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Safety Envelope for Load
Tolerance and its Application to
Fatigue Reliability Design
In this paper, a safety envelope concept for load tolerance is introduced. This shows the
capacity of the current design as a future reference for design upgrade, maintenance, and
control. The safety envelope is applied to estimate the load tolerance of a structural part
with respect to the fatigue reliability. First, the dynamic load history is decomposed into
the average value and amplitude, which are modeled as random variables. Second,
through fatigue analysis and uncertainty propagation, the reliability is calculated. Last,
based on the implicit function evaluation for the reliability, the boundary of the safety
envelope is calculated numerically. The effect of different distribution types of random
variables is then investigated to identify the conservative envelope. In order to improve
the efficiency of searching the boundary, probabilistic sensitivity information is utilized.
When the relationship between the safety of the system and the load tolerance is linear or
mildly nonlinear, the linear estimation of the safety envelope turns out to be accurate and
efficient. During the application of the algorithm, a stochastic response surface of loga-
rithmic fatigue life with respect to the load capacity coefficient is constructed, and the
Monte Carlo simulation is utilized to calculate the reliability and its sensitivities.
�DOI: 10.1115/1.2204971�
1 Introduction
Traditionally, structural design under uncertainty treats struc-

tural dimensions, shapes, and material properties as uncertainty
parameters. These parameters are relatively well controlled, so
that their variability is usually small. However, the uncertainty in
the applied load is much larger than in others. The variability of
the load is often ignored in the design stage because it is difficult
to quantify. Without knowing the accurate uncertainty character-
istics of inputs, it is dubious to rely on the reliability result of the
output. In this paper, a different approach is taken by asking how
much load and variability a system can support. The amount of
load that a structure can support becomes important information
for evaluating the design. Traditional design concerns load capac-
ity by introducing a safety factor, which is supposed to provide a
safety margin under the random load conditions. Kwak and Kim
�1� proposed a concept of allowable load sets, where deterministic
loads are used without considering uncertainties involved in it. In
linear static structures, the allowable load set becomes piecewise
linear and convex.

In this paper, the idea of the allowable load set is further ex-
tended to the fatigue life estimation under uncertainty in the ap-
plied dynamic loads using the stochastic response surface tech-
nique �2,3� and sensitivity information �4,5�. The dynamic load is
parametrized, and the uncertainty of the parameters is modeled as
a random variable. Since the problem at hand includes the fatigue
life of dynamic systems, it is computationally intensive, without
mentioning the reliability analysis. Thus, it is important to calcu-
late uncertainty propagation efficiently. Instead of searching the
load tolerance directly, an estimation method using the data at the
current load and their sensitivity is proposed. This idea can be
further extended to the multi-dimensional case, in which the load
tolerance becomes a safety envelope.

With reference to Fig. 1, the analysis procedure can be decom-
posed into three different levels:
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�1� Calculate the fatigue life of the structure when a dynamic
load history is provided. In this particular application, a
commercial program, FE-SAFE �6�, is used to calculate the
fatigue life.

�2� Construct the stochastic response surface to calculate the
reliability of the fatigue life due to the uncertainty in load
parameters.

�3� Predict the load tolerance and construct the safety envelope
using the predictor-corrector algorithm.

2 Parametrization of Dynamic Loads
The safety of a structure strongly depends on the assumptions

given in the input conditions. Among them, the assumption in the
applied load may be the most important factor. Thus, it would not
make any sense to analyze and design a structure without consid-
ering the variability of the load. The same design can be safe or
failed based on input loads. However, input loads are often un-
known, especially for dynamic systems. As shown in Fig. 2, dy-
namic loads are usually complicated and involve uncertainties.

