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Abstract

Conventional shape optimization based on the finite element method uses Lagrangian representation in which the

finite element mesh moves according to shape change, while modern topology optimization uses Eulerian representa-

tion. In this paper, an approach to shape optimization using Eulerian representation such that the mesh distortion

problem in the conventional approach can be resolved is proposed. A continuum geometric model is defined on the

fixed grid of finite elements. An active set of finite elements that defines the discrete domain is determined using a pro-

cedure similar to topology optimization, in which each element has a unique shape density. The shape design parameter

that is defined on the geometric model is transformed into the corresponding shape density variation of the boundary

elements. Using this transformation, it has been shown that the shape design problem can be treated as a parameter

design problem, which is a much easier method than the former. A detailed derivation of how the shape design velocity

field can be converted into the shape density variation is presented along with sensitivity calculation. Very efficient sen-

sitivity coefficients are calculated by integrating only those elements that belong to the structural boundary. The accu-

racy of the sensitivity information is compared with that derived by the finite difference method with excellent

agreement. Two design optimization problems are presented to show the feasibility of the proposed design approach.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

For three decades, remarkable progress has been achieved in geometry-based structural shape optimiza-

tion [1]. Shape optimization techniques have been successfully integrated with CAD tools, so that design
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variables are chosen from CAD parameters, providing consistency between the design and CAD models

[2,3]. A major problem of geometry-based shape optimization is the mesh distortion problem during struc-

tural analysis [4]. The regularly distributed mesh at the initial design is often distorted during shape opti-

mization, and as a result, solution accuracy of finite element analysis deteriorates after the initial design.

Although many adaptive mesh-regeneration methods have been studied in order to maintain a certain level
of solution accuracy, they produce discontinuities in the objective and/or constraints, thus possibly making

gradient based optimization complicate [4]. In this paper, conventional shape optimization is referred to as

the Lagrangian method since both the geometry and finite element mesh move together during the shape

optimization process.

In contrast to the Lagrangian method, a topology optimization method has been developed in order to

determine the optimum structural shape without causing any mesh distortion problems [5,6]. The initial

geometry of the finite element mesh is maintained throughout the design process, and the material property

(shape density) of each element changes as a design variable changes. However, an excessive number of de-
sign variables make it difficult to find the optimum design, and results in too many local optimum solutions.

In addition, the practicality of the optimum design often raises questions as to the feasibility of manufac-

turing a structure based on the optimum design. It is non-trivial to determine the structural boundary shape

from topology optimization results. In contrast to the shape design, this approach is referred to as the Eule-

rian method since the shape of the finite element mesh is fixed during the design process.

In this paper, a shape optimization method within the fixed grid framework that uses the efficiency of the

adjoint method in the shape sensitivity analysis problem and the advantageous aspects of both conventional

shape and topology optimization methods is proposed. The Lagrangian method has the advantage of accu-
rately representing the geometric model, while the Eulerian method relieves mesh distortion problems. Dur-

ing structural analysis, the geometric model is placed over regularly meshed finite elements. The finite

elements are fixed during the design process, while the geometric model changes according to the shape de-

sign. Finite elements that belong inside the geometric model have a full magnitude of shape density, while

those outside the model have a zero magnitude of shape density (a void). Finite elements on the geometric

edge have a shape density that is proportional to the area fraction between the material and void. Thus,

finite elements on the edge have a shape density between full material and a void. This method is similar

to the homogenization method in topology optimization. Thus, in this paper it is referred to as boundary
homogenization.

A similar methodology has appeared in the literature. Garcı́a and Steven [7] applied fixed grid finite ele-

ment analysis to elasticity problems. Even if the displacement and stress at the boundary oscillate due to the

element location to the boundary curve, Garcı́a and Steven showed that the error reduces as the size of the

finite element decreases. They also used the least square method to approximate the stress on the boundary.

Using the fixed grid analysis capability, Garcı́a and Steven also developed design optimization using a fast

re-analysis method, which is similar to the discrete semi-analytical method in sensitivity analysis [8,9]. Re-

cently, Woon et al. [10] applied the fixed grid approach to shape optimization using the genetic algorithm,
and Kim et al. [11] applied the fixed grid approach to the evolutionary structural optimization (ESO) prob-

lem. The ESO process is started by generating a stiffness matrix of the given initial design. Once the matrix

is defined, it is solved for displacement and the stress values of each element. ESO then physically removes a

small percentage of elements that have low stress values. This completes one cycle of the ESO process.

Repeating this process leads to the optimum design. However, the disadvantages of ESO are the expensive

solution cost due to the iterative and slow nature of the ESO process. Implementing the fixed grid meth-

odology not only simplifies the mesh generation process, but also allows a very significant reduction of

the arithmetic calculations necessary to update the stiffness matrix for the modified topology, instead of
a full regeneration of the matrix.

In shape optimization, a shape change in the geometric model produces a shape density change in the

finite elements on the edge. As the structural shape changes, a new shape density is calculated for the ele-
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ments on the edge. In addition, some elements leave the structural domain, while others enter it. Thus,

accurate record keeping of each stage is an important part of the proposed approach. First, the finite ele-

ments that belong to the boundary curve are identified by an incremental searching of the boundary curve.

After identifying these elements, an area fraction of each boundary element is calculated using Green�s the-
orem. Finite elements within the structural domain can easily be identified by counting the number of
boundary elements in each row or column of the grid. As opposed to Lagrangian shape representation, this

approach does not require a mesh updating process.

In the Lagrangian shape design, the design variable derives the boundary shape design velocity field,

which represents the motion of the boundary curve according to the design variable. However, one math-

ematical difficulty with the proposed method is to find a way to represent the effect of shape change as shape

density changes. Since shape design variables are chosen from geometric parameters, the explicit contribu-

tion of the boundary curve shape to the shape density of the boundary element is calculated based on geo-

metric relations. Accordingly, boundary shape design velocity is related to the shape density of the
boundary elements, which is used in design sensitivity calculation. Thus, the complicated shape design sen-

sitivity formulation can be converted to a simple, parametric design sensitivity formulation.

In conventional shape design sensitivity analysis and optimization, the shape design parameter perturbs

the boundary curve or surface [12]. Thus, theoretically it suffices that the shape design sensitivity formula-

tion can be expressed in terms of the boundary functional. When the finite element method is used for a

numerical approach, however, function evaluation on the boundary is not inherently accurate. Thus, the

domain method has been developed in which the boundary perturbation induces the domain perturbation.

However, the mapping from the boundary perturbation to the domain perturbation is not a one-to-one
relation. Thus, various methods have been developed to calculate the domain design velocity field [12].

