Ha (êp ) c
@f (´, êp )

@´
= H a (êp ) c N (12)

where H a (êp ) is the plastic modulus for kinematic hardening. The
rate of effective strain can be expressed by

Çêp = 2
3 Çep(t ) = 2

3
c (13)

The Kuhn–Tucker loading/unloading condition becomes

c ¸ 0, f · 0, c f = 0 (14)

The nonpositiveness of the yield function can be thought of as a con-
straint, and the plastic consistency parameter c can be thought of as
the Lagrange multiplier corresponding to the inequality constraint.

Because all constitutive equations are in rate form in the elasto–

plastic model, the calculation of stresses demands integration pro-
cedures. The return mapping algorithm is a popular integration pro-
cedure. It is well known that the return mapping algorithm, with
the radial return method as a special case, is an effective and ro-
bust method for rate-independent plasticity.22 It is assumed that the
solution and the status of material at time tn is known. Because
most of the solution procedures of elasto–plasticity problems are
of the displacement-driven method, the con� guration at time tn + 1
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is computed using the given displacement. In the return mapping
algorithm, a two-step method is often used. At � rst, the elastic trial
status is computed, and if the status of stress is out of the elastic do-
main, then the trial stress is projected onto the yield surface, which
is a convex set. During the projection step, the yield surface itself is
changed by the evolution of internal variables.

For associative plasticity, it is well known that the backward Euler
method produces the closest point projection. Because the displace-
ment at time tn + 1 is known for the displacement driven method, the
incremental strain at time tn + 1 can be computed from the de� nition
of the strain. When this incremental strain is used, the � rst step is
called the elastic predictor. The stress and hardening parameters are
predicted elastically as

n + 1str = ns + 2l D e (15)

n + 1®tr = n® (16)

n + 1 êtr
p = n êp (17)

n + 1´tr = n + 1str ¡ n + 1®tr (18)

where the left-hand superscript n + 1 denotes the con� guration time
tn + 1.

If the trial stress n + 1 g tr is within the elastic domain, then the stress
is updated using the trial predictor and the elastic material status is
declared. If the trial stress n + 1 g tr is out of the elastic domain, then
the plastic corrector is carried out to � nd the plastic material status.
The stress and hardening parameters are corrected by considering
the plastic deformation as

n + 1s = n + 1str ¡ 2 l D ep

= n + 1str ¡ 2 l ˆc N (19)

n + 1® = n + 1®tr + Ha ˆc N (20)

n + 1´ = n + 1s ¡ n + 1®

= n + 1´tr ¡ (2 l + Ha ) ˆc N (21)

where N = n + 1´ / k n + 1´ k , which is a unit deviatoric tensor and nor-
mal to the yield function at time tn + 1, and where ˆc = c D t is com-
puted from the yield condition at time tn + 1 . An important feature
of Eq. (21) is that the trial stress is in the same direction as the � -
nal stress. Thus, the unit normal tensor to the yield surface can be
computed from the trial stress by

N =
n + 1´tr

k n + 1´tr k
(22)

which is known from the elastic predictor step.
At the return map point the following yield condition is satis� ed:

f n + 1´, n + 1êp = k n + 1´ k ¡ 2
3
j n + 1êp

= k n + 1´tr k ¡ 2 l + Ha
n + 1 êp ˆc ¡ 2

3
j n + 1 êp = 0

(23)

which is a nonlinear equation in terms of ˆc . Equation (23) can
be solved to compute ˆc using the local Newton method. If the
isotropic/kinematic hardening is a linear function of ˆc or the ef-
fective plastic strain, then only one iteration is required to compute
the return map point. After ˆc is found, the stress and hardening
parameters can be updated at time tn + 1 by

n + 1s = ns + 2 l D e ¡ 2l ˆc N (24)

n + 1¾ = n¾ + D ¾ (25)

D ¾ = C : D " ¡ 2 l ˆc N (26)

n + 1® = n® + Ha ˆc N (27)

n + 1êp = n êp + 2
3 ˆc (28)

As discussed by Simo and Taylor,4 the tangent operator must be
consistent with the time integration algorithm to achieve quadratic
convergence of the Newton method. The differentiation of the in-
cremental stress tensor in Eq. (26) is taken with respect to the in-
cremental strain tensor, which produces a consistent constitutive
relation with the return mapping algorithm. Thus, the consistent or
algorithmic tangent operator becomes

Calg =
@D ¾

@D "
= C ¡ 4 l 2 AN ­ N ¡

4 l 2 ˆc

k n + 1´tr k
[Idev ¡ N ­ N] (29)

where A ´ 1/ (2 l + Ha +
p 2

3
H 0

a ˆc + 2
3
j 0 ), j 0 = @j / @êp and H 0

a
=

@Ha / @êp . For a notational convenience, de� ne the structural energy
form and its linearization by

a X (n + 1z, z̄) ´
X

"(z̄) : n + 1¾ d X (30)

a ¤
X (nz; D z, z̄) ´

X

"(z̄) : Calg : "( D z) d X (31)

B. Frictional Contact with a Rigid Wall
In this section, the contact variational form is derived based on

the continuum formulation. For details, refer to Ref. 20. Figure 1
shows a general contact condition with a rigid wall in R2 . Because
the motion of the rigid wall is � xed or prescribed throughout the
analysis, a natural coordinate or parameter n can represent the sur-
face coordinate of the rigid wall. The coordinate of contact point xc

can be represented using a natural coordinate at the contact point n c

by xc = xc( n c). The normal contact condition can be imposed on the
structure by measuring the distance between a part of the structural
boundary C c and the surface of the rigid wall. An impenetration
condition can be de� ned, using the normal gap function gn , that
measures the normal distance as

gn ´ [x ¡ xc( n c)]T en ( n c) ¸ 0, x 2 C c (32)

where en is the unit outward normal vector of the rigid wall at the
contact point. The contact point xc that corresponds to the body point
x 2 C c is determined by solving the following nonlinear equation:

} (n c) = [x ¡ xc( n c)]T et ( n c) = 0 (33)

where et is the unit tangential vector at the contact point. Equa-
tion (33) is called a contact consistency condition. In Eq. (33), xc( n c)
is the closest projection point of x 2 C c onto the rigid wall by im-
posing the contact consistency condition.

