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Abstract

A shape design sensitivity formulation for structural–acoustic problems using sequential finite element
and boundary element methods is presented. Frequency-response analysis is used to obtain the dynamic
behavior of the structure, while boundary element analysis is used to solve for the pressure response of the
acoustic domain. It is shown that the adjoint method, which takes the reverse direction to response analysis,
provides a very efficient way of sensitivity calculation. In addition, it has been shown that the adjoint
equation for the shape design problem is the same as that of the sizing design problem. The only difference
is the numerical integration that evaluates the sensitivity coefficient. The combination of the semi-analytical
method for the structure and the analytical differentiation method for the acoustic cavity yields a very
practical approach for the shape design sensitivity formulation. The accuracy of the sensitivity information
is compared with the analytical sensitivity as well as the sensitivity calculated using the finite difference
method.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is the continuation of our previous publication [1] that treated the sizing design
sensitivity formulation for sequential structural–acoustic problems. Here shape design sensitivity
analysis of sequential structural–acoustic problems is presented in which the structural and
see front matter r 2005 Elsevier Ltd. All rights reserved.
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acoustic behaviors are decoupled. When a harmonic excitation is applied, the dynamic behavior
of the structure is described using frequency-response analysis. Boundary element analysis is then
employed to calculate the radiated noise (pressure) from the structural response (harmonic
velocity). This paper describes how to calculate the rate of change of the radiated noise effectively
when the geometry of the structure is changed. The calculated sensitivity information can be used
either in the interactive design process or in the automated optimization process. As sensitivity
calculation is the most expensive process in optimization, the focus of the paper is on how to
calculate it efficiently and accurately.
Traditionally, the sensitivity formulation can be classified into two approaches: the direct

method and the adjoint method. The former calculates the sensitivity of the state response by
differentiating the governing equation and then, using the chain rule of differentiation to calculate
the performance sensitivity. The latter, however, calculates the performance sensitivity without
recourse to the sensitivity of the state response. Rather, it utilizes the adjoint problem in
calculating the implicitly dependent terms [2]. When the number of design variables is greater than
that of performance functions, the adjoint method is more efficient than the direct method.
In the literature, many shape sensitivity formulations of structural–acoustic problems have been

presented using the boundary element method. Most shape sensitivity formulations in the
literature use the direct method. For example, Smith and Bernhard [3] presented the semi-
analytical sensitivity formulation using the direct method. Koo et al. [4,5], Kane et al. [6], and
Matsumoto et al. [7] derived the acoustic sensitivity expression with respect to the shape design
variable. When only boundary element analysis is used [3–7], it is necessary that the velocity on
the boundary and its shape sensitivity be prescribed.
Since the velocity on the boundary is determined through structural analysis, a finite element

method and a boundary element method have been used sequentially in calculating the radiated
noise [8]. The fundamental assumption is that the vibration of the structure is not affected by the
bounding acoustic domain. Englestad et al. [9] optimized the interior noise problem using the
direct method of sensitivity calculation. They considered sizing design variables; i.e., the thickness
of the plate. Hahn and Ferri [10] used the perturbation technique to derive the sensitivity
expression with respect to sizing design variables. Since the acoustic domain is independent of
sizing design, they only perturbed the finite element matrix. Mallardo and Aliabadi [11] used the
shape sensitivity information in order to identify the location of flaws by minimizing the error
between the numerical and experimental data. As far as authors’ knowledge extends, there is
no publication available on the adjoint method in the shape sensitivity formulation of sequen-
tial structural–acoustic problems, which is the main purpose of this paper. The shape
design sensitivity formulation is derived using the adjoint method that takes the reverse order
of response analysis. It has been shown that the adjoint equation is identical for sizing and shape
design problems. The proposed approach can also be applied to the acoustic problem that uses
boundary element analysis only, if the surface velocity and its sensitivity are assumed to be
available.
The composition of the paper is as follows. After a brief review of structural–acoustic analysis

using the finite element and boundary element methods in Section 2, the shape sensitivity
formulation is developed in Section 3 using direct and adjoint methods. Numerical examples are
shown in Section 4 in order to show the accuracy and efficiency of the proposed sensitivity
calculation method, followed by conclusions in Section 5. In order to simplify the presentation,
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the matrix notation is used as much as possible. However, the detailed derivation of shape
sensitivity, which must be used the analytical form, is collected in the appendix.
2. Review of structural–acoustic analysis

In this section, a brief review of structural–acoustic analysis using the sequential finite element
and boundary element methods is presented. This section is necessary in order to derive the
sensitivity formulation in the following section. However, for a detailed explanation of the
analysis procedure the reader is referred to the literature. The fundamental assumption is that the
density of the acoustic medium is low compared to that of the structure so that the influence of the
acoustic medium on the structure can be ignored. Thus, the structural–acoustic response is
decoupled and the solution procedure is sequential. For a detailed explanation the reader is
referred to Kim et al. [1].