However, the proposed method eliminates this inconvenience because the formulation only affects the ele-

ments on the structural boundary. The numerical integration involved in the sensitivity calculation is lim-

ited to those elements on the boundary, which makes the proposed approach more efficient.
2. Eulerian representation of geometry

Conventional geometric representation and shape optimization of a solid structure is based on the

Lagrangian approach, in which the structural domain and boundary are changed according to shape design

parameters. Geometric details such as fillet surfaces and curvatures can be accurately represented in this

approach. However, when a finite element-based numerical method is used to solve the shape optimization

problem, mesh distortion is a major stumbling block for the Lagrangian approach. It is a difficult task to

create a good quality mesh from a complicated CAD geometry (see Fig. 1(a)). Even if a regular mesh is

initially created, the mesh quality deteriorates as the structural shape changes during the design optimiza-

tion. In the Lagrangian approach, mesh adaptation and automatic re-meshing techniques are often used
[13–15], which alleviate the numerical inaccuracies during shape optimization.

Recently, many researchers [5,6] began representing a structural domain using the Eulerian approach in

which the grid is fixed in space. The region occupied by materials has a full shape density, while the void has

zero shape density. The shape change can be characterized using an analogy of fluid flow. The shape density

in one region moves to neighboring regions as the structural shape changes. After being integrated with an

optimization algorithm, this approach yields the modern form of the topology design (see Fig. 1(b)).

Although the topology design approach can provide a creative conceptual design, it is difficult to extract

geometric information for complicated three-dimensional structures. In addition, it is complicated to phys-
ically interpret those regions with intermediate densities (a gray area) between full material and a void.

However, the mesh distortion problem in the Lagrangian shape design can be resolved here, because mesh

geometry is fixed throughout the whole design process.



Fig. 1. Geometric representation methods. (a) Finite element mesh and (b) topology design.

Fig. 2. Design change in the fixed grid. The perturbed design occupies new regions.
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As has been discussed earlier, geometry-based shape parameterization has the advantage of accurately

representing the structural domain, while the Eulerian approach has the advantage of resolving the mesh

distortion problem. The proposed method uses geometry-based shape parameterization on the fixed grid

(see Fig. 2). A solid geometry with domain X and boundary C is independently defined on a regular, rect-
angular mesh. If an element belongs to the domain X, then it has full shape density. If an element is outside

domain X, then it has zero shape density.

Although the approximation in Fig. 2 seems straightforward, a technical difficulty exists for those ele-

ments that reside on the structural boundary. Part of the element belongs to the structural domain, while

the other part is in a void. The idea of homogenization is used for the elements on the geometric boundary.

The participation of each element can be determined using shape density, which measures the amount of

element area that belongs to the structural domain X. Let the area of element m be Am, and let the area

that belongs to X be am. The shape density of element m can be calculated by
um ¼
1; if Am \ X ¼ Am;

0; if Am \ X ¼ ;;
am=Am; if Am 2 C;

8><
>: ð1Þ
where Am \ X = Am represents the situation when element m belongs to the inside domain X (elements 2

and 3 in Fig. 3), while Am \ X = ; represents the situation when no part of element m is located in X (ele-

ments 7, 8, and 9). When boundary C resides in the element (elements 1, 4, 5, and 6), the shape density um is

the fraction of the area am that belongs to X.
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Fig. 3. Shape densities near the geometric boundary.
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In order to calculate shape density um, domain integration is required for those elements on the geomet-

ric boundary. Since the boundary curve arbitrarily cuts through the element, it is difficult to set up a general

domain integration procedure. Instead of integrating the area, Green�s theorem [23] is employed to convert

domain integration into boundary integration, which produces a more convenient expression. For example,

for general two-dimensional problems area integration can be represented by
am ¼
Z Z

Am\X
dX ¼

Z
C
x1 dx2; ð2Þ
where x1 and x2 are two coordinate directions and C is the curve that surrounds the area am in the counter-

clockwise direction. Curve C consists of straight element boundary lines and a geometric boundary curve.

The integral in (2) that runs along the straight element boundary line is trivial since either x1 or x2 is con-
stant. In the case of a boundary curve, it is assumed that parameter n is used to represent the curve, such

that the expressions of x1(n) and x2(n) are available. Using the chain rule of differentiation, the integral in

(2) can easily be converted to an integral with respect to parameter n. After calculating am, the shape density

can be obtained from (1).

After determining the shape densities of boundary elements, the shape density of the interior or exterior

can easily be determined using the following methods. First, it is assumed that the geometric boundary ex-

ists within the fixed finite element grid. Starting from the left-most element in a row, the shape density value

is changed to either zero or one as it meets boundary elements, as illustrated in Fig. 4.
Alternatively, if the surface geometry information is available in addition to the curve geometry, then

that information can be used to identify those elements that belong to the interior of the geometry. For

example, when a parametric surface information x(n,g) is available, the interior elements can be found

by incrementally searching parameters n and g.
During structural analysis, the material property of each element is augmented using the shape density,

as
Em ¼ umE; ð3Þ
um = 1 um = 0 um = 0 

Boundary curve 
Boundary elements 

Fig. 4. Shape densities of elements in a row.



Fig. 5. Approximation of a circle using pixel and boundary homogenization. (a) Pixel approximation and (b) boundary

homogenization.
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where E is Young�s modulus of the nominal material and Em is the augmented modulus. Since Poisson�s
ratio is related to the lateral contraction during tensile deformation, it is fixed during this augmentation

process. In practical application, the shape density for the void has a small value instead of zero in order

to avoid numerical singularities during the finite element analysis procedure [6].

The approximation of domain X in Fig. 3 is different from the idea of pixels [16], in which a continuum

structure is divided by a number of squares. In order to approximate the boundary reasonably, a very fine

pixel mesh is required in the pixel-based approach. However, with the proposed method the effect of the

continuous boundary is reflected by using boundary homogenization. As an example, in Fig. 5 a circle is

approximated using pixel approximation and boundary homogenization. It is clear that the boundary
homogenization method provides a smooth transition between structural and void parts. Indeed, the gray

boundary of the topology design result in Fig. 1(b) should be understood in the same context as boundary

homogenization. However, in the proposed method the structural domain is still represented using bound-

ary curves and Fig. 5(b) is a mere approximation of the geometry.
3. Finite element analysis

The proposed Eulerian shape representation method has an advantage from the viewpoint of finite ele-

ment analysis. Since all elements have an identical shape, it is very efficient to construct one element stiffness

matrix and to use it repeatedly. Especially, when the element is square, the element stiffness matrix can be

calculated analytically [17].

In the continuum domain, the weak form [18] of the structural problem can be written in the following

form:
auðz;�zÞ ¼ ‘uð�zÞ; 8�z 2 Z; ð4Þ
where Z is the space of kinematically admissible displacements, and ‘‘8�z 2 Z’’ means for all virtual displace-

ments �z that belong to Z. Eq. (4) is a variational equation with displacement z as a solution. In (4),
auðz;�zÞ ¼
Z Z

X
�ð�zÞTC�ðzÞdX ð5Þ
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and
‘uð�zÞ ¼
Z Z

X

�zTf dXþ
Z
Cs
�zTTdC ð6Þ
are the structural bilinear and load linear forms, respectively. In (5), e(z) is the engineering strain vector,

and C is the linear elastic constitutive matrix. In (6), f is the body force and T is the surface traction on

the traction boundary Cs. The structural problem described in (4), with definitions in (5) and (6), is a stan-

dard form in the Lagrangian approach. In this case, X represents the structural domain.