As the contact point moves along the rigid wall, there exists a
frictional force along the tangential direction of the rigid wall that
resists the tangential relative movement. Tangential slip function gt

is the measure of the relative movement of the contact point along

Fig. 1 Continuum-based frictional contact condition in R2 .
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Fig. 2 Modi� ed coulomb friction model.

the rigid wall,

gt ´ k t0 k n c ¡ n 0
c (34)

where k t0 k is the norm of the tangential vector and n 0
c is the natural

coordinate of the earlier converged time step. For the convenience
of the following derivations, de� ne several scalar symbols:

a ´ eT
n xc, n n , b ´ eT

t xc, n n , c ´ eT
n xc, n n n

c ´ k tk 2 ¡ gn a , m ´ k tk k t0 k / c (35)

The frictional force is bounded above by ¡ l x ngn in the coulomb
friction law. However, for the case of small slip (microdisplace-
ment), the traction force is proportional to the tangential slip. The
penalty parameter x t is a constant for this case. Figure 2 shows a
friction curve used in this paper. A stick condition occurs when the
frictional traction force is less than the normal force multiplied by
the frictional coef� cient as

j x t gt j · j l x n gn j (36)

Otherwise, it becomes a slip condition. In Eq. (36), l is the coulomb
friction coef� cient. Thus, the contact variational form can be clas-
si� ed as either the stick condition or the slip condition. From the
standard penalty formulation,

b(z, z̄) = x n
C C

gn z̄T en dC

+
+ x t

C C

m gt z̄T et dC if j x t gt j · j l x n gn j

¡ l x n sgn(gt )
C C

m gn z̄T et dC otherwise

´ bN (z, z̄) + bT (z, z̄) (37)

where bN (z, z̄) is the normal contact variational form and bT (z, z̄)
is the tangential stick/slip variational form. The contact variational
form in Eq. (37) is a nonlinear relation with respect to the dis-
placement. The linearization of a normal contact variational form
in Eq. (30) leads to the linearized normal contact variational form

b ¤
N (nz; D z, z̄)

= x n
C C

z̄T nen
nen

T D z d C ¡ x n

n

C C

a gn

c
z̄T nen

t et
T D z d C (38)

Note that in Eq. (38) there is a component in the tangential direction
because of the curvature effects.

The linearization of the tangential stick condition leads to the
linearized tangential stick variational form

b ¤
T (nz; D z, z̄) = x t

C C

m 2 z̄T nen
t et

T D z d C

+ x t

n

C C

a m gt

c
z̄T n

en
net + nen

t en
T
D z d C

+ x t

n

C C

m gt

c2

n

( c k tk ¡ 2a b )gn ¡ b k tk 2 z̄T nen
t et

T D z dC

(39)

and the linearization of the tangential slip condition leads to the
linearized tangential slip variational form

b ¤
T (nz; D z, z̄) = x t

n

C C

m z̄T nen
t en

T D z d C

+ x t

n

C C

a m gn

c
z̄T n

en
neT

t
+ nen

t eT
n D z d C

+ x t

n

C C

m gn

c2

n

( c k tk ¡ 2 a b )gn ¡ b k tk 2 z̄T nen
t et

T D z d C

(40)

where, for the case of the slip contact condition, the tangential
penalty parameter x t is related to normal penalty parameter x n by

x t = ¡ l x n sgn(gt ) (41)

The linearized contact variational form is the sum of Eqs. (38)
and (39) [or Eq. (40)] as

b ¤
C (nz; D z, z̄) = b ¤

N (nz; D z, z̄) + b ¤
T (nz; D z, z̄) (42)

For the case of the stick condition, the linearized contact variational
form Eq. (42) is symmetric bilinear with respect to the incremental
displacement and the variation of displacement. This is expected
because the contact phenomena for a stick condition are elastic. For
the case of the slip condition, the linearized contact variational form
Eq. (42) is not symmetric with respect to incremental displacement
and the variation of displacement. The system is no longer conser-
vative if it starts to slip along the master surface.

C. Variational Principles for Elasto–Plasticity with Contact
Suppose that the solution and con� gurations of the problem up to

time tn are known, and the solution and con� gurations at time tn + 1

are required. The variational equation at time tn + 1 can be written as

a X (n + 1z, z̄) + bC (n + 1z, z̄) = X̀ (z̄), 8 z̄ 2 Z (43)

where Z is the space of the kinematically admissible displacement
and

X̀ (z̄) =
X

z̄T n + 1f B d X +
C T

z̄T n + 1f T d C (44)

is the load linear form and is assumed to be independent of the
deformation. Equation (43) is a nonlinear function of displacement
and is linearized with respect to incremental displacement and then
solved iteratively using the Newton method. Let the current time be
tn + 1, and let k be the last iteration counter. Then the incremental
equation of Eq. (43) can be written as

a ¤
X (n + 1zk ; D zk + 1, z̄) + b ¤

C (n + 1zk ; D zk + 1 , z̄)

= X̀ (z̄) ¡ a X (n + 1zk , z̄) ¡ b C (n + 1zk , z̄), 8 z̄ 2 Z (45)

The incremental Eq. (45) is solved iteratively until the residual
terms (right-hand side) vanish. When the variational equation is
converged, the tangent stiffness matrix (left-hand side) is stored so
that it can be used at the DSA procedure.

