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Abstract

Numerical simulation and design of an inflatable open-ocean-aquaculture cage is presented using

nonlinear finite element analysis of membrane structures. Numerical instability caused by the

tension-only membrane has been removed by adding an artificial shell with small stiffness. The

material properties of a fabric material are obtained from tensile tests in both hoop and longitudinal

directions, assuming the material is anisotropic. Wrinkling, defined as an onset of compressive stress,

is monitored as design criteria. The finite element model is validated using a modified beam theory

for the inflatable structure by comparing the maximum deflection and stress. Good agreement is

observed between the numerical and theoretical results. A full-scale cage model is created using

membrane, shell, and string elements to test the stiffness and integrity of the system. The feasibility

study indicates that the inflated structure has sufficient stiffness to be used as the structural support

within a fish cage. Based on the parameter study, several designs are suggested.
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1. Introduction

The ever increasing demands of the world population on ocean resources have resulted

in severe over-fishing in many parts of the world. Without supplementation through

aquaculture, world-wide fisheries production will be unable to meet the needs of the

growing human population. In particular, open-ocean-aquaculture (OOA) is one area that

shows great promise to meet the needs of the US markets and reduce the need to import fish

from abroad (Bucklin and Howell, 1998). It is also believed that OOA has the potential to

have a significant impact within the waters of Florida, the Atlantic coast, the Gulf of

Mexico, and the Caribbean Sea (Davis et al., 1998; Bridger et al., 2001).

Current OOA cage design falls in one of the four general categories. Class 1 cages rely

on buoyancy and gravitational forces to maintain their shape and are typically referred to as

gravity cages. Class 2 cages are anchor tensioned while class 3 cages are self-supporting

cages that resist net deformation due to a combination of tension in the flexible members

and compression in the rigid members. These structures are referred to as ‘‘tensegrity’’

structures. Lastly, class 4 cages are rigid self-supporting structures typically constructed

from beams and jointed members (Loverich and Forster, 2000). A variety of different types

of cages are commercially available (Bridgestone, Polar Cirkel, Farm Ocean, Sadco-Shelf,

Ocean Spar Technologies, L.L.C., etc.) however the Sea Station1 Cage (class 3) has

become increasingly popular and can be considered the state-of-the-art in OOA cage

designs.

Inflatable structures have been used in many civil and aerospace applications, however

they have not been considered for use underwater. The use of inflatables has the potential to

advance cage design and to resolve some of the issues that hold back the open ocean

aquaculture community. Lightweight inflatables may greatly decrease the cost of cage

transportation, deployment, assembly, and maintenance. A semi-rigid, inflatable,

tensegrity-structure design, maintains divergence volume, which is critical for fish health

and aquaculture success. The inflated cage retains the system integrity by using pressurized

water instead of air.

Fig. 1 shows the basic layout, including a rigid central spar and surrounding ring, typical

of a class 3 cage design (Loverich and Forster, 2000). In this paper, the class 3 cage design

is modified by replacing the rigid components with inflated members. This creates a

lightweight, semi-rigid, and deployable structure. The objective of this paper is to

determine the feasibility of an aquaculture cage design based on flexible pressurized

members. The focus is on the stiffness of the water-filled inflatables and system integrity.

Several research results are available for analyzing an inflatable-membrane structure

subject to bending, including a (1) nonlinear approach (Douglas, 1969), (2) linear shell

method using continuum mechanics (Topping, 1964; Jenkins, 2001), (3) finite element

analysis approach (Sakamoto et al., 2001), and (4) modified conventional beam theory

(Comer and Levy, 1963; Main et al., 1994, 1995). However, the above-referenced

approaches are limited to a simple beam-type structure, rather than complex engineering

systems. Thus, it is necessary to develop an analysis capability that can estimate system

integrity and can be applied to a system design.

In this paper, a finite element approach is chosen as a simulation and design tool

because of its ease of modeling complex geometries and ability to provide a visualization
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of the deformed behavior (Bathe, 1996). Nonlinear elements are used to model the

tension-only behavior of the fabric material. A modified beam theory for the inflatable

structure is adapted to apply appropriate loads and boundary conditions within the model.