With the Eulerian approach, X is the whole domain, including both the structure and void. Let the do-

main X be composed of NE sub-domains (finite elements), and let each sub-domain Xm have shape density

um. Then, the structural bilinear and load linear forms can be written in the following forms:
auðz;�zÞ ¼
XNE
m¼1

Z Z
Xm

�ð�zÞTC�ðzÞum dXm ð7Þ
and
‘uð�zÞ ¼
XNE
m¼1

Z Z
Xm

�zTfum dX
� �

þ
Z
Cs
�zTTdC; ð8Þ
where in the definitions of au(•,•) and ‘u(•), the index u is used to denote the dependence of these forms on

the design variable vector u = [u1,u2, . . . ,uNE]
T. Since um is constant within the element, it can be taken out-

side the integral. It is assumed that the traction force is independent of the design. Even if the domain

decomposition has been introduced in (7) and (8), all variables are still in the continuum level.

In the Lagrangian approach, there exists a discrete set of nodes along the geometric boundary. Thus, the

displacement boundary condition can be applied to those nodes on the boundary. In the Eulerian ap-

proach, since the geometry moves around within a fixed set of finite elements, it is better to apply the dis-

placement boundary condition on the geometric curve or point. However, the geometric boundary is often
located in the interior of the boundary elements. Thus, it is not trivial to apply the displacement boundary

conditions along the geometric curve. As an approximation, one can fix all elements that intersect with the

displacement boundary curve (see Fig. 6). However, this method overestimates the effect of boundary

conditions.

Recently, Clark and Anderson [19] proposed the penalty boundary method, which can impose the essen-

tial and natural boundary conditions when the geometry and finite elements are not conforming. Let Ch be

the essential boundary of the structure in which the displacement is prescribed. In the penalty boundary

method, the prescribed boundary condition is imposed approximately by using the penalty function, as
Fig. 6. Displacement boundary conditions on the boundary elements.
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P ðzÞ ¼ 1

2
a
Z
Ch
ðz� gÞTðz� gÞdC; ð9Þ
where g is the prescribed displacement (usually zero for linear elastic problems), and a is the penalty param-

eter. If the displacement z on the boundary Ch is different from the given value, then (9) penalizes the struc-
tural potential energy. In order to incorporate (9) with the weak form of the structural problem, the

variation of the penalty function needs to be obtained, as
P ðz;�zÞ ¼ a
Z
Ch
�zTðz� gÞdC; ð10Þ
where the superposed ‘‘�’’ denotes the variation of the function. This variation needs to be added to the
weak form in (4). A similar approach to the discrete model has been taken by Belytschko et al. [20] when

they impose the essential boundary condition on the meshfree formulation. They imposed the penalty meth-

od because the meshfree interpolation function did not satisfy the Dirac-delta property. When the finite

element method is used, a discrete version of (10) needs to be developed. Let the boundary Ch intersect with

element m. Then, the approximation of (10) becomes
P ðz;�zÞ ¼ �d
T

a
Z
Ch\Xm

NTNdC

� �
d� �d

T
a
Z
Ch\Xm

NTgdC

� �
; ð11Þ
where N is the matrix of shape functions using Lagrange interpolation, d is the vector of nodal displace-

ments, and �d is the vector of virtual displacements. Note that the integration only performs along Ch \ Xm.

The same approach can be applied to the natural boundary condition in which the traction force is ap-
plied along the boundary curve. However, in such a case the derivation of the penalty term involves more

mathematical elaborations. The penalty function for the traction boundary condition can be stated as
QðzÞ ¼ 1

2
a
Z
Cs
½rðzÞn� T�T½rðzÞn� T�dC; ð12Þ
where n is the unit outward normal vector to the boundary and r(z) is the stress matrix. In the small defor-

mation problem, the normal vector is calculated based on the initial geometry. Thus, stress is the only func-

tion of displacement in (12). The penalty parameter a in (12) can be different from that in (9). Similarly to
the displacement penalty function, the variation of Q(z) can be taken as
Qðz;�zÞ ¼ a
Z
Cs
½rð�zÞn�T½rðzÞn� T�dC: ð13Þ
This variation needs to be added to the weak form in (4). In conjunction with the finite element method, the

variation in (13) can be approximated by
Qðz;�zÞ ¼ �d
T

a
Z
Cs\Xm

BTCTSTSCBdC

� �
d� �d

T
a
Z
Cs\Xm

BTCTSTTdC

� �
; ð14Þ
where B is the displacement-strain relation matrix, C is the elasticity matrix, S is the matrix of normal vec-
tors. In two-dimensional plane stress problem with the a · a square finite element, these three matrices are

defined as
B ¼
y � a 0 �y þ a 0 y 0 �y 0

0 x� a 0 �x 0 x 0 �xþ a

x� a y � a �x �y þ a x y �xþ a �y

2
64

3
75; ð15Þ
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C ¼ E
1� m2

1 m 0

m 1 0

0 0
1� m
2

2
664

3
775; ð16Þ
and
S ¼
nx 0 ny
0 ny nx

� �
: ð17Þ
Note that the integration in (14) only performs along Cs \ Xm.

For two-dimensional finite elements with square shape, the stiffness matrix can be calculated analytically

[17] as
½k� ¼ E
1� m2

3� m
6

1þ m
8

� 3� m
12

�1þ 3m
8

�3þ m
12

� 1þ m
8

m
6

1� 3m
8

1þ m
8

3� m
6

1� 3m
8

m
6

� 1þ m
8

�3þ m
12

�1þ 3m
8

� 3� m
12

� 3� m
12

1� 3m
8

3� m
6

� 1þ m
8

m
6

�1þ 3m
8

�3þ m
12

1þ m
8

�1þ 3m
8

m
6

� 1þ m
8

3� m
6

1� 3m
8

� 3� m
12

1þ m
8

�3þ m
12

�3þ m
12

� 1þ m
8

m
6

1� 3m
8

3� m
6

1þ m
8

� 3� m
12

�1þ 3m
8

� 1þ m
8

�3þ m
12

�1þ 3m
8

� 3� m
12

1þ m
8

3� m
6

1� 3m
8

m
6

m
6

�1þ 3m
8

�3þ m
12

1þ m
8

� 3� m
12

1� 3m
8

3� m
6

� 1þ m
8

1� 3m
8

� 3� m
12

1þ m
8

�3þ m
12

�1þ 3m
8

m
6

� 1þ m
8

3� m
6

2
6666666666666666666666666664

3
7777777777777777777777777775

:

ð18Þ

Note that the stiffness matrix [k] is not a function of geometry, but a function of material properties. In fact,
it is independent of element size. Since all elements have the same [k] matrix with different shape density, the

element stiffness matrix can be calculated by
½km� ¼ umkþ a
Z
Ch\Xm

NTNdCþ a
Z
Cs\Xm

BTCTSTSCBdC

� �
; ð19Þ
where the second part on the right-hand side is the contribution from the penalty displacement boundary

method. It is only applied to those elements that reside on the essential boundaries. The third part is the

contribution from the traction force. The applied force vector for the element can also be calculated by
ffmg ¼ um

Z Z
Xm

NTf dXþ a
Z
Ch\Xm

NTgdCþ a
Z
Cs\Xm

BTCTSTTdC; ð20Þ
where the second term of the right-hand side is the contribution from the penalty boundary method. In

most linear static problems, the prescribed displacement is zero, i.e., g = 0. In such a case, the penalty con-

tribution vanishes. The element stiffness matrix and force vector are assembled to construct the global sys-

tem of matrix equations as
½K�fDg ¼ fFg: ð21Þ
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The theoretical aspect of the penalty boundary method is that the virtual displacement does not have to

belong to the space of kinematically admissible displacements. The numerical aspect of the method is that

the coefficient matrix can be ill-conditioned as the magnitude of the penalty parameter increases. Thus,

there exists a possible difficulty when an iterative matrix solver is used.

Even if the proposed method has many attractive features from design and simulation points of view, it
requires a numerically intensive procedure due to the larger number of finite elements in high resolution. For

example, the torque arm structure in Section 6 has about 37,000 degrees-of-freedom even if it is a simple,

two-dimensional example. It would be very expensive to store the global stiffness matrix in the computer

memory. In this paper, a multi-frontal sparse matrix solver in the literature [21] is employed to store only

non-zero components of the global stiffness matrix and to solve the finite element matrix equations.
4. Design parameterization

A major difference between the proposed method and topology design methods exists in the design

parameterization process. In topology optimization, a design engineer does not have any freedom to con-

trol the design direction. The optimum shape (or topology) of the structure is determined by finding the

shape density of individual elements, which does not guarantee any continuity or smoothness of the bound-

ary unless a specific constraint is imposed. In the proposed method, design parameterization is similar to

the conventional shape design problem in which the structural boundary changes according to the design

velocity field. As will be shown later, it is unnecessary to define the domain design velocity field in the pro-
posed method; the boundary design velocity field is enough to calculate design sensitivity information.

In the shape design problem, the parameters that determine the boundary curve are chosen as design

variables. For example, when spline curves are used to represent the boundary, the location of control

points can be chosen as design variables (an example will be shown in Section 6.1). As a design variable

changes, the structural boundary and domain change continuously. Let the initial boundary C and domain

X change to the perturbed boundary Cs and domain Xs, respectively. Such a shape perturbation process is

analogous to the dynamic process, in which s plays the role of time [22]. At the initial time s = 0, the struc-

tural domain is X and the boundary is C. When the first-order perturbation is used, the material point xs
can be denoted by
xs ¼ xþ sVðxÞ; x 2 X; ð22Þ
where V(x) is the design velocity field that designates the direction of shape change, and s is a scalar para-

meter that controls the amount of shape change.

Eq. (22) describes the shape perturbation of the continuum model. If a discrete model follows the same

perturbation as (22), then it is referred to in this paper as the Lagrangian approach. As with the continuum
model, the initial shape of each finite element geometry changes according to the design velocity field, which

frequently results in the mesh distortion problem. However, with the Eulerian approach, the discrete finite

element model is fixed during the design perturbation (see Fig. 7), and each element has a shape density

value between zero and one, based on the location. The effect of shape change is apparent through the

shape density change. Moreover, this effect is only apparent for those elements on the structural boundary.

An important theoretical issue is how to interpret shape perturbation as a shape density change on the

boundary. Note that shape perturbation is given as a vector quantity (design velocity field), but that shape

density variation is a scalar quantity. As the structural shape changes in the direction of the design velocity
field (Fig. 7), um of those elements on the boundary curve changes accordingly. By using standard varia-

tional formulas [22], the change of um can be denoted by
ums ¼ um þ sdum; ð23Þ



Initial Boundary

τV(x) 

Perturbed Boundary

Fig. 7. Shape design perturbation and corresponding change of shape density.
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where dum is the variation of the shape density. For those elements that reside within the structural domain,

dum is zero. Thus, perturbation in (23) is only applied to those elements on the structural boundary.

As is clear from Fig. 7, when the boundary curve is perturbed in the direction of design velocity V(x), the

shape density um is also changed. Attention is focused on element m, which resides on the boundary curve.

The shape density at the perturbed design can be defined as
ums ¼
1

Am

Z Z
Am\Xs

dXs ¼
1

Am

Z Z
Am\X

jJjdX; ð24Þ
where J is the Jacobian matrix of shape perturbation in (22), defined as
J ¼ oxs

ox
¼ Iþ s

oV

ox
: ð25Þ
The material derivative formulas for the Jacobian can be found in Choi and Haug [22]. For example, the

material derivative of the Jacobian becomes
d

ds
jJj

����
s¼0

¼ divV; ð26Þ
where divV is the divergence of the design velocity.

If the shape density in (24) is differentiated by s, by using the formula in (26), then the relation between

V(x) and dum can be obtained as
dum ¼ 1

Am

Z Z
Am\X

divVdX ¼ 1

Am

Z
C
VTndC; ð27Þ
where n is the outward unit normal vector to the boundary, and C is the boundary of area am moving in the

counter-clockwise direction. The second equality in the above equation can be obtained from the diver-

gence theorem [23]. It is interesting and important to note that only the normal component of the boundary

velocity appears in (27) because the tangential component does not contribute to the shape change.

After design parameterization is completed, the corresponding design velocity V(x) is calculated on the

boundary curve. For those elements on the boundary, the variation of shape density can be calculated by
integrating the design velocity along the boundary curve.

In the Lagrangian approach, the only limitation of shape design parameterization is that it must main-

tain the topology of the structure. For example, the diameter of a hole in the plate cannot be greater than

the dimension of the plate. In the Eulerian approach, there exists an additional limitation in design para-

meterization. As can be seen in Fig. 2, the structural boundary, which is used for design parameters, must

stay within the fixed grid. In other words, the total design space occupied by the fixed grid must cover all

possible design combinations. In practice, the size of the fixed grid can be chosen based on the upper and

lower bounds of the design parameters.
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5. Design sensitivity analysis

The purpose of design sensitivity analysis is to develop relationships between a variation in shape and

resulting variations in functionals that arise in shape design problems. For demonstration purposes, a linear

elastic problem is considered in the following sensitivity development. However, a general nonlinear prob-
lem can also be taken into account using a similar approach.