III. Shape Design Sensitivity Formulation
A. Shape DSA of Elasto–Plasticity

The shape DSA starts with de� ning the design velocity � eld,
which is the direction of the design perturbation and is assumed to
be given. The perturbation of the geometry in the direction of the
design velocity � eld V(x) is controlled by a parameter s (Fig. 3).
The material derivative of displacement z(x) is de� ned as

Çz = lim
s ! 0

z s [x + s V(x)] ¡ z(x)
s

= z0 + r zT V (46)
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Fig. 3 Variation of undeformed domain by one-parameter family
of mappings.

where

z 0 = lim
s ! 0

z s (x) ¡ z(x)
s

(47)

is the partial derivative of z. For a rigorous de� nition of the pertur-
bation and the material derivative, refer to Ref. 1, Chapter 3.

The governing variational equation of plasticity with contact at
the perturbed design is

aX s

n + 1
zs , z̄s + bC s

n + 1
zs , z̄s = X̀ s (z̄ s ), 8 z̄s 2 Z s

(48)
where Z s is the space of the kinematically admissible displacements
at the perturbed design.

For the elasto–plastic material, the constitutive relation is given
by incremental form

n + 1¾ = n¾ + C : ( D " ¡ D "p) (49)

Thus, the material derivative of the stress tensor includes that of the
incremental strain. Because of the small deformation assumption, it
can be shown that

d

d s
( D ") =

1

2
[ r ( D Çz) + r ( D Çz)T ] ¡ 1

2
[r ( D z) r V + r VT r ( D z)T ]

´ "( D Çz) + "V ( D z) (50)

d
d s

["(z̄)] = ¡ 1
2

( r z̄ r V + r VT r z̄T ) ´ "V (z̄) (51)

Because Çz̄ is in the same space as z̄, all of the terms containing Çz̄ are
ignored in Eq. (51) in the sense of a X (n + 1z, Çz̄) + b C (n + 1z, Çz̄) = X̀ ( Çz̄).
Note that the material derivative of the incremental strain has the
same structure as the total strain by substituting D Çz into D z because
the kinematics are linear even if the constitutive relation is nonlinear.
This is not true for the case of a nonlinear kinematic relation where
the sensitivity of the incremental strain has a different structure from
the total strain.

The sensitivity of the stress tensor can be obtained by taking
the derivative of the return mapping algorithm consistently with
response analysis. Sensitivities of the internal evolution variables
are also computed the same way. Consider when the material is
in the elastic status. The Cauchy stress is increased elastically and
internal variables remain constant through the deformation as

d
d s

(n + 1¾) =
d
d s

(n¾) + C :
d
d s

( D ")

=
d

d s
(n¾) + C : "( D Çz) + C : "V ( D z) (52)

d

d s
(n + 1®) =

d

ds
(n®) (53)

d
d s

n + 1êp =
d
ds

n êp (54)

However, when the material is in the plastic stage, the material
derivative of the stress and internal variables follow the return map-
ping algorithm. The material derivative formulas for the elastic trial
status are

d

d s
(n + 1str) =

d

d s
(ns) + 2 l

d

d s
( D e) (55)

d

d s
(n + 1®tr) =

d

ds
(n®) (56)

d
d s

n + 1
êtr

p =
d

d s

n
êp (57)

d

d s
(n + 1´tr) =

d

d s
(n + 1str) ¡ d

d s
(n + 1®tr)

=
d
d s

(n´) + 2 l
d
ds

( D e) (58)

If the von Mises yield criterion is used with an associative plasticity
assumption, the return mapping direction is radial, and the normal
of the trial stress is the same as that of the � nal stress. The material
derivative of the normal tensor in Eq. (22) becomes
d

d s
(N) =

2 l

k n + 1´tr k
[I ¡ N ­ N] :

d

ds
( D e)

+
1

k n + 1´tr k
[I ¡ N ­ N] :

d
ds

(n´) (59)

The radial return mapping algorithm is computing the plastic
consistency parameter ˆc through the plastic consistency condition.
The material derivative of the plastic consistency condition Eq. (23)
is

d

d s
( f ) =

d

ds
k n + 1´tr k ¡

d

ds
(2l + Ha ) ˆc +

2

3
j n + 1êp = 0

(60)

By solving this equation in terms of d/d s ( ˆc ), it can be shown that
d

d s
( ˆc ) = 2 l AN :

d

ds
( D e)

+ AN :
d

ds
(n´) ¡ A H 0

a ˆc +
2

3
j 0 d

ds
n êp (61)

Note that there is no iteration to compute d/ d s ( ˆc ) in Eq. (61),
whereas analysis is carried out iteratively to compute ˆc using the
local Newton method. By taking a derivative of the stress updating
algorithm Eqs. (25) and (26), the material derivative of Cauchy stress
can be obtained as

d

d s
(n + 1¾) =

d

ds
(n¾) + C :

d

ds
( D ") ¡ 2l N

d

ds
( ˆc ) ¡ 2 l ˆc

d

d s
(N)

= Calg : "( D Çz) + Calg : "V ( D z) + n + 1¾� c (62)

where
n + 1¾� c =

d

d s
(n¾) ¡ 2 l AN

£ N :
d

d s
(n´) ¡ H 0

a ˆc +
2

3
j 0 d

ds

n
êp

¡ 2l ˆc
k n + 1´tr k (I ¡ N ­ N)

d
ds

(n´) (63)

can be computed from the information at time tn and the trial status,
and Calg : "V ( D z) are computed using given design velocity � eld V
and the response D z.