2.1. Structural finite element analysis

A structural–acoustic system with a fully enclosed volume is shown in Fig. 1. All members of
the structure are assumed to be plates and/or beams. The structure encloses a three-dimensional
acoustic medium whose dynamic response is controlled by that of the structure. Let Oa and Os be
the domain of the acoustic medium and the structure, respectively. The acoustic domain has a
boundary G ¼ Gar [ Gas, where Gar is the rigid boundary, and Gas is the structural boundary as the
acoustic medium interfaces with the structure. Thus, Gas ¼ Os. In addition, the structure has a
boundary, Gs, that is not shared with acoustic medium. Even if an acoustic source can directly be
applied to the acoustic cavity, it is assumed for simplicity that the excitation comes through the
structural boundary.
When a harmonic load with the magnitude ffg and excitation frequency o is applied to the

structure, the steady-state response of the structure can be calculated from frequency-response
Fig. 1. Structural–acoustic system.
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analysis. Let f be the structural damping coefficient. Then, the structural velocity fvðoÞg can be
calculated using the following matrix equation:

½ joMþ kK�fvðoÞg ¼ ffðoÞg, (1)

where j ¼
ffiffiffiffiffiffiffi
�1
p

, ½M� is the mass matrix, K is the stiffness matrix, and k ¼ ðf� jÞ=o. In this paper
a system level matrix will be denoted by a bold typeface within brackets, whereas a system level
vector will be denoted by a bold typeface within braces. Note that the steady-state response has
the same frequency as the applied load but may have a different phase angle due to the existence
of damping. In frequency-response analysis, all vectors and matrices are complex variables. Even
if the applied load is not harmonic, Eq. (1) can still be applied by decomposing the time-dependent
forces into the frequency domain and solving Eq. (1) at various frequencies.
2.2. Acoustic boundary element analysis

After calculating the velocity response of the structure, the boundary element method can be
used to evaluate the pressure response within the acoustic domain. The standard wave equation is
first reduced to the Helmholtz equation [12]. By integrating over the domain and by using Green’s
theorem, the Helmholtz equation constitutes the following boundary integral equation:

apðx0Þ ¼

ZZ
G
�jroGðxs; x0ÞvnðxsÞ �

qG

qn
pðxsÞ

� �
dG, (2)

where Gðxs; x0Þ is Green’s function, xs 2 G is the position of a reference point, x0 is the position of
an observation point, vn is the normal component of the boundary velocity, and q=qn is the
normal component of the gradient. In Eq. (2), the constant a is equal to 1 for x0 inside the acoustic
domain, 0.5 for x0 on the smooth boundary surface, and 0 for x0 outside the acoustic domain.
Note that Eq. (2) can provide a solution for both radiation and interior acoustic problems.
The boundary element analysis procedure has two steps: first evaluation of the pressure

response on the acoustic boundary using the structural velocity, and then calculation of the
pressure response within the acoustic domain using the boundary pressure information. Let the
acoustic boundary G ¼ Gar [ Gas be approximated by N number of nodes. If observation point x0
is repeatedly positioned at every node, then the following linear system of equations is obtained:

½A�fpsg ¼ ½B�fvg, (3)

where ps ¼ fp1; p2; . . . ; pNg
T is the nodal pressure vector, and fvg is the 3N � 1 velocity vector. For

those nodes on the rigid boundary Gar, the velocity vanishes. Matrices ½A�ðN�NÞ and ½B�ðN�3NÞ are
coefficient matrices calculated from the integrands of Eq. (2) at each node point. Note that these
vectors and matrices are all complex variables. Once fpsg has been computed, Eq. (2) can be used
again to compute the acoustic pressure at any point x0 within the acoustic domain in the form of a
vector equation as

pðx0Þ ¼ fbðx0Þg
Tfvg þ feðx0Þg

Tfpsg, (4)

where fbðx0Þg and feðx0Þg are the column vectors that correspond to the right-hand side of the
boundary integral in Eq. (2).
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3. Shape design sensitivity analysis

In the case of sizing design [1,13], the boundary integral equation does not contain any terms
that are explicitly dependent on the design; only implicitly dependent terms exist through the state
variables. In the shape design problem, however, the boundary integral equation is also changed
when the enclosing structural domain is changed. In order to make sensitivity calculation more
practical, a hybrid method is employed: the semi-analytical method for the finite element method
and the analytical method for the boundary element method.