5.1. Direct differentiation method

In this section, design parameterization from the previous section is utilized to derive the shape sensitiv-

ity expression in terms of dum. Displacement z in (4) implicitly depends on the design through the structural

problem in (4), which must be calculated from the design sensitivity equation, as explained below. An

important component of design sensitivity analysis is calculating the variation of the state variable (in this
case, displacement z) by differentiating (4) with respect to the design, or equivalently, s. To that end, we

define the variation of the state variable, as
z0 � d

ds
zðx; uþ sduÞ

����
s¼0

¼ z
oz

ou

����
s¼0

� du: ð28Þ
Note that z 0 depends on the design u, where the variation is evaluated, and on the direction du of the design

variation. The goal of the direct differentiation method is to calculate z 0 first, and then using the chain rule

of differentiation to calculate the sensitivity of performance functions.

Similarly to (28), the structural bilinear and load linear forms can be differentiated with respect to the
design. Although the design vector and its variation contain NE components, only boundary elements need

to be considered in the calculation of dum because it is zero for those elements inside or outside the struc-

tural domain. LetM be the number of elements that belong to the structural boundary. The variation of the

structural bilinear form can be obtained using the chain rule of differentiation, as
d

ds
½auþsdu zðx; uþ sduÞ;�zð Þ�

����
s¼0

¼ a0duðz;�zÞ þ auðz0;�zÞ; ð29Þ
where
a0duðz;�zÞ ¼
XM
m¼1

Z Z
Xm

�ð�zÞTC�ðzÞdXdum ð30Þ
is the dependence of the bilinear form on the design. If the structural problem in (4) is solved for z and the

design variation dum in (27) is available as a result of design parameterization, then a0duðz;�zÞ can be readily

calculated by following the same integration procedure used in finite element analysis. The second term on

the right-hand side of (29) is the same as the bilinear form in (7) if displacement z is replaced by z 0, which
will be solved.

The variation of the load linear form can also be obtained by following a similar procedure
d

ds
‘uþsduð�zÞ

����
s¼0

¼ ‘0duð�zÞ ¼
XM
m¼1

Z Z
Xm

�zTf dXdum: ð31Þ
When the traction boundary is changed according to the design, careful treatment is required regarding

boundary homogenization, which is not developed in this paper. When a concentrated load is applied to

the structure, the variation of the load linear form in (31) vanishes because the load is independent of
the design.
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After differentiating (4) at the perturbed design and using the formulas in (29) and (31), the following

design sensitivity equation can be obtained:
auðz0;�zÞ ¼ ‘0duð�zÞ � a0duðz;�zÞ; 8�z 2 Z; ð32Þ
where the solution z 0 is desired. If the right-hand side is considered to be an applied load, Eq. (32) is similar

to the structural problem in (4) with a different load, which is called the fictitious load. When a design var-

iable is defined, the corresponding design velocity V(x) can be calculated on the structural boundary. Using

this design velocity, the design variation dum can be calculated from (27).

By following the same discretization as the finite element method, the matrix equation for the design sen-

sitivity problem (32) can be obtained as
½K�fD0g ¼ fFficg; ð33Þ
where {D 0} is the sensitivity of the nodal displacement vector and {Ffic} is the fictitious load vector, defined

as
fFficg ¼
XM
m¼1

Z Z
Xm

NTfdum dX�
XM
m¼1

Z Z
Xm

BTCBddum dX: ð34Þ
All information in (34) is already available from the structural analysis. Thus, calculating the integrals in

(34) is relatively convenient with the design variation dum.
Consider a general performance function defined in terms of integral over the domain X, as
wðu; zðuÞÞ ¼
Z Z

X
bðu; zðuÞÞdX: ð35Þ
The performance w can be a point-wise function if the Dirac-delta measure is used as an integrand. If the

structural volume or area is a performance function, then the shape density um can be an integrand with

summation over all elements. If stress at element m is involved, then the integrand is the stress function

and integrated over sub-domain Xm. The sensitivity of w in (35) can be obtained by taking variation with

respect to the design u, as
w0 ¼
Z Z

X

ob
ou

T

duþ ob
oz

T

z0
� �

dX: ð36Þ
Eq. (36) can be readily evaluated using the solution of (32) and dum. The gradient information that is nec-

essary for design optimization is equivalent to the coefficient of du. Thus, the coefficient of du in (36) is
called the sensitivity coefficient.

Compared to the shape design sensitivity formulation in the Lagrangian approach, the expressions in

(30) and (31) provide significantly simple computational methods, since their expressions also appear dur-

ing regular finite element analysis. In geometry-based shape optimization, domain integration is involved in

(30) and (31). However, only the boundary integral is sufficient for the proposed method.

From the computational viewpoint, the left-hand side of (33) is the same as that of (21) if {D 0} is re-

placed by {D}. Thus, solving the sensitivity equation becomes very efficient when a direct matrix solver

is used. For example, the coefficient matrix [K] in (21) is factorized during the finite element analysis. In
design sensitivity analysis, the factorized coefficient matrix can be used for the calculation of z 0. Thus,

the major computational effort involved in sensitivity analysis is to construct the fictitious load in (34)

and then forward- and backward-substitutions to solve for z 0.
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5.2. Adjoint variable method

The main idea of the adjoint variable method is to avoid the direct calculation of z 0 in (32). Since the

sensitivity expression in (36) requires the calculation of z 0, the adjoint problem is defined using the coeffi-

cient of z 0 in (36) as a load term. Accordingly, the adjoint problem is defined as
auðk; �kÞ ¼
Z Z

X

ob
oz

T

�k

� �
dX; 8�k 2 Z; ð37Þ
where the adjoint solution k is unknown and its variation �k plays the same role as �z in (4). By replacing �k
with z 0 in (37) and by replacing �z with k in (32), it can be shown that the second integrand of (36) can be

represented by
Z Z
X

obT

oz
z0

� �
dX ¼ ‘0duðkÞ � a0duðz; kÞ: ð38Þ
In deriving the above equation, the symmetric property of the energy bilinear form au(•,•) has been used.

The physical meaning of (38) is that the implicit dependence of the performance function has been elimi-

nated using the adjoint solution. Thus, the sensitivity of the performance function can be expressed in terms

of the structural solution z and the adjoint solution k as
w0 ¼
Z Z

X

ob
ou

T

du

� �
dXþ ‘0duðkÞ � a0duðz; kÞ: ð39Þ
It would be beneficial to compare the efficiency of the direct differentiation and adjoint variable methods

from the computational viewpoint. It is interesting to note that the adjoint equation (37) is independent of

the design. In fact, each performance function has a different adjoint load on the right-hand side. Thus, Eq.

(37) needs to be solved per each performance function. In the direct differentiation method in (32), however,

the sensitivity equation needs to be solved per each design variable. Thus, the adjoint method is more effi-

cient when the number of performance measures is smaller than the number of design variables, which is

the case for most optimization problems.