By using stress sensitivity in Eq. (62), the derivative of the struc-
tural energy form in Eq. (43) can be obtained as

d

d s
a X (n + 1z, z̄) = a ¤

X (n + 1z, D Çz, z̄) + a 0
V (n + 1z, z̄) (64)

where

a 0
V (n + 1z, z̄) =

X

"V (z̄) : n + 1¾ + "(z̄) : Calg : "V ( D z)

+ "(z̄) : n + 1¾� c + "(z̄) : n + 1¾(divV) dX (65)

is the structural � ctitious load form and can be obtained using the
design velocity � eld V(x) and response n +1z.
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B. Shape DSA of the Contact Problem
The material derivative of structural point n + 1x 2 n + 1 X at time

tn + 1 becomes

d

d s
(n + 1x) ´ d

ds
(0x + n + 1z)

= V(0x) + n Çz + D Çz (66)

Because the derivative of the structural variational form is expressed
in terms of the derivative of the incremental displacement, D Çz is
explicitly denoted in Eq. (66). However, the perturbation of the
contact point n + 1xc on the master surface C c can be obtained by
using the perturbation of the natural coordinate corresponding to
the contact point to the tangential direction as

d

ds
n + 1xc = n + 1t

d

d s
n + 1 n c (67)

The contact variational form in Eq. (37) is differentiated with re-
spect to the design perturbation at the original geometry to construct
the DSA equation. For detailed derivations of the following, refer to
Ref. 20. The material derivative formulas of the unit tangent/normal
vectors and normal gap/tangential slip functions can be obtained
from their de� nitions as
d

d s
n + 1et =

n + 1 a
n + 1c

(V +n + 1 Çz)T n + 1et
n + 1en (68)

d

d s
n + 1en = ¡

n + 1 a
n + 1c

(V +n + 1 Çz)T n + 1et
n + 1et (69)

d

d s
n + 1gn =

d

ds
n + 1x ¡ n + 1xc

T n + 1en

= (V + n + 1 Çz)T n + 1en (70)

d

d s
n + 1gt = n + 1 m n + 1eT

t (V + n + 1 Çz)

+
n b n + 1gt ¡ k ntk 2

nc
neT

t (V + n Çz) (71)

where the derivative of the contact consistency condition in Eq. (33)
is used to compute the derivative of the contact consistency param-
eter d/ ds (n + 1 n c). The derivative of the tangential slip function at
time tn + 1 depends on the derivative of the displacement at time tn ,
which makes the problem a path-dependent one.

If the rigid wall is piecewise linear and the movement of the rigid
wall is � xed or prescribed, then Eqs. (68) and (69) become zero
because the second derivative of the rigid wall with respect to the
natural coordinate n is zero. Many analysis programs use contact
algorithms between slave nodes and linear master segments. In that
case, Eqs. (68) and (69) can be ignored. However, for the case of a
general rigid wall or a multibody contact problem, the unit normal
vector en and the tangential vector et may change along with the
shape change. It is necessary to evaluate the derivative of the unit
normal and tangential vectors of the rigid wall from Eqs. (68) and
(69).

The material derivative of the normal contact variational form in
Eq. (37) becomes

d

d s
bN (n + 1z, z̄) ´ b ¤

N (n + 1z; D Çz, z̄) + b 0
N (n + 1z, z̄) (72)

where

b 0
N (n + 1z, z̄) = b ¤

N (n + 1z; V + n Çz, z̄)

+ x n
C C

j n + 1gn
n + 1eT

n z̄ VT n d C (73)

is the normal contact � ctitious load form and j is the curvature of
the contact boundary.

The material derivative of the tangential stick/slip variational form
in Eq. (37) with respect to shape design becomes

d

d s
bT (n + 1z, z̄) ´ b ¤

T (n + 1z; D Çz, z̄) + b 0
T (n + 1z, z̄) (74)

where b ¤
T (n + 1z; D Çz, z̄) is obtained from the linearized tangential

stick/slip variational form in Eq. (39) or (40) by replacing D z with
D Çz and

b 0
T (n + 1z, z̄) = b ¤

T (n + 1z; V + n Çz, z̄)

+ x t
C C

2n + 1 m n b n + 1gt ¡ n + 1 m k n tk 2 z̄T n + 1en
t eT

t (V + n Çz) dC

+ x t
C C

j n + 1 m n + 1gt z̄T n + 1et (VT n) d C (75)

is the tangential stick � ctitious load form for the case of the stick
condition and

b 0
T (n + 1z, z̄) ´ b ¤

T (n + 1z; V + n Çz, z̄)

+ x t
C C

n + 1 m n b n + 1gn

nc
z̄T n + 1en

t eT
t (V + n Çz) d C

+ x t
C C

j n + 1 m n + 1gn z̄T n + 1et (VT n) d C (76)

is the tangential slip � ctitious load form for the case of the slip
condition, respectively. Note that the same symbol of b 0

T (n + 1z, z̄) is
used for both stick and slip conditions. Thus, the material derivative
of the contact variational form can be obtained by combining Eqs.
(72) and (74) as

b ¤
C (n + 1z; D Çz, z̄) = b ¤

N (n + 1z; D Çz, z̄) + b ¤
T (n + 1z; D Çz, z̄) (77)

b 0
V (n + 1z, z̄) = b ¤

N (n + 1z, z̄) + b 0
T (n + 1z, z̄) (78)

C. Shape DSA Equation and Updating Sensitivity Formula
By combining the material derivative formulas in Eq. (64) for

the structural energy form and Eqs. (72) and (74) for the contact
variational form, the design sensitivity equation for perturbed design
in Eq. (48) becomes

a ¤
X (n + 1z; D Çz, z̄) + b ¤

C (n + 1z; D Çz, z̄)

= `0
V (z̄) ¡ a 0

V (n + 1z, z̄) ¡ b 0
V (n + 1z, z̄), 8 z̄ 2 Z (79)

Note that the solution of Eq. (79) solves for the incremental dis-
placement sensitivity D Çz. The total displacement sensitivity is then
computed by

n + 1 Çz = n Çz + D Çz (80)

After computing the incremental displacement sensitivity by solving
Eq. (79), the Cauchy stress and internal variables are updated. The
updating formula for the Cauchy stress is the same as Eq. (62) and
the updating formula for the internal evolution variables are given
by

d

d s
(n + 1®)

=
d

d s
(n®) + N Ha +

2
3

H 0
a ˆc

d
ds

( ˆc ) + Ha ˆc
d

d s
(N) (81)

d
d s

n + 1êp =
d

d s
n êp +

2
3

d
d s

( ˆc ) (82)

Note that the cost of the sensitivity computation for the elasto–plastic
material is relatively expensive compared to the elastic material
because of the need to update the material derivatives of the stress
and internal variables at each integration point.