The finite element solution is verified with the behavior of a theoretical modified beam

analysis.

The paper is structured as follows. Section 2 reviews the theory for an inflatable beam.

The comparison of the finite element model with the theoretical results is performed in

Section 3. In Section 4, results are presented on the measured material properties using

tensile tests in the hoop and longitudinal directions. Section 5 explains finite element

modeling of the cage structure and Section 6 presents the results and observations of the

simulation. These are followed by conclusions in Section 7.

2. Modified beam theory for inflatable structures

In this section, the modified conventional beam theory (Main et al., 1994, 1995) is

summarized in order to verify the finite element model. The goal is to calculate the

magnitudes of deflection and stress at the onset of wrinkling. The model used within the

derivation is an internally pressurized circular-cylindrical, closed-end fabric tube. The

essence of the inflatable theory is a representative pretension force that replaces the internal

pressure acting on the caps in the analysis. This pretension force creates a stress that

opposes the compressive bending stress and adds to the bending tensile stress. Wrinkling

occurs when the compressive portion of bending stress exceeds the pretension stress. Fig. 2

shows the pretension stress distribution in a model beam subject to bending.

In thin structures, resultant properties are often used by integrating over the thickness.

Let I* be the resultant area moment of inertia of a circular tube and E* is the resultant
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elastic modulus. The governing equation for the traditional beam bending problem is

given by:

d2y

dx2
¼ MðxÞ

E�I�
; (1)

where I* = pr3. The above equation can be integrated to determine deflection, y, for the

pinned-roller boundary conditions as shown in Fig. 2, as:

y ¼ w

24E�pr3
ð2Lx3 � x4 � L3xÞ: (2)

Consider a pressurized tube, as illustrated in Fig. 2, under a distributed load. For the

cage structure, water currents would impart a similar distributed load on the relevant

members. In the conventional beam theory, the transverse load creates bending stress

that is linear across the cross-section. Due to the internal pressure and the transverse

load, the tube has tensile stress between sm and s0. As the bending moment increases, a

portion of the tube may reach zero stress because the membrane cannot resist any

compressive force. The zero-stress portion of the tube is denoted by angle u0. In this

paper, the failure of the structure is defined when u0 > 0, which represents the onset of

wrinkling.

Wrinkle length is the length of the tube at which wrinkling first occurs for a given

loading and geometric conditions. This length depends on the moment necessary to initiate

wrinkling. For a given angle u0, Comer and Levy (1963) first determined the magnitude of

the maximum stress from the balance of the longitudinal forces:

sm ¼ p prð1 þ cos u0Þ
2t½sin u0 þ ðp� u0Þ � cos u0	

; (3)

where r and t are the radius and the thickness of the tube, respectively, and p represents the

internal pressure present in the tube. Since bending stress is generated due to the bending

moment, the maximum stress can also be expressed in terms of the bending moment M as

sm ¼ 2Mð1 þ cos u0Þ
tr2ð2p� 2u0 þ sin 2u0Þ

: (4)

By combining these two equations and using the failure criterion of u0 = 0, the bending

moment necessary to initiate wrinkling can be obtained as:
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M ¼ ppr3

2
: (5)

When a constantly distributed force (caused by drag) is applied, the maximum bending

moment occurs in the middle of the length. By equating the maximum bending moment

with Eq. (5), we have:

Mmax ¼ wL2

8
¼ ppr3

2
: (6)

Solving for L and setting the load, w = F /L, yields the general expression for wrinkle length

as:

Lwr ¼
4 ppr3

F
: (7)

The wrinkle length is the length at which wrinkling first occurs in an inflated tube subject to

bending, for a given pressure and flow rate. As expected, the wrinkle length will be reduced

for a higher loading force, F, and is proportional to the internal pressure and the tube radius.

The tube radius, r, is the largest contributing factor to the wrinkle length for these

conditions.

For this specific application, the loading force, F, is the drag force, Fdrag. Since drag

force is a function of tube length, Eq. (7) is further expanded using Eq. (9), as:

Lwr ¼
2r

V

ffiffiffiffiffiffiffiffiffi
p p

rCD

r
: (8)

Eq. (8) now shows the wrinkle length as a function of the core contributing variables for

this application, internal pressure, tube radius, and external fluid velocity. The wrinkle

lengths defined in Eqs. (7) and (8) depend on the boundary conditions and are derived for

the simply-supported conditions shown in Fig. 2.