3.1. Shape design parameterization

In the proposed structural–acoustic problem, the structural domain is a part of the boundary of
the acoustic domain. Thus, shape design parameterization changes the structural domain as well
as the boundary of the acoustic domain. Since the detailed definition of shape parameterization is
out of the scope of the paper, a brief sketch is provided. For a detailed definition users are referred
to literature [14,15].
In this paper, we use the concept of design perturbation in representing shape design

parameterization. Let us start with the assumption that for a given shape design variable the
material point x of the structure moves in the direction of HðxÞ (design perturbation). Let a scalar
parameter t denote the amount of shape change as shown in Fig. 2, then the new point xt after
design change can be expressed by

xt ¼ xþ tHðxÞ; x 2 Os. (5)

When a part of the structure does not move according to the shape design, its design perturbation
HðxÞ is equal to zero. Eq. (5) provides a linear perturbation theory in which a linear design
perturbation is used. If the scalar parameter t is considered as time, then Eq. (5) is similar to the
dynamic process, which is the reason that the design perturbation HðxÞ is often called ‘‘design
velocity’’.
Shape sensitivity of a function gðxÞ is the rate of change of gðxÞ in the direction of design

perturbation HðxÞ. In the shape design problem, this change includes the change in function value
as well as the change caused by the change in the location, which is similar to the total derivative
in mechanics. Thus, the shape sensitivity of a function gðxÞ can be written as

_gðxÞ �
d

dt
gðxþ tHÞjt¼0 ¼ lim

t!0

gtðxþ tHÞ � gðxÞ

t

� �
. (6)
Initial 
design 

Perturbed 
design 

x x� 

  �Θ

Fig. 2. Shape design perturbation. The initial domain is changed to the perturbed domain according to design

perturbation HðxÞ.
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The first step of shape design is to obtain the design perturbation corresponding to the shape
design variable. Then, the sensitivity formulation in the following subsection expresses the
performance sensitivity in terms of the design perturbation.
3.2. Direct method

The direct method of sensitivity formulation is to first calculate the sensitivity of the state
variable and then to use the chain rule of differentiation to calculate the sensitivity of the
performance function. This method is popular because it is closely related to the analysis
procedure. First, the finite element matrix equation (1) is differentiated with respect to the shape
design as

½ joMþ kK�f_vðoÞg ¼ f_fðoÞg � ½ jo _Mþ k _K�fvðoÞg, (7)

where the solution f_vðoÞg is desired for a given excitation frequency o. In Eq. (7), the superposed
‘‘dot’’ represents the shape sensitivity as in Eq. (6). When the design perturbation is given, the
right-hand side of Eq. (7) can be calculated using the structural solution fvðoÞg and variations of
the force vector and mass and stiffness matrices.
The vector and matrices on the right-hand side of Eq. (7) can be expressed analytically if the

continuum form is used [16]. However, their expressions can be complicated, especially when the
structural domain is approximated using shell finite elements. The element experiences shape
change as well as orientation change. A compromised approach would be the semi-analytical
derivative, in which the variation of the coefficient matrices can be calculated using the finite
difference method. For example, let the element mass matrix be denoted by ½mðxÞ�. Then, the
variation of the mass matrix can be calculated using a small perturbation t, as

½ _m� �
½mðxtÞ� � ½mðxÞ�

t
. (8)

The same approach can be used for the stiffness matrix and the force vector. This semi-analytical
method is in fact implemented into the MSC/NASTRAN finite element analysis program [17],
which will be used in the numerical example section. When analytical variations for the mass and
stiffness matrices are available, the proposed method can also be used without any modifications.
After calculating the sensitivity f_vðoÞg of the boundary velocity, the sensitivity of the surface

pressure needs to be calculated by differentiating the boundary element matrix equation (3). By
following a procedure similar to the finite element method, the sensitivity equation for the
boundary element method can be obtained as

