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I. Introduction

R ELIABILITY-BASED design optimization (RBDO) involving
a computationally demanding model has been limited by the

relatively high number of required analyses for uncertainty propaga-
tion during the design process. To overcome this limitation, several
alternatives, such as moment-based methods1−4 and the stochastic
response surface approach,5−8 have been proposed. The moment
based-methods are relatively efficient because they approximate the
performance measure at the most probable point. However, the accu-
racy of these approximations is a concern when the function exhibits
nonlinear behavior.

The stochastic response surface (SRS) approach models the per-
formance function as the sum of elementary functions (bases) of
stochastic input parameters and is particularly useful in computa-
tionally intensive applications. However, this approach leaves open
two issues that critically affect its effectiveness/efficiency: the na-
ture of the elementary functions and the number and location of the
sampling points.

This Note presents an efficient shape optimization technique that
addresses the referenced issues based on SRS constructed using
outputs at heuristically selected collocation points. The proposed
SRS is a polynomial chaos expansion that uses Hermite polyno-
mial bases and provides a closed-form approximation of outputs
from a significant lower number of model simulations than those
required by conventional methods. The efficiency and convergence
of the proposed approach are demonstrated using an industrial de-
sign problem.

II. Uncertainty Propagation and Polynomial
Chaos Expansions

Uncertainty quantification can be decomposed in three fundamen-
tal steps: 1) uncertainty characterization of inputs, 2) propagation
of uncertainty, and 3) uncertainty management. The uncertainties
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in inputs are represented in terms of standard normal random vari-
ables (SRV). For other types of random variables, either different
polynomial bases9 or appropriate transformation can be used.

The uncertainty propagation is based on constructing SRS (poly-
nomial chaos expansion). The polynomial expansion uses Hermite
bases for the space of square-integrable probability density functions
(PDF). The SRS has been applied for various applications, including
biological systems,6 tolerance analysis,7 and electric systems.8

Let n be the number of random variables and p the degree of
expansion. The output can then be expressed in terms of SRV {ξi }
as

y(p) = a(p)

0 +
n∑

i = 1

a(p)

i �1(ξi )+
n∑

i = 1

i∑
j = 1

a(p)

i j �2(ξi , ξ j )

+
n∑

i = 1

i∑
j = 1

j∑
k = 1

a(p)

i jk �3(ξi , ξ j , ξk)+ · · · (1)

where the a(p)

i , a(p)

i j , . . . , are deterministic coefficients to be esti-
mated and �m(ξ1, . . . , ξm) are multidimensional Hermite polyno-
mials of degree m given by

�m(ξi , . . . , ξm) = (−1)me1/2ξT ξ ∂m

∂ξi . . . ∂ξm
e−1/2ξT ξ (2)

where ξ is the vector of m independent and identically distributed. In
general, the approximation accuracy increases with the order of the
polynomial, which should be selected reflecting the accuracy needs
and computational constraints. The unique feature of the polynomial
chaos expansion is that it uses the SRV and Hermite bases. Because
of the property that the Hermite bases are orthogonal with respect to
an inner product defined using Gaussian measures, the polynomial
chaos expansion in Eq. (1) is convergent in the mean-square sense.9

The coefficients in the polynomial chaos expansion are calculated
as those providing the best fit (least-squares solution) considering
a sample of input/output pairs. Because all inputs are represented
using SRV, more accurate estimates for the coefficients can be ex-
pected if the probability distribution of ξi is considered. Hence, a
set of points near the high-probability region is heuristically se-
lected among the roots of the one-order higher polynomial under
restrictions of symmetry and closeness to the mean.

III. Improving the Efficiency of SRS Using Local
Sensitivity Information

In the proposed SRS, the number of sampling points depends on
the number of unknown coefficients. Although the proposed method
is accurate and robust, we have to address the curse of dimension-
ality: As the number of random variables increases, the number
of coefficients rapidly increases. If local sensitivity information is
available, then n + 1 data at each sampling point can be used for con-
structing the SRS, which significantly reduces the required number
of sampling points. Isukapalli et al.10 used an automatic differentia-
tion program ADIFOR to calculate the local sensitivity of the output
with respect to random variables.

In this Note, continuum-based design sensitivity analysis is uti-
lized to calculate the gradient of the output with respect to random
variables. Recent review of the method can be found by Choi and
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Kim.11 Let z be the displacement and z̄ be the displacement vari-
ation that belongs to the space Z of kinematically admissible dis-
placements. For given body force f and surface traction force t, the
variational equation is formulated as

a(z, z̄) :=
∫

�

∫
σi j (z)εi j (z̄) d�

=
∫

�

∫
fi z̄i d� +

∫
�T

ti z̄i d� := �(z̄) (3)

for all z̄ ∈ Z. To solve Eq. (3) numerically, the finite element-based
method or the meshfree method can be employed, which ends up
solving the matrix equation [K]{D} = {F}.