In the numerical approach, the adjoint problem in (37) needs to be discretized using the same method as
in structural analysis. The matrix equation for the adjoint problem becomes
½K�fKg ¼ fFadjg; ð40Þ
where {K} is the nodal solution of the global adjoint vector and {Fadj} is the adjoint load vector, defined by
fFadjg ¼
Z Z

X

ob
oz

dX: ð41Þ
The calculation of sensitivity in (39) involves a similar procedure to the fictitious load in (34). This process

must be repeated for each design variable, because the fictitious load depends on the design.
6. Numerical example

In this section, a numerical example is presented in order to compare it with the shape optimization re-
sults in the literature [4,24].
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Fig. 8. Spline curve that represents the structural boundary.
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6.1. Computational geometry

Many methods are available in representing the boundary geometry of the structure. Although the pro-
posed Eulerian representation method can be applied to general methods, let us consider a particular exam-

ple using geometric curves, as shown in Fig. 8. In the geometric curve, the coordinates of the curve are

represented using a parameter n 2 [0, 1] as
xðnÞ ¼ ½p0; p1; pn0; pn1�

2 �3 0 1

�2 3 0 0

1 �2 1 0

1 �1 0 0

2
6664

3
7775

n3

n2

n

1

2
6664

3
7775; ð42Þ

� ½G�½M�½n�;

where p0 ¼ ½px; py �

T

n¼0 and p1 ¼ ½px; py �
T

n¼1 are locations of two end points, respectively, and pn0 ¼ ½dpx=dn;
dpy=dn�

T

n¼0 and pn1 ¼ ½dpx=dn; dpy=dn�
T

n¼1 are tangent vectors at both points, respectively.

Design variables for the shape problem can be defined by choosing a component of the matrix [G]. For

example, when a design variable moves point p0 in the x-direction, we can define a unit perturbation matrix

by
½B� ¼
1 0 0 0

0 0 0 0

� �
: ð43Þ
Then, the design velocity vector can be defined by replacing matrix [G] with matrix [B], as
VðnÞ ¼ ½B�½M�½n�; ð44Þ
where the matrix [B] is a unit perturbation of the matrix [G] in the direction of the design variable. The

tangent vector and normal vector to the boundary can be calculated by differentiating (42) with respect

to parameter n.

6.2. Torque arm model

A design optimization of the torque arm model has been demonstrated by many different approaches.

Bennett and Botkin [4] used the Lagrangian method with parametric boundary geometry. Kim et al. [24]

used the meshfree method to optimize the shape of the torque arm. Jang et al. [25] performed the design

optimization of the torque arm model using the multi-scale wavelet approach that can locally improve

the resolution of the solution accuracy. This model is considered as a benchmark problem in shape opti-

mization. The torque arm model shown in Fig. 9 is composed of 32 points, 28 boundary curves, and 16

surfaces. A rectangular domain is established with the lower-left corner being (�7,�8) and the upper-right



Fig. 9. Design parameterization and boundary homogenization of the torque arm with pixel size = 0.21 cm.
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corner being (49,8), which covers the whole structure. A 0.21 cm · 0.21 cm square is used to discretize the

rectangular domain so that the whole domain is approximated by a 267 · 77 grid. Fig. 9 also shows the

structural domain that is identified using the boundary homogenization method. The black interior domain
has a full shape density (u = 1.0), while the gray boundary represents the intermediate shape density

(0 < u < 1) calculated using (1). All void areas are represented in white. For material properties, the follow-

ing values are used: Young�s modulus = 207.4 GPa, Poisson�s ratio = 0.3, and thickness = 0.3 cm.

In finite element analysis, the left circle is fixed and the horizontal and vertical forces are applied at the

center of the right circle. In order to apply for the displacement boundary conditions, the boundary curves

that correspond to the left circle are identified first. It is trivial to retrieve boundary element information

corresponding to the displacement boundary curves. Then, the penalty boundary method explained in Sec-

tion 3 is used to impose the displacement boundary condition. Thus, in this approach displacement bound-
ary conditions are applied in a layer of elements. The penalty parameter for applying the boundary

conditions is one hundred times greater than Young�s modulus. The force boundary condition can also

be applied in the same manner.

A maximum stress of about 248 MPa appears at the top and bottom surfaces of the torque arm (see Fig.

10). This result is expected because the applied force is a superposition of compressive and bending loads.

In addition, a relatively high stress concentration is observed at the end of the interior slot, which is caused

by distortion at the small radius region.

From the mathematical point of view, the pixel-based geometric representation may cause singularity
at the non-smooth boundary, which is inevitable when the inclined boundary is approximated by x- and

y-directional squares. However, the proposed approach reduces such singularity by gradually reducing

the shape density at the boundary. However, different material properties between interior and boundary

elements cause stress discontinuity. A smoothening algorithm in stress may help to reduce discontinuity.

For detailed discussion, refer to Garcı́a and Steven [7], Jang et al. [25] and Duysinx and Bendsøe [26].

Since design parameters are defined on the geometric model, the horizontal and vertical movements of

geometric points can be selected as design parameters. Eight design parameters are chosen that can change
Fig. 10. Finite element analysis results of the torque arm (equivalent stress plot). Unit: MPa.
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the boundary of the torque arm (see Fig. 9). In order to maintain symmetric geometry, design parameters

are linked. As design parameters are changed, a new shape density for each finite element is calculated from

which the material constants are changed as depicted in (3).

Since there is no analytical solution, it is difficult to verify the accuracy of the sensitivity results. As a

second resort, they can be compared with the sensitivity results obtained from the finite difference method.
This approach by no means guarantees the accuracy of sensitivity results. It assures consistency with the

numerical method employed. The finite difference method perturbs the design variable with a small amount

(Ds) and solves the structural problem again. The sensitivity can then be approximated by
Table

Design

Design

u1

u2

u3

u4

u5

u6

u7

u8
w0 � Dw
Ds

¼ wðuþ DsÞ � wðuÞ
Ds

; ð45Þ
where u is the current design value and u + Ds is the perturbed design value. This process must be repeated

for each design variable.

Table 1 shows the comparison of the sensitivity results with the finite difference results. A small pertur-
bation of Ds = 10�4 is used. Since there are eight design variables, the finite difference method needs to per-

turb the design eight times and solves the structural problem repeatedly. Three different types of

performance functions are considered: structural area, maximum von Mises stress, and y-directional dis-

placement at the location (10,0). In Table 1, the first column is the design variable, the second column

is the performance type and its value, the third column is the performance change calculated from the finite

difference method, the fourth column is the performance change estimated from the proposed sensitivity
1

sensitivity results are compared with finite difference sensitivity results (perturbation size = 0.0001)