½A�f_psg ¼ ½B�f_vg þ ½ _B�fvg � ½ _A�fpsg, (9)

where the solution f_psg is required. The first term on the right-hand side can be calculated using
f_vðoÞg from Eq. (7), and the other terms can be calculated from the given design perturbation
HðxÞ. In the case of those matrices that appear in boundary element analysis, the semi-analytical
method will be expensive since the matrices are full and un-symmetric. Thus, the analytical
expressions of their variations are developed in the appendix.
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Using f_vðoÞg and f_psg on the acoustic boundary, the pressure sensitivity at the observation point
x0 interior (or exterior) to the acoustic domain can be evaluated from Eq. (4), as

_pðx0Þ ¼ f_eðx0Þg
Tfpsg þ feðx0Þg

Tf_psg þ f
_bðx0Þg

Tfvg þ fbðx0Þg
Tf_vg. (10)

The expression of f_bðx0Þg and f_eðx0Þg can be calculated using the same method above, as explained
in the appendix. After calculating _pðx0Þ, the sensitivity of general performance can be calculated
using the chain rule of differentiation.
As mentioned before, the direct method is closely related to the analysis procedure. Each design

variable requires the design perturbation. Since the sensitivity equations (7) and (9) depend on the
design perturbation, they need to be solved for the same number of design variables, which
constitutes the main computational cost of sensitivity analysis. However, since the coefficient
matrices in Eqs. (7) and (9) are already factorized during the response analysis, the computational
cost of sensitivity analysis is relatively inexpensive.
3.3. Adjoint method

Different from the direct method, the adjoint method is closely related to the performance
function rather than response analysis. The basic idea of the adjoint method is to avoid
calculating the sensitivity of the response variables (i.e., f_vg and f_psg), as they need to be calculated
per each design variable. In order to start, consider an acoustic pressure at point x0 as a
performance function, defined as

c ¼ pðx0Þ. (11)

It is assumed that the observation point x0 in Eq. (11) is independent of the design; i.e., it is a fixed
point in the acoustic domain. Note that the acoustic performance function is defined at a point,
which is different from the structural performance that is defined as an integral form [1]. The
sensitivity of the acoustic performance can then be obtained from Eqs. (9) and (10), as

_c ¼ fegTf_psg þ fbg
Tf_vg þ f_egTfpsg þ f

_bgTfvg

¼ fegT½A��1f½B�f_vg þ ½ _B�fvg � ½ _A�fpsgg þ fbg
Tf_vg þ f_egTfpsg þ f

_bgTfvg. ð12Þ

Thus, the variation of the performance function is expressed in terms of the variation of the
structural velocity in Eq. (12); i.e., the calculation of f_psg is avoided. In Eq. (12), the calculation of
½A��1 is expensive and unnecessary. Instead, consider the following form of the acoustic adjoint
equation:

½A�Tfgg ¼ feg, (13)

where the acoustic adjoint solution fgg is desired. Then, the solution of Eq. (13) can be expressed
as fggT ¼ fegT½A��1, which is the same as the matrix inverse part in Eq. (12). Note that the acoustic
adjoint equation (13) is independent of the design. Thus, the adjoint equation needs to be defined
once for all design variables.
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After substituting fggT into the right-hand side of Eq. (12) and after replacing the relation in
Eq. (7), the dependence on f_vg is removed in the sensitivity expression of the performance, as

_c ¼ f½B�Tfgg þ fbggTf_vg þ fggTf½ _B�fvg � ½ _A�fpsgg þ f_eg
Tfpsg þ f

_bgTfvg

¼ f½B�Tfgg þ fbggT½ joMþ kK��1f_f � ½ jo _Mþ k _K�fvgg

þ fggTf½ _B�fvg � ½ _A�fpsgg þ f_eg
Tfpsg þ f

_bgTfvg. ð14Þ

By following the same procedure as Eq. (13), the matrix inverse part can be removed by defining
the following form of the structural adjoint equation:

½ joMþ kK�Tfk�g ¼ fbg þ ½B�Tfgg, (15)

where the structural adjoint solution fk�g is desired. The right superscript � denotes that the
variable is a complex conjugate. Since the mass and stiffness matrices are symmetric, the
coefficient matrix on the left-hand side is the same as that of Eq. (1). Again, the structural adjoint
equation (15) is independent of design. Thus, the adjoint equation needs to be defined once for all
design variables. After substituting the structural adjoint solution to Eq. (14), the sensitivity
expression of c can be obtained as

_c ¼ fk�gTf_f � jo½ _M�fvg � k½ _K�fvgg þ fggT½ _B�fvg � fggT½ _A�fpsg þ f_eg
Tfpsg þ f