IV. Reproducing Kernel Particle Method (RKPM)
The continuum-based variational Eqs. (45) and (79) are dis-

cretized in the domain. Liu et al.21 developed the reproducing kernal
particle method (RKPM) by introducing a modi� ed kernel function
that is constructed based on the enforcement of reproducing con-
ditions such that the kernel estimate of the displacement exactly
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reproduces polynomials. In RKPM, a displacement function z(x) is
approximated using a kernel estimate as

zR (x) =
X

C(x ; y ¡ x) u a(y ¡ x)z(y) dy (83)

where zR (x) is the reproduced displacement function of
z(x), u a (y ¡ x) is the kernel function (or weight function) with a
support measure of a, and C(x ; y ¡ x) is the correction function
de� ned by

C(x ; y ¡ x) = q(x)T H(y ¡ x) (84)

where H(x)T = [1, x , x2, . . . , xn ] and q(x)T = [q0(x), q1(x), . . . ,
qn (x)] are the interpolation function and unknown coef� cient vec-
tor, respectively. In Eq. (84), q(x) is determined by imposing the
nth-order completeness requirement, where z R(x) in Eq. (83) can
represent z(x) completely up to the nth-order derivatives. After im-
posing the completeness condition,

zR (x) =
X

C(x ; y ¡ x) u a (y ¡ x)z(y) dy

= H(0)T M(x) ¡ 1

X

H(y ¡ x) u a (y ¡ x)z(y) dy (85)

where

M(x) =

m0(x) m1(x) ¢ ¢ ¢ mn(x)

m1(x) m2(x) ¢ ¢ ¢ mn + 1(x)
. . ¢ ¢ ¢ .

mn (x) mn + 1(x) ¢ ¢ ¢ m2n (x)

(86)

H(0)T = [1, 0, . . . , 0] (87)

mn (x) =
X

(y ¡ x)n u a(y ¡ x) dy

To develop a shape function for discrete approximation, Eq. (85)
must be discretized. Suppose that the domain X is discretized by a
set of nodes [x1 , . . . , xN P ], where x I is the location of node I, and
NP is the total number of nodes. Using a simple trapezoidal rule,
Eq. (85) is discretized into

zR (x) =
NP

I = 1

C(x ; x I ¡ x) u a (x I ¡ x)z I D x I (88)

where D x I is a measure of length associated with node I. It is hard
to determine D x I in a multidimensional case but it can be treated
as a weight of the nodal value. However, its effect will be canceled
if we compute moment M(x) in Eq. (86) consistently with Eq. (88)
because its inverse is multiplied. Equation (88) can be rewritten,
using the generalized displacement dI , as

z R(x) =
NP

I = 1

U I (x) dI (89)

where U I (x) = C(x ; x I ¡ x) u a (x I ¡ x). The function U I (x) is in-
terpreted as the particle or mesh-free shape function at node I , and
d I is the associated coef� cient of approximation, often called the
generalized displacement. The shape function U I (x J ) depends on
the current coordinate x J , whereas the shape function of the � -
nite element method depends only on a coordinate of the refer-
ence geometry. Note that, in general, the shape function does not
have the Kronecker delta properties, that is, U I (x J ) 6= d I J . There-
fore, for a general function z(x) that is not a polynomial, dI in
Eq. (89) is not the nodal value of z(x). For the essential boundary
conditions (i.e., the prescribed value at node points), the Lagrange
multiplier method may be used to impose those conditions.23 If
the problem contains many boundary conditions, then the excessive
number of the Lagrange multiplier greatly increases the size of the
system matrix. The positive semide� niteness of the system matrix
also needs a special treatment in the solution phase. For the case

of the contact problem, because contact constraints are imposed
through the physical coordinate of the material point, it is incon-
venient or impossible to use the generalized displacement. Chen et
al.24 proposed a direct transformation method to treat these problems
systematically.

For numerical examples in this paper, a combined linear
isotropic/kinematic hardening model is used with j (êp) = Y0 +
(1 ¡ b )Hêp and H a = 2

3
b H . The yield function and hardening law

can be de� ned as

f (´, êp ) ´ k ´ k ¡ 2
3
[Y0 + (1 ¡ b )Hêp] = 0 (90)

Ç® = 2
3
b H c N (91)

where H is the plastic modulus, which is constant for this model.
Here, b 2 [0, 1] is a parameter to consider the Baushinger effect;
b is equal to 1 for the kinematic hardening and is equal to zero for
the isotropic hardening.

V. Numerical Examples
A. Shape DSA and Optimization of Metal Ring Contact Problem

A metal ring is used frequently as a structural component to make
the seal between parts airtight with enough compressive force. The
ring is generally installed tightly and local material yielding occurs
as a result of excessive external compressive force. Large plastic
strain causes material fracture and eventually reduces the perfor-
mance of the ring by lowering the pressure on contact surfaces.

The metal ring shown in Fig. 4 is compressed by an upper
rigid wall and is in contact with a � xed lower rigid wall. The in-
ner/outer radii of the ring are 3 and 5 cm, respectively. The do-
main is discretized by 144 particles for the ring, 4 master nodes
for the rigid wall, and 22 contact pairs (slave nodes/master seg-
ments) with frictional contact conditions. Analysis data include the
contact penalty parameter 105, Young’s modulus 206.9 GPa, Pois-
son’s ratio 0.29, initial yield stress 1.0 GPa, hardening modulus
1.0 GPa, and b = 0.5, which is the parameter used to represent a
combined isotropic/kinematic hardening model. For analysis, an
RKPM (mesh-free method) with a � nite supporting region size of
1 £ 1 cm per node is used.