In design sensitivity analysis, the variational Eq. (3) is differenti-
ated with respect to design variables. Suppose that the initial struc-
tural domain � is changed into the perturbed domain �τ in which
the parameter τ controls the shape perturbation amount. When the
design changing direction is defined to be V(x), the material point
at the perturbed design can be denoted as xτ = x + τV(x). The so-
lution zτ (xτ ) of the structural problem is assumed a differentiable
function with respect to shape design. The sensitivity of zτ (xτ ) at
xτ is defined as

ż = lim
τ → 0

zτ [x + τV(x)] − z(x)

τ
(4)

The design sensitivity equation is obtained by taking the mate-
rial derivative of the variational equation (3). If the applied load is
independent of displacement, that is, conservative, then the design
sensitivity equation is obtained as
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for all z̄ ∈ Z. In Eq. (5),
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Note that by substituting ż into z the left-hand side of the design
sensitivity equation (5) takes the same form as that of the response
analysis in Eq. (3). Thus, the same stiffness matrix [K] can be used
for sensitivity analysis and response analysis, with a different right-
hand side for the fictitious load. Once you calculate the sensitivity
ż of the field vector, the sensitivity of the performance function can
be calculated using the chain rule of differentiation.

When finite element analysis is used, the sensitivity equation can
be solved inexpensively because the coefficient matrix is already
factorized when solving Eq. (3) and the sensitivity equation uses
the same coefficient matrix. The computational cost of sensitivity
analysis is usually less than 20% of the original analysis cost. The ef-
ficiency of the uncertainty propagation approach is critical to RBDO
because at each design cycle an updated version of the PDF for the
constraint function is required.

IV. Case Study: Torque-Arm Problem
The torque-arm model12 is used in shape optimization, as shown

in Fig. 1. The left hole of the structure is fixed, and an inclined force

Fig. 1 Torque arm model and random variables.

is applied at the center of the right hole. The meshfree method is
employed for the numerical model.12 The torque-arm is made of
steel with stiffness of 207 GPa and Poisson’s ratio of 0.3. In Fig. 1,
the relative coordinate change of the boundary curve is defined as a
random variable and the mean value of random variable is defined
as a design parameter.

The design goal is to minimize the mass of the structure by chang-
ing the shape of the geometry, which can be modified by moving
the boundary curves. The locations of boundary curves are asso-
ciated with probabilistic distributions due to manufacturing toler-
ances. The relative locations of corner points of the boundary curves
are defined as random variables. For simplicity, we assumed that all
random variables exhibit a normal distribution with mean μi = 0
and standard deviation σi = 0.1, that is, x ∼ [N (0, 0.12)]. The mean
values of these random variables are chosen as design parameters di ,
whereas the standard deviation remains constant during the design
process. The initial model consists of eight design parameters.

In the initial design, the maximum stress of 319 MPa occurs
at location A in Fig. 1. The stress limit is established to be
σlimit = 800 MPa. In the reliability analysis, the performance func-
tion is defined such that y(x) ≤ 0 is considered failure. Thus, for
the case of stress constraints, the following performance function is
defined:

y(x) := σlimit − σA(x) (7)

where σA is the stress at location A.

A. SRS for the Torque-Arm Model
To show how the SRS is constructed and the PDF of the output

is calculated, the three random variables, x2, x6, and x8 that most
significantly contribute to the stress performance are chosen. The
coefficients of the polynomial chaos expansion are obtained using
the performance values at collocation points. The collocation points
are selected among the roots of the polynomial that is one order
higher than the order of polynomial chaos expansion considered
under restrictions of symmetry and closeness to the mean.13

In the torque-arm model, the PDF of the performance function is
plotted in Fig. 2a for different orders of polynomials. There are 27
collocation points used for the second-order SRS and 125 points for

a)

b)

Fig. 2 PDF of the performance function y(x): a) only function values
used with full collocations and b) function values and local sensitivities
used with reduced collocations.
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the third-order SRS. The accuracy and convergence of the proposed
SRSs are compared with the PDF obtained using Monte Carlo sim-
ulation with 100,000 sampling points. The root-mean-square error
of the second-order SRS is 5.7824 × 10−4 and the third-order SRS
is 3.6012 × 10−4. As expected, the error is reduced as the order of
the polynomial is increased.

To reduce the required number of sampling points, local sensi-
tivity information is now incorporated. In such a case, n + 1 data
are available (function value plus gradients of n random variables)
at each sampling point. In the context of the case study, even if the
number of unknown coefficients is not changed, the number of data
that can be obtained from each sampling point is increased from
one to four. Thus, theoretically, the number of sampling points can
be reduced by a factor of four. In Fig. 2b, the PDF of the perfor-
mance function is plotted for different orders of polynomials and
that from the Monte Carlo simulation now considering local sensi-
tivity information. It turns out that the SRS constructed using local
sensitivity information can achieve the same level of accuracy as
those constructed without sensitivity information with four times
lower number of sampling points.