_bgTfvg. (16)

Note that the acoustic adjoint equation (13) and the structural adjoint equation (15) are exactly
the same as that of the sizing design problem presented by Kim et al. [1]. Thus, no additional
effort is required for calculating the adjoint solutions. The only difference is calculating the
sensitivity coefficient in Eq. (16). In the sizing design problem, the last four terms in Eq. (16) do
not exist because the acoustic domain is independent of the sizing design variable. However, in the
case of the shape design, the design change causes the change of the acoustic domain whose
contribution is basically the last four terms Eq. (16).
It is noted from Eqs. (13) and (15) that the adjoint equations need to be solved once for all

design variables and the sensitivity expression in Eq. (16) is repeated for all design variables. This
makes the proposed method very efficient compared with the direct method when the number of
performance functions is smaller than that of design variables, which is the case for most
optimization problems.
As can be seen in Eqs. (13) and (15), the solution procedure of the adjoint method is the

opposite to the response analysis procedure: the acoustic adjoint equation is solved first and then,
the structural adjoint equation is solved. This can be a reason that the adjoint method is not
popular in structural–acoustic sensitivity analysis. However, the procedure proposed in Eqs.
(13)–(16) is simple and straightforward. Another possible reason is that the boundary element
coefficient matrix is unsymmetric. Thus, the boundary element matrix equation (3) is different
from the acoustic adjoint equation (13). Even if the coefficient matrix is not symmetric, the
factorized coefficient matrix from one analysis can still be used for the transposed system without
causing further computational cost. In summary, the proposed adjoint method does not require
any more information than the direct method, but can be very efficient when the number of
performance functions is smaller than that of shape design variables.
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4. Numerical examples

Three numerical examples are presented. The purpose of the first example is the validation of
the sensitivity calculation routines related to the boundary element formulation. The second
example contains both the finite element and boundary element methods. However, only the
shape of the boundary elements is changed. The third example uses the full capability of the
proposed sensitivity calculation method.

4.1. Analytical validation of sensitivity results using BEM

The first example is presented to show the sensitivity accuracy of the boundary element method
alone. To that end, the radiated pressure from a sphere with a constant radial velocity is
calculated using boundary element analysis. Fig. 3 shows the boundary element model of a sphere
with a radius of a ¼ 1m, and a constant radial velocity of v ¼ 1m=s is applied at each node. The
sphere is discretized using 384 quadrilateral elements and 386 nodes. The following material
properties are used for air: the density r ¼ 1:205 kg=m3 and the speed of sound c ¼ 344m=s. The
analytical solution to the pressure at a distance r from the center of the sphere can be found in
Ref. [18] as

pðrÞ ¼
jka2rcv

1þ jka

e�jkðr�aÞ

r
. (17)

The radiated pressure at the position (6, 0, 0) is evaluated at various frequency ranges between 1
and 100Hz. In order to resolve the singularity problem of the exterior acoustic analysis, the over-
determination method [19] is employed by choosing an interior point (0, 0, 0) as an additional
observation point.
In this simple example, the radius of the sphere is chosen as a design variable. As can be seen in

the expression of Eq. (17), the pressure will be changed according to the shape design. The design
sensitivity is the rate of pressure change with respect to radius change. Note that the radial
velocity at the surface remains constant and thus, the sensitivity of the velocity is equal to zero.
For design sensitivity analysis, the design perturbation is first defined, which is the unit normal
Fig. 3. Boundary elements for the acoustic sphere model.
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vector to the surface. The design sensitivity equation (9) can be simplified as

½A�f_psg ¼ ½
_B�fvg � f _A�fpsg. (18)

After calculating the variation of the surface pressure, the variation of the pressure can be
evaluated from Eq. (10) as

_pðrÞ ¼ feðrÞgTf_psg þ f_eðrÞg
Tfpsg þ f

_bðrÞgTfvg. (19)

In the adjoint method, the explicit calculation of f_psg is avoided by adopting the following form
of the adjoint equation:

½A�Tfgg ¼ fbg, (20)

where the acoustic adjoint response fgg is expected. After solving for the acoustic adjoint
response, the variation of the pressure can be calculated as

_pðrÞ ¼ fggT½ _B�fvg � fggT½ _A�fpsg þ f_eðrÞgfpsg þ f
_bðrÞgfvg. (21)