Nonlinear response analysis is carried out with 20 load steps by a
displacement driven procedure using the Newton method. Figure 5
is a deformed con� guration with a contour plot for the effective plas-
tic strain. Five nodes are in contact with upper and lower rigid wall,
respectively. Excessive plastic strain is observed at the horizontal
region of the inner surface. Considering that 0.5 is usually used as a
criterion of material fracture for the effective plastic strain, the max-
imum value of 0.294 must be reduced through design change. The
inner/outer radii of the metal ring are selected as design parameters
as shown in Fig. 4. The circular boundary of the ring is approxi-
mated by four segments of cubic spline curve. The control points
of these curves are used as shape design parameters. Even though
the original spline curves approximate a circle well enough, the cir-
cular shape may not be preserved as the shape design changes. The
effect of radius change is obtained by linking four control points
of curves along the circumference. The boundary design velocity
� eld is obtained by selecting a boundary curve corresponding to the

Fig. 4 Geometry and design parameters of ring contact problem.
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Fig. 5 Contour plot of the effective plastic strain with deformation.

design parameters, and the domain design velocity � elds are com-
puted using the isoparametric mapping method.25 Design sensitivity
analysis is carried out at each converged load step. As discussed in
Sec. III, the DSA procedure for the elasto–plastic material is classi-
� ed into two parts. The � rst is computing the material derivative of
the displacement by solving the linear system of Eq. (79), and the
second is updating the path-dependent variables using the displace-
ment sensitivity computed earlier. The results of response analysis,
design velocity information, and the material derivative of the stress
and internal plastic variables at the earlier load step are used to com-
pute the material derivative of the incremental displacement at the
current load step. The material derivative of the stress and internal
plastic variables are stored in the global array for each integration
point.

Table 1 lists shape design sensitivities of various performance
measures with respect to changes of the inner and outer radii, respec-
tively. The results obtained using the proposed method agree very
well with those obtained by the forward � nite difference method.
The total response analysis CPU time is 242 s, and the sensitivity
computation CPU time is 12 s. for two design parameters using an
Hewlett–Packard Company workstation. Thus, sensitivity computa-
tion per design variable is only 2.5% of the analysis time. In Table 1,
the third column D W denotes the � rst-order sensitivity results from
forward � nite difference method with a perturbation of s = 10 ¡ 6,
and the fourth column represents sensitivity computation result of
the proposed method. In the � rst column, ê p , r , and FC denote
effective plastic strain, von Mises stress invariant, and the normal
contact force, respectively. For example, êp

28 denotes the effective
plastic strain at integration zone 28, and FCy denotes the sum of all
of the contact forces along the lower rigid wall.

As mentioned, the excessive effective plastic strain has to be re-
duced while the normal contact force through the rigid wall is main-
tained. The area of the metal ring is to be minimized with constraints
on the effective plastic strain at integration zone 3 and the sum of the

normal contact forces. Two design parameters range in the interval
[ ¡ 1, 1] with zero initial values. The design optimization problem
can be formulated as

MIN area

subject to êp(0.3) · 0.1 FCy(2.18) ¸ 2.18

¡ 1.0 · u1 · 1.0 ¡ 1.0 · u2 · 1.0

(92)

where the values in the parenthesis are the performance values of
the original design.

Design optimization is carried out using the sequential quadratic
programming (SQP) method in DOT.26 The performance values are
supplied to DOT from nonlinear response analysis (RKPM), and
the sensitivity coef� cients are provided by the proposed method.
The initial design is infeasible because one constraint is violated.
Optimization is converged after � ve iterations and all of the con-
straints are satis� ed. The cost function, which is the area of the
ring, is reduced by up to 10% of the original design, and the normal
contact force is maintained as the original one. The effective plas-
tic strain, however, is decreased signi� cantly, by up to 95% of the
original design. Figure 6 shows the optimized design and the results
of response analysis. The original circular surface is changed to a
different shape at the optimum design. The optimization algorithm
chooses a new design such that the effective plastic strain is dis-
tributed evenly between inner surfaces, whereas the original design
has a concentration at the horizontal regions.

Figure 7 shows the design history of the cost function, constraints,
and design parameters. The design parameters are converged to
values within the bounds, and the contact force constraint remains
active.

B. Design Sensitivity Analysis of Metal Punch Problem
The punch problem is commonly used in the manufacturing pro-

cess to make parts of a certain shape. Because the process is based
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Table 1 Sensitivity analysis results and comparison with � nite difference method

Performance W D W W 0 ( D W / W 0 ) £ 100%

u1
Area 0.498139 E +02 ¡ 0.158418 E ¡ 04 ¡ 0.158418 E ¡ 04 100.00
êp

28 0.166961 E +00 0.300634 E ¡ 06 0.300633 E ¡ 06 100.00
êp

79 0.166954 E +00 0.300641 E ¡ 06 0.300641 E ¡ 06 100.00
êp

82 0.166961 E +00 0.300630 E ¡ 06 0.300630 E ¡ 06 100.00
êp

1 0.293886 E +00 0.209079 E ¡ 07 0.209080 E ¡ 07 100.00
êp

52 0.293880 E +00 0.209178 E ¡ 07 0.209179 E ¡ 07 100.00
êp

55 0.293887 E +00 0.209051 E ¡ 07 0.209052 E ¡ 07 100.00
êp

106 0.293880 E +00 0.209172 E ¡ 07 0.209174 E ¡ 07 100.00
r 1 0.129381 E +01 0.210710 E ¡ 07 0.210711 E ¡ 07 100.00
r 52 0.129380 E +01 0.210808 E ¡ 07 0.210810 E ¡ 07 100.00
r 55 0.129381 E +01 0.210682 E ¡ 07 0.210683 E ¡ 07 100.00
r 106 0.129380 E +01 0.210803 E ¡ 07 0.210804 E ¡ 07 100.00
FCy 0.218260 E +01 ¡ 0.253422 E ¡ 05 ¡ 0.253423 E ¡ 05 100.00