3. Verification for finite element model

A verification model is first made to explore and verify the finite element membrane

analysis for an inflatable tube subject to bending. Once the approach is validated, a full-

scale cage will then be modeled to explore the interaction of all the components and system

integrity (see Section 5). The verification model is a simply-supported tubular beam with a

distributed load and an internal pressure as shown in Fig. 2.

A commercial program, ANSYS (ANSYS Inc., 2004), is used for finite element

modeling and simulation in this paper. The verification model is composed of the inflatable

tube and two rigid end-caps. Fifty elements along the beam span and 24 elements around

the circumference are created. A membrane element (SHELL41 in ANSYS) is used with

tensile stiffness, but no compressive stiffness, meeting the tension-only requirements of a

fabric material. It is observed that the zero-compressive stiffness caused a numerical

instability in the solution of a pressurized beam in bending. Equivalent-geometry shell

elements (SHELL63 in ANSYS) with small elastic modulus are merged to the membrane
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elements to improve stability of the membrane elements. A high modulus is used for the

cap in order to make it rigid compared to the fabric material.

The internal pressure is broken up into pressure acting in the radial direction and

pressure acting in the longitudinal direction. The radial pressure is applied normally to the

membrane using the surface pressure command (SFE in ANSYS). The longitudinal

pressure is converted to the equivalent nodal forces along the circumference of the cap,

assuming the cap is rigid. A simply-supported boundary condition is imposed by fixing

those nodes on the neutral axis of the cap. The drag force caused by fluid is calculated using

Eq. (9) and applied to the tube as a distributed load.

Due to the tension-only behavior of the membrane, the problem is nonlinear and

Newton–Raphson iterative method is utilized to solve the nonlinear finite element

equations. In order to improve the convergence of the problem, the total load is divided by

five sub-steps and the solution is calculated incrementally. When the wrinkling occurs, the

structure experiences the rigid body motion and the system matrix has a singularity, which

terminates the program.

Simulation results are compared to the theoretical deflection solutions in Section 2. The

results for the deflection predicted at the midpoint of a 10 m long tube are shown in Fig. 3.

Since flow velocity is proportional to the drag force, flow velocity is used to compare

models. The difference between the theoretical and finite element simulation results is

0.567%. These results show that the finite element simulation accurately estimates the

behavior of the inflatable structure.
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Fig. 3. Deflection results for the verification model with a length of 10 m.



Fig. 4 shows the corresponding longitudinal stress results to verify the behavior of the

finite element model. As expected, the maximum stress increases, while the minimum

stress decreases in bending. A rigid body motion occurs when the minimum longitudinal

stress decreases to approximately zero, verifying the tension-only behavior of the model.

This defines the failure by wrinkling in this model. The results from the verification model

show the merged membrane-shell elements acceptably model the tension-only tubing

material.

4. Material properties

Commercially available discharge hose (Kuriyama of America Inc., 2003) is used in this

paper as the inflatable material for the preliminary analysis. These tubes are a composite

fabric comprised of a combination of molded PVC layers and synthetic fibers. Material

properties are anisotropic due to the two fiber layers running +308 and �308 from the

longitudinal fibers. The material properties required for the analysis, elastic modulus and

Poisson’s ratio, are modeled as orthotropic because stresses in the hoop and longitudinal

directions are the primary interest. The elastic modulus is determined experimentally,

while Poisson’s ratio is approximated through simulation.

Samples were cut from the tube in longitudinal and hoop directions as shown in Fig. 5 to

determine properties in these directions. Fig. 5 also shows the cross-sectional shape of the

tensile specimen with the center section designed to taper from the grip area to a narrow
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strip to control the break location. All specimens are 23 cm long and 2 cm wide at the

narrowest section. Since continuous fibers that form the structure of the full fabric tube are

severed in the cut samples, a multiplicative correction factor is applied to all tests made

from the cut specimens. The correction factor is defined as a ratio of the elastic modulus of

an uncut, continuous tube sample to the elastic modulus of a cut specimen. This correction

factor of 1.29, obtained from experiment, is applied to all experimental results, including

both the longitudinal and hoop-oriented specimens.