w Dw w0Ds Dw/w0Ds · 100%

Area 3.749200e+02 1.036225e�04 1.036146e�04 100.01

rMAX 2.484748e+02 �6.082722e�04 �6.084701e�04 99.97

zy 9.215100e�02 �1.237382e�07 �1.237448e�07 99.99

Area 3.749200e+02 3.566629e�03 3.566612e�03 100.00

rMAX 2.484748e+02 �2.092790e�02 �2.094751e�02 99.91

zy 9.215100e�02 �4.259725e�06 �4.259550e�06 100.00

Area 3.749200e+02 1.011942e�04 1.011766e�04 100.02

rMAX 2.484748e+02 �2.957883e�05 �2.937141e�05 100.71

zy 9.215100e�02 �1.231901e�08 �1.231175e�08 100.06

Area 3.749200e+02 3.482701e�03 3.482692e�03 100.00

rMAX 2.484748e+02 �1.010746e�03 �1.011070e�03 99.97

zy 9.215100e�02 �4.238100e�07 �4.237938e�07 100.00

Area 3.749200e+02 1.999743e�04 1.999999e�04 99.99

rMAX 2.484748e+02 �3.757007e�04 �3.758011e�04 99.97

zy 9.215100e�02 �3.233982e�07 �3.234727e�07 99.98

Area 3.749200e+02 �1.654841e�03 �1.654802e�03 100.00

rMAX 2.484748e+02 3.386682e�03 3.386067e�03 100.02

zy 9.215100e�02 7.485533e�07 7.484632e�07 100.01

Area 3.749200e+02 �2.000052e�04 �1.999999e�04 100.00

rMAX 2.484748e+02 5.511106e�04 5.510200e�04 100.02

zy 9.215100e�02 3.767109e�07 3.766835e�07 100.01

Area 3.749200e+02 �1.654854e�03 �1.654803e�03 100.00

rMAX 2.484748e+02 2.847409e�03 2.847083e�03 100.01

zy 9.215100e�02 1.359770e�06 1.359566e�06 100.01
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results, and the last column is the ratio between the third and fourth columns. Table 1 shows an excellent

agreement between the two methods. Thus, the proposed sensitivity calculation method can be used for gra-

dient calculation during optimization. The biggest advantage of the proposed method is its computational

efficiency. The cost of sensitivity calculation is less than 5% of the structural analysis cost per design var-

iable. Thus, the proposed method can significantly reduce the design cost.
A simple design optimization problem is proposed to minimize the area of the structure, while satisfying

the maximum stress constraint. In order to induce large shape change, a loose constraint limit is deliberately

provided. Thus, the design optimization problem can be stated as
Table

Design

Design

u1
u2
u3
u4
u5
u6
u7
u8
Minimize
area

A0

Subject to
rmax

r0

� 1 6 0:

8><
>: ð46Þ
In (46), the cost function and constraint are normalized such that the cost function is one at the initial de-

sign and the constraint is zero at the optimum design. The lower and upper bounds of design parameters
are selected such that the topology of the structure is maintained. For this particular example,

A0 = 374.9 cm2 and r0 = 800 MPa are used.

The design optimization problem is solved using the modified feasible direction method in the Design

Optimization Tool (DOT) [27]. The advantage of this method is that it only moves within the feasible de-

sign so that every intermediate design satisfies the constraint. Function values and sensitivity information

are provided to the gradient-based optimization algorithm. The design optimization problem converges

after five design iterations. Table 2 shows the values of the design variables at the initial and optimum de-

signs. All initial design variables start from zero so that the value of the design variable represents the
change of the dimension from the initial design. Two design variables are on the boundary, five design vari-

ables are very close to the boundary, and u8 is in the middle of design domain. The lower and upper bounds

are selected such that the topology of the structure is maintained.

Fig. 11 shows the shape density and stress contour plots at the optimum design. The optimization algo-

rithm chose the geometry such that the maximum stress is evenly distributed along the upper and lower

regions of the structure. The optimum design conforms in an engineering sense because in such a beam-like

structure the moment of inertia needs to be increased as the moment arm increases. Fig. 12 shows the scaled

history plot of cost and constraint functions. The optimum design reduces more than 52% of the structural
area. The maximum stress at the optimum design appears to be 800 MPa. Even if the design converges in

the fifth iteration, the structural analysis has been performed fifty four times. This is because the modified

feasible direction method requires many line searches.

The same optimization problem has been solved using many different approaches. For example, when

Lagrangian finite element analysis is used with a re-meshing process [4], the optimization process converged

at 45 iterations with eight re-meshing processes. In addition, when the Lagrangian meshfree method is used
2

variables at the initial and optimum designs

Lower bound Initial design Optimum design Upper bound

�3.000 0.0 �2.99966 1.000

�0.500 0.0 �0.500 1.000

�1.000 0.0 �0.999722 1.000

�2.700 0.0 �2.69769 1.000

�5.500 0.0 �5.49977 1.000

�0.500 0.0 2.000 2.000

�1.000 0.0 5.99949 6.000

�0.500 0.0 �0.238489 0.000



Fig. 11. Finite element analysis results at the optimum design. Unit: MPa.
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Fig. 12. Design optimization history for (normalized) cost and constraint functions.

Fig. 13. Comparison of optimum designs. (a) Optimum design using Lagrangian approach and (b) optimum design using Eulerian

approach.
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[24], the optimization problem converged at 20 iterations. All three methods converged to a similar opti-

mum design, as illustrated in Fig. 13.

6.3. Bracket model

The second example is the bracket model, as shown in Fig. 14. Two holes in the bottom are fixed in

space, while a horizontal force of 15,000 N is applied at the center of the upper hole. The same material

property has been used with the torque arm problem. A rectangular domain is established with the low-
er-left corner being (�8,�1) and the upper-right corner being (8,20), which covers the whole structure.



Fig. 14. Design parameterization and boundary homogenization of the bracket with pixel size = 0.11 cm.

Fig. 15. Finite element analysis results of the bracket (equivalent stress plot). Unit: MPa.
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Square finite elements (size = 0.11 cm · 0.11 cm) are used to discretize the domain. Thus, the total grid size

is 146 · 191, and the total degrees-of-freedom are 56,448. The structural analysis took 19.0 s for solving the

matrix equation using a 1.2 GHz laptop computer. Fig. 15 shows the von Mises stress contour plot at the

initial design of the bracket model.

As is shown in Fig. 14, twelve design parameters have been selected to change the inner/outer boundary

of the bracket, while maintaining symmetry. Three performance functions have been chosen: area, maxi-

mum stress, and x-directional displacement at the location (0.37,14.15). Since the number of design vari-

ables is greater than the number of performance measures, it is clear that the adjoint variable method
would be more efficient than the direct differentiation method. The sensitivity coefficients for the three
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performances are calculated using the adjoint variable method. It took 5.4 s for the design sensitivity

analysis. If the finite difference method is employed, it is 19 s · 12 = 228 s for calculating sensitivity

information without considering the design perturbation effort. Thus, the proposed sensitivity calculation

method is quite efficient.