u2
Area 0.498139 E +02 0.264031 E ¡ 04 0.264031 E ¡ 04 100.00
êp

28 0.166961 E +00 ¡ 0.271065 E ¡ 06 ¡ 0.271065 E ¡ 06 100.00
êp

79 0.166954 E +00 ¡ 0.271094 E ¡ 06 ¡ 0.271094 E ¡ 06 100.00
êp

82 0.166961 E +00 ¡ 0.271062 E ¡ 06 ¡ 0.271063 E ¡ 06 100.00
êp

1 0.293886 E +00 0.184466 E ¡ 06 0.184466 E ¡ 06 100.00
êp

52 0.293880 E +00 0.184439 E ¡ 06 0.184440 E ¡ 06 100.00
êp

55 0.293887 E +00 0.184467 E ¡ 06 0.184467 E ¡ 06 100.00
êp

106 0.293880 E +00 0.184439 E ¡ 06 0.184440 E ¡ 06 100.00
r 1 0.129381 E +01 0.184079 E ¡ 06 0.184079 E ¡ 06 100.00
r 52 0.129380 E +01 0.184053 E ¡ 06 0.184053 E ¡ 06 100.00
r 55 0.129381 E +01 0.184080 E ¡ 06 0.184081 E ¡ 06 100.00
r 106 0.129380 E +01 0.184053 E ¡ 06 0.184053 E ¡ 06 100.00
FCy 0.218260 E +01 0.260354 E ¡ 05 0.260350 E ¡ 05 100.00

Fig. 6 Optimized design and response analysis results.

on the plastic deformation of metal parts, controlling plastic de-
formation and elastic springback is important to the quality of the
product. Excessive amount of plastic strain frequently causes local
fracture of the material during the manufacturing process. However,
elastic springback makes it dif� cult to determine the � nal shape of
the product after removing the punch. This example shows a simple
punch problem where the thickness of metal plate and the radius of
circular punch can be changed with different constitutive models.

Figure 8 shows the initial geometry of a metal plate punch prob-
lem with a cylindrical rigid punch. The radius of the rigid punch is
8.0 cm. The lower right rigid wall is � xed, and the upper left punch
moves downward 1.0 cm. A small deformation is chosen to con-
sider the small deformation elasto–plastic constitutive model. The
domain is discretized using 93 RKPM particles and 40 piecewise

linear master segments to de� ne the geometry of the rigid wall. An
in� nitesimal elasto–plastic material is used with Young’s modulus
E = 206.9 GPa, Poisson’s ratio m = 0.29, plastic hardening modu-
lus H = 1.1 GPa, and initial yield stress r y = 0.5 GPa. The linear
isotropic hardening is considered where the plastic consistency con-
dition can be solved explicitly without iteration. Frictional contact
constraints are imposed between the sheet metal and rigid wall with
a friction coef� cient of l = 0.2. The symmetric boundary conditions
are imposed on each end of the sheet metal.

Nonlinear response analysis is carried out with 100 load steps
using the standard Newton–Raphson method. After the solution is
converged for the given load step, the decomposed tangent stiffness
matrix is stored for DSA. Figure 9 shows the deformed shape with a
contour plot for the effective plastic strain. Because the deformation
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Fig. 7 Design optimization history of metal ring contact problem.

Fig. 8 Geometry and design parameters of plate punch problem.

is small, most parts of material maintain an elastic status, whereas
plastic deformation is concentrated at both ends.

The DSA starts by choosing design parameters and computing de-
sign velocity � elds for the shape design parameters. The � rst design
parameter moves the upper boundary of the plate and the second one
moves the lower boundary. Because the two design parameters have
opposite effects on the structure, we can expect that the sensitivity
coef� cients of two design parameters will have the same magnitude
but with opposite signs. The third design parameter is the radius of
the right lower rigid wall. A nonlinear DSA is carried out at each
converged load step to compute the material derivative of displace-
ment with the same tangent stiffness matrix as response analysis
without iteration. After computing the displacement sensitivity, the
material derivative of the Cauchy stress and internal plastic vari-
ables are updated using the formulas given in Eqs. (62), (81), and
(82). Table 2 shows the sensitivity coef� cients where the sensitivity
results are very well matched with the � nite difference results. The
nonlinear response analysis converged to the � nal load step in 196 s
of CPU time, whereas DSA for three design parameters requires
52 s. This means that the cost of sensitivity computation is only 9%
of the response analysis time per each design parameter, which is
quite ef� cient compared to the � nite difference method.

VI. Dif� culties in DSA for a Finite
Deformation Problem

For the geometric nonlinear problem, it is convenient to choose
the current con� guration as the reference frame because of the evo-
lution equation in the plasticity. The constitutive relation and the
return mapping algorithm are given with respect to the current con-
� guration. However, from the DSA point of view, because the de-
sign is perturbed at the undeformed structure, the material derivative

must be taken at the undeformed con� guration for a given design
velocity � eld. It is necessary to transform the spatial strain tensor to
the undeformed con� guration using the deformation gradient. If the
classical plasticity theory is used for analysis, the material derivative
of the incremental strain must be taken during the DSA procedure as

d

ds
( D ") =

d

d s

1

2
r 0( D z)F ¡ 1 + F ¡ T r 0( D z)T (93)

where r 0 = @/ @0x is the derivative with respect to the initial co-
ordinate. Because the inverse of the deformation gradient exists in
Eq. (93), additional terms that contain the total displacement sensi-
tivity exist and yield a stiffness matrix different from that of analysis.