An MTI 25k screw-driving tensile test machine was used with Curtis 30k jaw grips to

perform the tensile tests. An Interface 1220AF-25k load cell was used in conjunction with

MTI software to measure force. After observing preliminary tests, a test speed of 0.10 in./

min was considered reasonable and chosen for all tests.

Samples are locked in the test grips and pulled at a test speed of 0.10 in./min until

failure. Strain is determined by measuring the distance between marks on the surface of the

specimen. Tensile force is measured by a load cell and converted to axial stress using the

cross-sectional area of the specimen. A summary of the experimentally measured elastic

moduli and corrected orthotropic elastic moduli for the hoop and longitudinal orientations

are shown in Table 1.

Due to the nature of the cross-hatched fabric material, in-plane and out-of-plane shape

distortions occurred in samples when loaded under tension. The in-plane distortions can be

described as uneven shifting of the material in the pull direction. The strain measurements

were largely affected by the in-plane distortion because the measurement lines did not

remain perpendicular to the sample length. The out-of-plane distortions can be described as

J.D. Suhey et al. / Aquacultural Engineering 33 (2005) 285–303292

Fig. 5. Test sample orientations with respect to continuous tubing.



cupping of the flat, rectangular cross-sectional area. These largely affected the width and,

in some cases, thickness measurements. Thus, the measurements for the Poisson’s ratio are

not reliable. Instead of measuring the Poisson’s ratio, a set of finite element simulations are

performed by changing the values of the Poisson’s ratio. Simulation results show that

varying Poisson’s ratio had negligible effect on longitudinal stress and deflection. The

small variation in stress and deflection justifies assuming a reasonable value of 0.4 for

Poisson’s ratio.

5. Finite element modeling

5.1. Geometric modeling

There exist an infinite number of directions that current may flow for an underwater

cage, however top-down and side flows are most likely to occur. The number of modeled

choices is, therefore limited to cages subject to top-down and side flows. Figs. 6 and 7 show

an example of each case. All tubes are meshed with merged shell and tension-only

membrane elements in the same merged element configuration as the verification model.

The tubular connectors in the cage are modeled with high-stiffness shell elements that

simulate a rigid body. String elements (LINK10 in ANSYS) are used to model the tension-

only cables that tie together certain connectors throughout the cage. Total drag loading is

divided equally among nodes and applied as a vector force in the direction of flow. ANSYS
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Fig. 6. Top-flow boundary condition locations.

Table 1

Summary of experimental and corrected material properties

Material/orientation Experimental elastic modulus (psi) Corrected modulus (psi)

VF 600/hoop 5798.4 7479.9

VF 600/longitudinal 36098.0 46566.4



script files are used to parameterize the variables involved in the construction and analysis

of each cage so that different designs can easily be obtained by changing these parameters.

Drag on a given member is a direct function of tube length, tube diameter, and the

flowing fluid velocity squared. Table 2 presents vinyl-flow data including tube diameter,

thickness, and working pressure for a given series number. These three independent

variables are combined using data from commercially available materials. The VF Series is

then grouped by pressure range to show approximately constant pressure trends.

5.2. Fluid-flow modeling

Flowing water current acting on the cage initiates bending in the inflated members. The

flow is assumed to be steady cross-flow over a smooth cylinder. Eq. (9) defines the drag
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Fig. 7. Side-flow boundary condition locations.

Table 2

Manufacturer data for vinyl-flow commercial drainage tubing

Series no. Tube

diameter (in.)

Approximate wall

thickness (in.)

Working

pressures (psi)

Pressure

group (psi)

VF 150 1.673 0.0669 80 70–80

VF 200 2.165 0.0669 80

VF 250 2.598 0.0787 80

VF 300 3.130 0.0787 70

VF 400 4.134 0.0827 70

VF 500 5.039 0.0866 40 40–50

VF 600 6.181 0.0866 50

VF 800 8.169 0.1063 45

VF 1000 10.118 0.1181 35 30–35

VF 1200 12.126 0.1181 30

VF 1400 14.134 0.1181 30

VF 1600 16.142 0.1181 30



force, Fdrag, on a cylinder as a function of tube cross-sectional area, A, drag coefficient, CD,

external fluid density, r, and external flow velocity, V.