Note that the same discussion regarding the efficiency of the adjoint variable method is also
applied for the acoustic problem.
In order to show the accuracy of the proposed sensitivity calculation, the sensitivity result

obtained from boundary element analysis is compared with the sensitivity result obtained by
directly differentiating the analytical solution in Eq. (17). The analytical sensitivity expression is

_pðrÞ ¼
rcvka½ð2j� kaÞð1þ jkaÞ þ ka�

rð1þ jkaÞ2
e�jkðr�aÞda. (22)

Fig. 4 shows the graph of _pðrÞ at r ¼ 6 with various frequency ranges between 1 and 100Hz. It is
clear that the sensitivity result obtained from the proposed method is well matched with that from
the analytical sensitivity.
This model verifies the accuracy of the sensitivity analysis using a boundary element method

only. This procedure is possible because the velocity on the surface is assumed to be constant.
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However, in real applications the velocity also depends on the shape design variable. Thus, it is
necessary to verify the sensitivity results when the velocity changes according to the design, which
is demonstrated in the following section.

4.2. Shape change in the acoustic domain

Consider an acoustic box covered by five rigid walls and one flexible panel on the bottom, as
illustrated in Fig. 5. The goal is to determine how the pressure response changes according to the
shape design variable that changes the height of the acoustic cavity (H in Fig. 5). In this case, the
design perturbation in Eq. (5) can be written as

HðxÞ ¼ 1
3

x3k, (23)

where k is the unit vector in the x3-coordinate direction. The maximum magnitude of the design
perturbation is equal to one at the top surface. Note that the design perturbations for all
structural nodes are zero because their x3-coordinates are zero. Only the acoustic nodes have non-
zero design perturbations.
The same properties as in the sphere model are used for the acoustic medium. The panel is made

of an aluminum plate with a thickness of t ¼ 0:01m, mass density of rs ¼ 2700kg=m3, Young’s
modulus of E ¼ 7:1� 1010 Pa, Poisson’s ratio of n ¼ 0:334, and a structural–damping coefficient
of f ¼ 0:06. A harmonic force with a magnitude of f ¼ 1:0N in the x3-direction is applied at four
points on the plate as shown in the figure. The whole structure is discretized by 144 finite elements
(flexible panel) and 864 boundary element (rigid walls).
The following pressure performance functions are considered: the acoustic pressure at A1 (0.5,

0.6, 0), the interface point at the flexible panel center; and at A2 (0.5, 0.6, 1.5), the center of the
cavity. The MSC/NASTRAN program [17] is used for frequency-response analysis, whereas the
boundary element analysis is used for evaluating the acoustic pressure in the cavity. Fig. 6
provides the amplitude of pressure at points A1 and A2 for the frequency range between 1 and
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140Hz. The peak values of the pressure appear at frequencies corresponding to natural
frequencies of the plate.
In this particular example, the structural domain (bottom plate) is independent of the design,

whereas the acoustic domain is changed according to the design. Thus, there is no explicitly
dependent term in the structural sensitivity equation, which means the right-hand side of Eq. (7)
vanishes. Thus, it is unnecessary to perform the structural adjoint equation and the sensitivity
expression of c becomes

_c ¼ fggTf½ _B�fvg � ½ _A�fpsgg þ f_eg
Tfpsg þ f

_bgTfvg, (24)

which includes the explicitly dependent terms from boundary element analysis. In Eq. (24), the
structural velocity fvg from Eq. (1), acoustic pressure from Eq. (3), and the adjoint solution fgg
from Eq. (13) are used in evaluating the sensitivity expression.
As shown in Fig. 5, the height H of the acoustic cavity is selected as a shape design variable.

The design sensitivities are computed at 76Hz, which is close to the resonant frequency, as shown
in Fig. 6. The design sensitivity results are shown in Table 1. Since the pressure p ¼ pr þ jpi is a
complex variable, the sensitivity of its amplitude can be calculated from the following formula:

jpj� ¼
pr _pr þ pi _pi

jpj
, (25)

where _p ¼ _pr þ j _pi is obtained from the design sensitivity analysis.
Different from the sphere problem, no analytical solution is available for the box model. Thus,

the best way of validating the accuracy of the sensitivity results is to compare them with those
obtained from the finite difference method. In Table 1, cðuÞ and cðuþ DuÞ are the responses at
designs u and uþ Du, respectively, where Du is the amount of design perturbation. The forward
finite difference design sensitivity is obtained by Dc=Du ¼ ½cðuþ DuÞ � cðuÞ�=Du, and _c is the
predicted design sensitivity using the proposed method. A design perturbation of Du ¼ 1:0�
10�3 m is used, and the predicted values are compared with the finite difference results. Table 1
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Table 1