B. RBDO
The RBDO problem is formulated and solved for the torque-arm

model using the third-order SRS. The design optimization problem
is defined as minimize mass subject to

P(yi (x) ≤ 0) ≤ Φ(−βti ), i = 1, . . . , NC

dL ≤ d ≤ dU (8)

where x = [xi ]
T , i = 1, 2, . . . , n, denotes the vector of random vari-

ables, d = [di ]
T = [μi ]

T represents the design variables chosen as
the mean values of x, βt is the target reliability index, and � is the cu-
mulative density function of SRV. The system performance criteria
are described by the performance functions y j (x) such that the sys-
tem fails if y j (x) < 0. Each y j (x) is characterized by its cumulative
distribution function Fy(0),

Fy(0) = P(y(x) < 0) =
∫

y(x) < 0

· · ·
∫

fx (x) dx1 · · · dxn (9)

where fx(x) is the joint PDF of all random variables. During the op-
timization a βt = 3 is used, which corresponds to 99.87% reliability.
Because the maximum stress location can move, the probabilities of
failure at four different locations are chosen as constraints in Eq. (8).

Because the probability integration domain is in general complex,
many approximation methods [Monte Carlo simulation (MCS),
first-order reliability method (FORM), or second-order reliability
method (SORM)] are often used. In this Note, the PDF estimated us-
ing the proposed uncertainty propagation scheme is used for evalu-
ating reliability constraints, hence, providing better approximations
than the traditional linearization (FORM) at the current design and,
thus, significantly improving the rate of convergence of RBDO.

Table 1 shows the properties of the random variables and the
lower and upper bounds of their mean values (design parameters).
In contrast to Sec. IV.A, in this model all eight random variables are
subject of optimization.

Table 1 Definition of random design variables and their bounds

Standard Distribution
RV d L d , Initial dU d, Optimum deviation type

x1 −3.0 0 1.0 −0.7532 0.1 Normal
x2 −0.5 0 1.0 −0.5000 0.1 Normal
x3 −1.0 0 1.0 −0.1346 0.1 Normal
x4 −2.7 0 1.0 −2.5443 0.1 Normal
x5 −5.5 0 1.0 −0.8508 0.1 Normal
x6 −0.5 0 2.0 1.9998 0.1 Normal
x7 −1.0 0 7.0 0.8319 0.1 Normal
x8 −0.5 0 0.0 0.0000 0.1 Normal

a)

b)

Fig. 3 Optimization results: a) geometry of the torque-arm model:
- - -, initial and ——, optimum and b) maximum stress contour plot at
optimum design.

Fig. 4 Mass values for the torque-arm along the design process.

Fig. 5 Torque-arm problem results: - - -, deteministic and ——,
reliability-based optimization.

The design optimization problem is solved using the sequential
quadratic programming technique. The optimum values of the de-
sign variables are shown in the fifth column in Table 1. Figure 3
shows the optimum design and analysis results at the mean values.
The major changes occur at design parameters d4, d5, and d6. Even
if the maximum stress constraint is set to 800 MPa, the optimum
design converges to 704 MPa so that the variance of the input pa-
rameters can be accounted for. Figure 4 provides the optimization
history of the cost function. As a result of the optimization process,
the mass of the structure is reduced from 0.878 to 0.509 kg (a re-
duction of about 42%). Note that most of the reduction is achieved
in the first five design cycles.

Figure 5 shows a comparison of the deterministic optimum de-
sign with that corresponding to RBDO. The dotted line represents
the boundary curves of the deterministic optimum design, whereas
the solid line represents the boundary curve of the reliability-based
optimum design. The deterministic design has a larger inner slot size
compared to the reliability-based optimization because the former
does not account for the uncertainty in the design parameters and
the corresponding variability in the performance function.

To see the impact of the accuracy of the uncertainty propagation
procedure at the optimum design, a third-order SRS at optimum
design is investigated (Fig. 6). The standard deviation is increased
compared to the initial design. Table 2 shows the values of the reli-
ability indices at the optimum design obtained from MCS, the pro-
posed SRS approach, and the FORM. The proposed SRS approach



AIAA JOURNAL, VOL. 44, NO. 5: TECHNICAL NOTES 1115

Table 2 Comparison of reliability indices
at optimum design

Method Reliability index Error, %

MCS 3.0307 ——
SRS 3.0115 0.633
FORM 2.9532 2.556

Fig. 6 PDF of the performance function at the optimum design for the
torque-arm problem.

exhibits a lower error than the FORM and compares very well with
the exact result, namely, 3.0, and that obtained using MCS, 0.6%
error.

V. Conclusions
In this Note, we present an efficient RBDO framework based

on polynomial chaos expansions (SRS) and local sensitivities.
The polynomial chaos expansion, orthogonal with respect to the
Gaussian measure, provides a convergent and robust uncertainty
propagation scheme. The efficiency of the proposed SRS is im-
proved by using local sensitivity information. The accuracy, effi-
ciency, and convergence of the proposed approach for RBDO are
demonstrated using a benchmark problem related to the RBBO of
a structural part.

In general, as the nonlinearity of the problem increases, the er-
rors using the traditional moment-based methods are expected to

increase, whereas the proposed approach can still maintain its ac-
curacy, although this may come at an additional computational
expense.
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