Fdrag ¼ 1

2
CDArV2 (9)

In order to simplify the analysis condition, we assume that (a) smooth cylinder surface, (b)

constant temperature of 20 8C, (c) steady-state flow, and (d) constant cross-sectional area.

Under these conditions, the coefficient of drag, CD, can be determined using the Reynold’s

number. When the Reynold’s number is in the range of 10,000 
 Re 
 200,000, the

coefficient of drag is about one (Fox and McDonald, 1998).

5.3. Boundary and load conditions for top-flow simulation

The two locations labeled A in Fig. 6 describe two single nodes at the top and bottom of

the cage. Both points are constrained to zero deflection in the x, y, and z directions. The

cage diameter-to-height ratio is set to 8:5 in order to emulate the geometry of some

commercially existing cages. Cables on the underside of the cage are slack and do not

affect the system for this loading case, but were included for aesthetics along with the fixed

node at the bottom of the cage.

Locations labeled B and C in Fig. 6 describe all nodes around the circumference of the

tube at the center of its length. Nodes at location B are constrained to zero deflection in the y

direction. Nodes at location C are constrained to zero deflection in the x direction.

Constraining locations B and C prevents rotational rigid body motion while allowing the

individual tubes and cage to expand symmetrically.

A main load condition is the drag force caused by flow of the surrounding fluid. Even if

the dynamic drag force can be calculated using fluid dynamic models, a simple static force

is applied. The justification is that the flow is laminar and the goal is to identify the strength

of the inflatable structure. For a given water velocity and the geometry of the cage, the drag

force is calculated using Eq. (9) and applied to each member within the structure evenly.

5.4. Boundary and load conditions for side-flow simulation

The location labeled A in Fig. 7 describes the single-node anchor point fixed to zero

deflection in the x, y and z directions. To allow symmetric expansion and prevent rotational

rigid body motion, constraints are placed in two more locations in the cage. Locations

labeled B and C in Fig. 7 describe all nodes around the circumference of a tube at the center

of its length. The nodes at location B are constrained to zero deflection in the y direction,

while nodes at location C are fixed to zero deflection in the z direction.

5.5. Design criteria

For both flow cases failure occurs when wrinkling exists anywhere in the fabric tubing or

when stress exceeds the ultimate strength of the material. Wrinkling is defined as an onset of

compressive bending stress. Wrinkling is expected to occur in the longitudinal direction

because the combined loading of internal pressure and bending decreases the longitudinal
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stress. Tubes are not expected to wrinkle in the hoop direction because the only loading

affecting the hoop stress, internal pressure, creates a tensile hoop stress. The maximum stress

will occur in the longitudinal direction because the combined loading of internal pressure and

bending increase the longitudinal stress. Since the hoop stress is affected only by the internal

pressure loading, using the manufacturer’s recommended working pressure ensures the hoop

stress will not exceed the ultimate strength of the material.

Fig. 8 illustrates a representative case of compressive failure behavior for VF 800 tested

at a water speed of 1.0 knot (1.15 mph or 0.514 m/s) in the top-flow direction. Maximum

and minimum longitudinal stresses are shown for various cage sizes. As the cage size is

increased, maximum stress increases, while minimum stress decreases. Pretension in the

tubes keeps both stresses positive, meaning they are always in tension. When the cage size

increases to the point that the minimum stress drops below zero, the model fails because the

tension-only elements can not support compressive stress. This is then interpreted by the

program as an unconstrained model and results in a rigid body motion. Note that the

compressive stress could go very slightly negative without failure because of the small

compressive strength provided by the merged shell elements comprising the tube.

The side-flow simulations do not show a smooth trend in the longitudinal stress down to

zero as in Fig. 8, but show a sudden drop-off resulting in a rigid body motion. This behavior

can be described as a buckling of the structural tubes. The stress behavior is due to changes

in the higher order bending occurring in the tubes as the cage size changes. This behavior is

further explained in Section 6.2.
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6. Results

Twelve commercially available flexible tubes, as listed in Table 2, are tested under top-

and side-flow conditions. The design yielding the largest cage is chosen and subject to an

additional velocity simulation.
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Fig. 10. Top-flow deformed geometry at the wrinkle point.