Sensitivity accuracy compared to the finite difference method

Performance cðuÞ cðuþ DuÞ Dc=Du _c Ratio

Pressure at A1 1.81181 1.80530 �6.507 �6.519 100.18

Pressure at A2 0.99016 0.99211 1.941 1.943 100.10

Shape design is the height (H) of the acoustic domain.
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presents design sensitivity results for the acoustic pressure in Pascal (Pa). Good agreement is
obtained between _c and Dc=Du. The sensitivity results show that the pressure at the center of the
bottom surface (Point A1) is reduced, while the pressure at the center of the acoustic domain is
increased (Point A2).
In this example, the advantage of the adjoint variable method is not clearly shown, because the

number of design variable is less than the number of performance measures. The efficiency of the
method, however, has been shown in Ref. [1], in which the example has 144 design variables but
one performance measure. If the direct differentiation method is employed in such a problem,
then 144 design sensitivity equations must be solved, while with the adjoint variable method only
one adjoint equation needs to be solved.
4.3. Shape change in the structural domain

The previous two examples do not perturb the structural domain. Thus, there is no need to
calculate the structural adjoint response in Eq. (15). For example, the sensitivity expression in Eq.
(24) only includes the acoustic adjoint solution fgg from Eq. (13). In this section, the same box
model as in Fig. 5 is considered as a last example. In this case, however, the shape design variable
is chosen such that the length of the flexible plate (D in Fig. 5) is changed. For such a design, the
design perturbation is given as

HðxÞ ¼ x1i, (26)

where i is the unit vector in the x1-coordinate direction. This design variable changes both the
structural and acoustic domains.
After solving the structural response fvg and the acoustic response fpsg, the acoustic adjoint

problem in Eq. (13) and the structural adjoint problem in Eq. (15) are solved. The pressure
sensitivities at points A1 and A2 are calculated using Eq. (16). Table 2 compares the sensitivity
results obtained from the proposed method with those from the finite difference method. The
same perturbation size as in the previous example is used for the finite difference calculation.
Instead of comparing the magnitude of the pressure, the real part (R) and the imaginary part (I)
are compared. Good agreement is observed between _c (results from the proposed sensitivity
calculation method) and Dc=Du (results from the finite difference method). It is noted that the
sensitivity values in Table 2 are greater than those in Table 1, which means that the structural
shape design changes the acoustic pressure more significantly than the acoustic design.
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Table 2

Sensitivity accuracy compared to the finite difference method

Performance cðuÞ cðuþ DuÞ Dc=Du _c Ratio (%)

Pressure R 1.7696 1.7738 4.1875 4.2019 100.34

at A1 I �0.3890 �0.4622 �73.205 �73.294 100.12

Pressure R 0.2997 0.2664 �33.274 �33.271 99.99

at A2 I �0.9437 �0.9667 �22.933 �22.932 100.00

Shape design is the length (D) of the structural domain.
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5. Conclusions and discussion

Shape sensitivity analysis of the sequential structural–acoustic problem is presented using the
adjoint variable method. The reverse procedure of sensitivity analysis makes it possible to
calculate the adjoint responses. It has been shown that the non-symmetric property of the acoustic
boundary element formulation does not prohibit the use of the adjoint variable method. Due to
the un-coupled nature of the problem, the structural adjoint problem is only required when the
structural domain is changed according to the design perturbation. The proposed method shows
promising results in accurately calculating sensitivity information using the adjoint variable
method.
As has been shown by Kim et al. [1] and Dong et al. [13], the peak value of the acoustic noise

usually occurs near the natural frequency of the acoustic domain. In the sizing design problem,
however, the natural frequency of the acoustic domain remains constant because the shape of the
acoustic domain does not change. Thus, it is unnecessary to consider shifting the peak value of the
pressure during design optimization. However, in the shape design problem the shape of the
acoustic domain indeed changes according to the design variable. Thus, careful consideration is
required for selecting the performance function. Otherwise, the peak value of the pressure simply
moves to another frequency without actually reducing the noise level.
Appendix