As shown in earlier sections, if the in� nitesimal deformation is as-
sumed, then the preceding discussion does not have to be considered
because the reference con� guration is always undeformed, and there
is no need to update the con� guration. Thus, most of the research
results in the Refs. 3, 5, 7, 9, and 10 succeed based on the in� nitesi-
mal deformation assumption. Kleiber8 tried to resolve this problem
by establishing a reference con� guration using the previously con-
verged time without numerical examples. However, the constitu-
tive relation must be expressed in terms of second Piola–Kirchhoff
stress, which is inconvenient for the plasticity model. Because all
con� gurations at the previous time are known, sensitivity formu-
lation is similar to that of the total Lagrangian formulation. Zhang
et al.6 proposed a large deformation sensitivity problem using the
boundary-element method. They computed the displacement sensi-
tivity by iteration, which may signi� cantly increase the cost of the
sensitivity computation. Dutta27 discussed a similar approach where
the sensitivity equation has a different stiffness matrix from the anal-
ysis stiffness matrix.He proposed an iterative method to compute the
sensitivity using the same stiffness matrix as the one used for analy-
sis. All of these dif� culties stem from the existence of a deformation
gradient or its inverse in the strain measure. However, in the theo-
retical sense, if the stiffness matrix of analysis is the exact tangent
operator, then the sensitivity equation must use the same tangent op-
erator. Sensitivity or response analyses will yield erroneous results
or slow convergence if we use other than the exact tangent operator.

Consider the following incremental elastic constitutive relation:
n + 1S = nS + C : D E (94)

where Ci j kl could be constant or a function of deformation. Is the
sensitivity of this material model path dependent? Obviously, anal-
ysis itself is path independent, which means that the same result will
be obtained even if a different path is chosen. However, if we take
the material derivative of Eq. (94), then the sensitivity equation be-
comes path dependent because it needs the sensitivity information
from the preceding time or, at least, one cannot solve the sensitivity
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Table 2 Sensitivity analysis results and comparison with � nite difference method

Performance W D W W 0 ( D W / W 0 ) £ 100%

u1
zy20 ¡ 0.149013 E +00 ¡ 0.201625 E ¡ 06 ¡ 0.201625 E ¡ 06 100.00
zy40 ¡ 0.420559 E +00 ¡ 0.438457 E ¡ 06 ¡ 0.438457 E ¡ 06 100.00
êp

59 0.569335 E ¡ 02 0.226768 E ¡ 07 0.226768 E ¡ 07 100.00
êp

57 0.276513 E ¡ 02 0.151480 E ¡ 07 0.151480 E ¡ 07 100.00
FCy1 0.154504 E ¡ 01 0.347529 E ¡ 07 0.347527 E ¡ 07 100.00
FCy93 ¡ 0.154504 E ¡ 01 ¡ 0.347528 E ¡ 07 ¡ 0.347527 E ¡ 07 100.00
gn4 0.665325 E ¡ 02 ¡ 0.165339 E ¡ 07 ¡ 0.165339 E ¡ 07 100.00
gn90 0.187188 E ¡ 01 ¡ 0.165320 E ¡ 07 ¡ 0.165320 E ¡ 07 100.00

u2
zy20 ¡ 0.149013 E +00 0.201625 E ¡ 06 0.201625 E ¡ 06 100.00
zy40 ¡ 0.420559 E +00 0.438457 E ¡ 06 0.438457 E ¡ 06 100.00
êp

59 0.569335 E ¡ 02 ¡ 0.226767 E ¡ 07 ¡ 0.226768 E ¡ 07 100.00
êp

57 0.276513 E ¡ 02 ¡ 0.151480 E ¡ 07 ¡ 0.151480 E ¡ 07 100.00
FCy1 0.154504 E ¡ 01 ¡ 0.347526 E ¡ 07 ¡ 0.347527 E ¡ 07 100.00
FCy93 ¡ 0.154504 E ¡ 01 0.347529 E ¡ 07 0.347527 E ¡ 07 100.00
gn4 0.665325 E ¡ 02 0.165339 E ¡ 07 0.165339 E ¡ 07 100.00
gn90 0.187188 E ¡ 01 0.165320 E ¡ 07 0.165320 E ¡ 07 100.00

u3
zy 20 ¡ 0.149013 E +00 ¡ 0.826317 E ¡ 06 ¡ 0.826317 E ¡ 06 100.00
zy 40 ¡ 0.420559 E +00 ¡ 0.572741 E ¡ 06 ¡ 0.572741 E ¡ 06 100.00
êp

59 0.569335 E ¡ 02 ¡ 0.128969 E ¡ 07 ¡ 0.128969 E ¡ 07 100.00
êp

57 0.276513 E ¡ 02 ¡ 0.672229 E ¡ 08 ¡ 0.672229 E ¡ 08 100.00
FCy1 0.154504 E ¡ 01 ¡ 0.169642 E ¡ 08 ¡ 0.169648 E ¡ 08 100.00
FCy 93 ¡ 0.154504 E ¡ 01 0.169659 E ¡ 08 0.169648 E ¡ 08 100.01
gn 4 0.665325 E ¡ 02 0.197133 E ¡ 07 0.197133 E ¡ 07 100.00
gn 90 0.187188 E ¡ 01 0.121685 E ¡ 07 0.121685 E ¡ 07 100.00

Fig. 9 Contour plot of the effective plastic strain with deformation.
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equation at the � nal converged time only. Note that the tangent op-
erator for sensitivity analysis corresponding to Eq. (94) is different
from the stiffness matrix for analysis.

VII. Conclusions
A continuum-based design sensitivity formulation for the elasto–

plasticity material with a frictional contact problem is proposed.
The path dependency of the sensitivity equation comes from the
constitutive relation and frictional phenomenon. Numerical exam-
ples show the accurate results of the proposed method with quite
ef� cient computational time.
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