Table 3 shows the sensitivity results compared to the finite difference results. For the finite difference
method, a perturbation size of Ds = 10�4 is employed. The second column w represents the performance

value at the initial design; the third column represents the performance change estimated from the finite

difference method; the fourth column represents the performance change estimated from the sensitivity
Table 3

Design sensitivity results are compared with finite difference sensitivity results (perturbation size = 0.0001)

Design w Dw w0Ds Dw/w0Ds · 100%

u1 Area 1.452729e+02 �6.048413e�04 �6.048400e�04 100.00

rMAX 4.100496e+02 7.123357e�07 7.122662e�07 100.01

zx 1.731155e�02 1.677348e�08 1.677140e�08 100.01

u2 Area 1.452729e+02 2.916115e�04 2.916118e�04 100.00

rMAX 4.100496e+02 7.314450e�07 7.313131e�07 100.02

zx 1.731155e�02 2.852526e�10 2.851279e�10 100.03

u3 Area 1.452729e+02 �4.499358e�04 �4.499347e�04 100.00

rMAX 4.100496e+02 �1.712231e�07 �1.712719e�07 99.97

zx 1.731155e�02 �1.829742e�10 �1.829556e�10 100.01

u4 Area 1.452729e+02 1.068117e�03 1.068115e�03 100.00

rMAX 4.100496e+02 3.249783e�06 3.247563e�06 100.07

zx 1.731155e�02 �3.614318e�07 �3.614374e�07 100.00

u5 Area 1.452729e+02 3.555796e�04 3.555831e�04 100.00

rMAX 4.100496e+02 1.083351e�06 1.081315e�06 100.19

zx 1.731155e�02 �1.203238e�07 �1.203252e�07 100.00

u6 Area 1.452729e+02 1.170124e�03 1.170127e�03 100.00

rMAX 4.100496e+02 �1.666535e�03 �1.666363e�03 100.01

zx 1.731155e�02 �2.674115e�07 �2.674292e�07 99.99

u7 Area 1.452729e+02 3.895439e�04 3.895433e�04 100.00

rMAX 4.100496e+02 �5.547770e�04 �5.547374e�04 100.01

zx 1.731155e�02 �8.902625e�08 �8.902916e�08 100.00

u8 Area 1.452729e+02 4.320476e�04 4.320467e�04 100.00

rMAX 4.100496e+02 �1.557322e�02 �1.557651e�02 99.98

zx 1.731155e�02 1.129704e�08 1.129773e�08 99.99

u9 Area 1.452729e+02 1.438321e�04 1.438314e�04 100.00

rMAX 4.100496e+02 �5.185300e�03 �5.185555e�03 100.00

zx 1.731155e�02 3.761005e�09 3.761081e�09 100.00

u10 Area 1.452729e+02 0.000000e+00 1.127218e�20 0.00

rMAX 4.100496e+02 0.000000e+00 6.600613e�16 0.00

zx 1.731155e�02 0.000000e+00 �3.648030e�20 0.00

u11 Area 1.452729e+02 �3.999396e�04 �3.999419e�04 100.00

rMAX 4.100496e+02 �6.968617e�08 �6.967609e�08 100.01

zx 1.731155e�02 �6.246176e�11 �6.245705e�11 100.01

u12 Area 1.452729e+02 �2.916109e�04 �2.916118e�04 100.00

rMAX 4.100496e+02 3.804684e�06 3.801079e�06 100.09

zx 1.731155e�02 5.256567e�08 5.256648e�08 100.00



Fig. 16. Shape density and finite element analysis results at the optimum design. Unit: MPa.
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coefficients; and the last column the ratio between the third and fourth columns. The two methods agree

very well, as all ratios are very close to 100%.

The same design optimization problem as in (46) is used to minimize the area of the bracket structure.
For this example, the sequential quadratic programming method is employed. The cost function (area) is

normalized by A0 = 145 cm2 and the constraint (max. von Mises stress) is normalized by r0 = 800 MPa, so

that the active constraint should approach zero. Fig. 16 shows the shape density plot and the structural

analysis results at the optimum design. The optimum design is significantly different from the initial design,

as the size of the inner triangle increases. The maximum stress increases to the constraint boundary

(800 MPa), so that the constraint becomes active. Table 4 shows the values of design variables at the initial

and optimum designs. The lower and upper bounds are selected such that the structure maintains its

topology during design optimization. All design variables start from zero, which means that the values
of design variables depict the relative change of its coordinates.

Fig. 17 shows the design optimization history of cost and constraint functions. During the first six iter-

ations, the cost function is significantly reduced until the constraint is activated. Next, nine iterations are

carried out to further reduce the cost function, while keeping the constraint active. An attempt to further

reduce the cost function at the 16th iteration caused the constraint violation. The remaining iterations are

performed to overcome the violated constraint without reducing the cost function. The optimization con-
Table 4

Design variables at the initial and optimum designs

Design Lower bound Initial design Optimum design Upper bound

u1 �0.900 0.0 1.600 1.600

u2 �1.000 0.0 �1.000 1.500

u3 �1.000 0.0 1.800 1.800

u4 �1.000 0.0 �0.908 0.500

u5 �0.200 0.0 �0.172 0.200

u6 �0.800 0.0 �0.800 0.600

u7 �0.200 0.0 �0.200 0.200

u8 �1.000 0.0 �0.936 0.500

u9 �0.200 0.0 �0.196 0.200

u10 �0.800 0.0 �0.500 0.000

u11 �1.000 0.0 1.800 1.800

u12 �1.000 0.0 5.150 5.500
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Fig. 17. Design optimization history for (normalized) cost and constraint functions.
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verged at the 22nd iteration. The cost function is reduced by 62% of the original value. The increased height

of the inner triangle (u12) produces the most significant reduction in structural area, until the stress con-

straint is activated at the side frame. The maximum stress value, located at the top of the inner triangle,

moves to the side frame at 800 MPa. A total of 32 response analyses and 22 sensitivity analyses were carried

out during 22 optimization iterations. If we consider that the cost of three sensitivity analyses is equivalent

to one structural analysis, the total optimization cost is less than 40 structural analyses, which is a signif-

icant reduction compared to 300 structural analyses when finite difference sensitivity is used. When the
Lagrangian approach is used with the re-meshing process [4], the optimization process converges at 34 iter-

ations with seven re-meshing processes. When the meshfree method [24] is employed, the optimization

problem converges with seventeen iterations and 37 function evaluations. Thus, the Eulerian approach per-

forms more design iterations, but the number of structural analyses is slightly smaller than with the mesh-

free method. The optimum cost function of the Eulerian approach is about 1.5% smaller than that of the

meshfree method.
7. Conclusions

A new domain approximation method using an Eulerian description is developed for the structural opti-

mization problem. Boundary homogenization provides a unique approximation of the structural domain

and boundary on the fixed grid of finite elements. Design parameterization on the geometric model pro-

vides accurate representation of design intent, and the shape density concept resolves the mesh distortion

problem that exists in the Lagrangian approach. Transformation of the design velocity field into a shape

density variation plays a key role in making this approach possible. The main contribution of the current
work is that the shape design sensitivity analysis involved in geometry changes is transformed into a param-

eter sensitivity analysis problem.

In order to become a practical engineering tool, the proposed approach needs to be extended to three-

dimensional structures, which involves boundary homogenization of a volume. As the degrees-of-freedom

of the system increase significantly, the need for an iterative solver will definitely be more pronounced.
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