6.1. Stress results

Fig. 9 illustrates the maximum longitudinal stresses occurring in each simulation

staying below the experimentally determined ultimate strength of the material, 26 MPa.

This ensures the material strength is not exceeded in any simulation.

6.2. Deformation results

Fig. 10 shows a typical deformed geometry of a cage subject to top flow at the critical

wrinkle point. All eight tubes bend in the negative z direction with maximum z deflection

occurring at half the tube length. Bending plus the Poisson effect cause the cage diameter to

decrease symmetrically throughout the cage.
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Fig. 11. Side-flow deformed geometry at the wrinkle point.

Table 3

Maximum cage deflections for the top-flow orientation, 1 knot water flow

Series

no.

Tube

diameter

(in.)

Working

pressures

(psi)

Maximum

cage diameter

(m)

Ratio of change in

x diameter to original

cage diameter (%)

Ratio of z deflection

to original cage

diameter (%)

VF 150 1.673 80 7.2 �4.93 �10.78

VF 200 2.165 80 9.6 �6.49 �14.98

VF 250 2.598 80 10.8 �6.49 �13.53

VF 300 3.130 70 13.2 �7.02 �15.83

VF 400 4.134 70 16.8 �8.71 �18.78

VF 500 5.039 40 14.4 �5.80 �10.57

VF 600 6.181 50 20.4 �8.83 �17.37

VF 800 8.169 45 26.4 �8.75 �17.47

VF 1000 10.118 35 27.6 �7.78 �13.82

VF 1200 12.126 30 30 �7.60 �13.59

VF 1400 14.134 30 34.8 �8.85 �15.76

VF 1600 16.142 30 39.6 �10.10 �17.92



Fig. 11 shows a typical-deformed geometry of a cage subject to side flow at the critical

wrinkle point. Note that the net cage x diameter increases, while the net cage y diameter

decreases. Internal reaction forces occurring through the cable connections cause internal

bending moments around the corner connectors of the octagon. Deformation effects of

these internal bending moments are visible in the deformed curvature around the
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Table 4

Maximum cage deflections for the side-flow orientation, 1 knot water flow

Series

no.

Tube

diameter

(in.)

Working

pressure

(psi)

Maximum

cage diameter

(m)

Ratio of change in

x diameter to original

cage diameter (%)

Ratio of change in

y diameter to original

cage diameter (%)

VF 150 1.673 80 14.4 2.498 �17.346

VF 200 2.165 80 18 2.600 �18.633

VF 250 2.598 80 20.4 2.598 �18.216

VF 300 3.130 70 21.6 2.681 �18.361

VF 400 4.134 70 27.6 3.138 �21.377

VF 500 5.039 40 18 2.569 �14.222

VF 600 6.181 50 21.6 2.731 �17.667

VF 800 8.169 45 25.2 3.150 �18.619

VF 1000 10.118 35 24 2.672 �15.442

VF 1200 12.126 30 25.2 2.779 �14.976

VF 1400 14.134 30 28.8 3.262 �17.278

VF 1600 16.142 30 32.4 3.760 �19.605

Fig. 12. Top-flow maximum cage diameters for each tubing material grouped by internal pressure.



connectors and account for multiple-mode bending visible in several of the beams. Fig. 11

also illustrates the rotational effect on a representative rigid connector. The different

rotational effects occurring throughout the cage contribute to the multiple-bending modes

and subsequent buckling stress behavior leading to failure.

Two tables are shown to present deflection behavior with respect to the original cage

size. Data are summarized in tabular format because in each case, the maximum deflections

occur at different cage sizes which correspond to different drag loadings. With different

drag loadings, each case cannot be directly compared to determine a graphical trend. The

sign convention for percent changes in deflection is based on direction and follows the

previously defined coordinate system. Tube diameter and working pressure are included in

the tables for comparison between cases. Table 3 shows the maximum diameter change and

maximum z deflection with respect to original cage diameter for the top-flow case.