In this section, the shape variation of the boundary integral equation (2) is derived. Fig. 7 shows
a quadrilateral boundary element with given nodal design perturbation vectors. It is assumed
that all vectors are represented in the element-fixed local coordinates, including the design
perturbation vectors. As the value of the design variable changes, the element geometry is moved
to the perturbed element. Accordingly, the area of the element, as well as the orientation of the
element is changed.
Consider the fundamental solution of the Helmholtz equation. In the three-dimensional

problem, Gðxs;xÞ is defined as

Gðxs; xÞ ¼
e�jkr

4pr
, (27)
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Fig. 7. Initial and perturbed boundary elements. Design perturbation vectors are defined at each node.
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where r ¼ xs � x, r ¼ krk and k ¼ o=c is the wavenumber. A bold typeface denotes a geometric
vector. As the shape changes, the distance between the reference and observation points is
changed. According to the design perturbation given in Eq. (5), the variation of this distance can
be obtained as

_r ¼
1

r
r � ðHs �HÞ, (28)

where Hs and H are the design perturbation vectors at points xs and x, respectively. When the
observation point is within the acoustic domain, x is independent of the design; i.e., H ¼ 0. Using
Eq. (28), the variation of the fundamental solution can be calculated, as

_Gðxs;xÞ ¼ �
e�jkr

4pr2
ð1þ jkrÞ_r. (29)

Note that the variations in Eqs. (28) and (29) explicitly depend on the design. Thus, for the given
design perturbation these expressions can be obtained easily.
Next, as the shape of the structure changes, the normal vector to the boundary also changes its

direction. From Fig. 7, let a ¼ ðx3 � x1Þ � ðx4 � x2Þ be the normal vector to the element. Then,
the unit outward normal vector is defined as

n ¼
a

kak
, (30)

whose variation can be obtained by

_n ¼
1

kak
½_a� ð_aTnÞn�, (31)

where _a ¼ ðH3 �H1Þ � ðx4 � x2Þ þ ðx3 � x1Þ � ðH4 �H2Þ. Note that _n is the tangential compo-
nent of _a, normalized by kak.
In addition to the integrands, the integral domain Os also depends on the shape design. For a

given design perturbation in Eq. (5), the perturbed domain Os
t satisfies the following relation:

dOs
t ¼ J dOs, (32)
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where J ¼ jdxt=dxj is the determinant of the Jacobian relation. Thus, it is enough to consider the
variation of J, which can be derived as

_J ¼
X2
i¼1

qYi

qxi

. (33)

It is assumed that the structural domain (or acoustic boundary) is composed of NE number of
boundary elements. Let us consider the variation of the first integrand on the right-hand side of
Eq. (2). Using Eqs. (29), (31) and (33), the explicitly dependent terms can be obtained as

f_bgTfvg ¼
XNE

e¼1

ZZ
Os

e

½�jroð _Gn � vþ G _n � vþ _JGn � vÞ�dOs
e. (34)

For a given analysis result fvg and the design perturbation, the right-hand side of Eq. (34) can
readily be evaluated using the same numerical integration method as boundary element analysis.
As can be seen from Eq. (34), it is unnecessary to construct the global vector f_bg. Rather, the right-
hand side of Eq. (34) needs to be calculated and summed for each boundary element. In order to
calculate ½ _B�fvg in Eq. (16), the expression in Eq. (34) is repeated by setting the observation point
to the location of all boundary nodes.
The second integrand of Eq. (2) can also be calculated using a similar method. The second

fundamental solution to the Helmholtz equation is defined as

Hðxs; xÞ ¼
qGðxs;xÞ

qn
¼ �

1þ jkr

4pr3
e�jkrrn, (35)

where rn ¼ r � n is the normal component of r. Using Eqs. (29), (31) and (33), the explicitly
dependent terms of Hðxs;xÞ can be obtained as

_Hðxs;xÞ ¼ �Hðxs;xÞ
3þ jkr

r
_r

� �
�

e�jkr

4pr3
½ jkrn _rþ ð1þ jkrÞ_rn�. (36)

Using Eqs. (33) and (36), the explicitly dependent terms of the second integrand of Eq. (2) can be
obtained as

f_egTfpsg ¼
XNE

e¼1

ZZ
Os

e

½ _Hðxs;xÞps þ
_JHðxs;xÞps�dO

s
e. (37)

Again, it is unnecessary to construct the global vector f_eg, as the integral can be evaluated in the
element level. As with Eq. (34), the expression in Eq. (37) can be used in the calculation of ½ _A�fpsg

in Eq. (16) by setting the observation point to the location of all boundary nodes.
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