Diameter deflections are between 4 and 10%, while z deflections are between 10 and 18%.

Table 4 shows the maximum change in the x and y diameters with respect to original cage

diameter for the side-flow case. The magnitudes of x diameter deflections are small and

between 2 and 4%, while y deflections are much larger, at 14–22%.

6.3. Parameter study in cage size

The maximum possible cage size is determined by the point at which the cage wrinkles.

Figs. 12 and 13 show the maximum cage diameter results by tube diameter for the top-flow
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Fig. 13. Side-flow maximum cage diameters for each tubing material grouped by internal pressure.



and side-flow cases, respectively. Slight pressure effects are noted between the pressure

groups of the top-flow case, but are neglected to form one linear increasing trend. The trend

generally shows that, independent of pressure, as diameter increases, the maximum possible

cage diameter increases for top-flow conditions. The side-flow case, however, has significant

pressure effects visible in Fig. 13. Each pressure group is plotted with an increasing linear

trend, but a distinct slope and y-intercept. Within each pressure group, as diameter increases,

the maximum possible cage diameter increases. Also evident is that as pressure increases, the

slope of the constant pressure trends becomes steeper. This indicates that for a given diameter,

operating at higher pressures increases the maximum possible cage size.

Since the flow situations are idealized and true water conditions vary no matter how the

cage is anchored, choosing the material for the largest cage is based on the results of both

flow cases. Fig. 14 presents the data from Figs. 12 and 13 as a summary of the top-flow and

side-flow maximum cage diameters possible for all the material models tested. The

maximum size of the cage is determined by the smaller value from the two flow cases.

Refer to Table 2 for model specific manufacturer data including tube diameter, thickness,

and working pressure for each case.

6.4. Parameter study in velocity

It is also desirable to study how a particular cage is able to withstand water currents

higher than 1 knot. The VF 1600 material is chosen because it generated the largest cage
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Fig. 14. Summary of maximum possible cage size for each material in two flow cases subject to one knot flow

velocity—VF Series number corresponds to the diameter, working pressure, and thickness in Table 2.



size of the various materials tested for 1 knot water flow. The maximum possible VF 1600

cage diameters for top flow and side flow are averaged and then divided by two to obtain an

overall cage diameter that is smaller, but able to withstand a higher than one knot flow

velocity. A cage diameter of 19.2 m is used for a velocity test on the cage. The flow rate was

increased and the cage was able to withstand a maximum flow speed of 1.6 knots in both

top and side-flow cases before wrinkling occurred. In top-flow, cage diameter decreases

10.2%, while in side flow, cage x diameter increases 4.0%, and cage y diameter decreases

17.8%. These deflections are reasonable for an inflated flexible membrane cage of this size

and correspond to the expected deformation results shown in Section 6.2.

7. Conclusions and discussions

This paper presented a numerical method to model the nonlinear-inflatable behavior of a

fabric material by incorporating the theory of inflatable structures into a finite element

model. Preliminary simulations successfully show the inflatable behavior for a full-sized

cage with top and side-flow models. The side- and top-flow models behave differently,

particularly with respect to the divergence volume. The internal pressure and tube diameter

play the largest role in deciding the maximum possible cage diameter prior to wrinkling.

Instead of including a safety factor in the final results, the failure criterion was set to the

point at which wrinkling occurred in any part of the tube. Inflatable tubes do not actually

fail at the point of wrinkling, but can continue past this point. Nonlinear finite element

modeling is shown to be an effective tool in analyzing the behavior of these structures.

Preliminary findings warrant further research that models the external netting. Net

selection has several biological issues to be addressed such as net biofouling and

biologically safe mesh size. Further research is also required to address abrasion during

biofouling with pressure washers. Net analysis will potentially require dynamic analysis to

model the hydrodynamic interaction between the structural element and the fluid (Tsukrov

et al., 2000). Since the cage-divergence volume is an important issue, future work should

include at least an approximation of the nets. Further simulation work should also optimize

the inflatable-material properties. Optimizing the material’s properties and size will

potentially offset the increased loading of the nets, making the inflatable aquaculture cage

practical and economical.
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