In general the load characteristics from one operator may com-
pletely differ from that of others. In order to perform reliability
analysis, it is necessary to characterize the uncertainties involved
in the inputs. However, the distribution type and parameters of
loads are often unknown. As a partial remedy for this difficulty, it
is assumed that the representative dynamic load history f0�t� is
available either from experiments or from computer simulations.
This dynamic load is decomposed into the average value and am-
plitude. The parametrization of the dynamic load can then be in-
troduced by changing the average value and amplitude as

f�t� = �fave + ��f0�t� − fave� �1�

where fave is the average value of f0�t�, and � and � are the load
capacity coefficients �LCC� for the average value and amplitude,
respectively. When �=�=1, the applied load is identical to the
initial load history. In Eq. �1�, � and � cannot be negative. Equa-
tion �1� provides a convenient method of parametrization because
only two parameters are involved and the dynamic characteristics
of the initial load history can be preserved. Considering that the

fatigue life of the structure depends on the average value and

JULY 2006, Vol. 128 / 91906 by ASME



amplitude of dynamic loads, the parametrization in Eq. �1� is also
consistent with fatigue analysis.

In reliability analysis, � and � are considered as random vari-
ables that can represent the statistical behavior of the applied dy-
namic load. In a traditional reliability-based design, variability in
parameters is usually modeled by assuming a specific type of
random distribution. In practice, however, engineers have some
knowledge about the input variables, but the information may not
be accurate. In the case of the dynamic load history, for example,
the statistical property of the load can be obtained from a histo-
gram of the load. However, it may not be clearly shown whether it
is normal or lognormal distribution. In such a case, the engineer
can consider both distributions and select the conservative one. In
this paper, the effect of different distribution types on the response
is investigated by introducing the concept of the conservative dis-
tribution type, which provides a safer way to model uncertainties.

3 Fatigue Life Prediction
The computational model is the front loader frame of civil con-

struction equipment. The model consists of about 172,000 finite
elements. Dynamic loads are measured at 26 different channels.
More than 9000 peak and valleys of dynamic loads are sampled
during the 46 min composite working cycle. The procedure of
finite element based quasi-static fatigue life prediction �7� is
shown in Fig. 3. In the fatigue analysis, a unit static load is first
applied per each channel or load degree of freedom to calculate
the stress influence coefficient. The stress influence coefficients
are multiplied by the dynamic load history to calculate the dy-
namic stress history.

As illustrated in Fig. 3, by collecting different stress amplitudes
at different times using the rain-flow cycle counting technique �8�,
the fatigue damage is linearly accumulated, as is proposed by
Miner �9�. Based on the available material properties and the com-
ponent’s working conditions, the fatigue life of the critical point is
evaluated. The stress-life method is used to determine the fatigue

Fig. 1 Analysis procedure of constructing safety envelope

Fig. 2 Parametrization of dynamic loads using the average
value and amplitude. This method preserves the fundamental
characteristics of the dynamic load history, while it is flexible
enough so that the various effects of the dynamic loads can be

included.
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life, because the primary concern is not the base material, but the
fabricated joints; that is, the weld joints. Since the stress state is
not uniaxial, the critical plane algorithm is used to convert it to
uniaxial fatigue data. In addition, the Goodman model is used to
compensate the effect of non-zero mean stress.

From superposition of quasi-static linear finite element analysis
and dynamic loading, the stress data are calculated for each ele-
ment. This stress can be regarded as “true stress,” which means if
the S-N curve for the material is available, it can be applied di-
rectly in the fatigue life calculation using the principal stress life
method without considering the stress concentration factor. The
S-N curve can be interpolated from nominal stress-life data of the
material, as shown in Fig. 4 for our specific application. The de-
sign goal is to maintain the operation for 60,000 h. Since load
data are measured for 40 min, this corresponds to about
78,000 cycles.

4 Reliability Analysis and Probability Sensitivity
In general, if the inputs of a system have a probabilistic distri-

bution, the output or response shows a probabilistic behavior as
well. In such a case, the safety of the structure cannot be measured
with the deterministic value of the response. Rather, the probabil-
ity that the response is less than the capacity of the system needs
to be considered. In reliability analysis, the random inputs are
given in an n-dimensional vector X with a joint probability distri-
bution function �PDF� fX�x�. The state of the system has a
Boolean description such that the structure fails when the limit

Fig. 3 Flow chart for fatigue life prediction
Fig. 4 Stress-based S-N curve for the material
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state G�X� is less than zero. The probability of failure Pf can be
computed as a cumulative distribution function �CDF� over the
failed region as

Pf =�
G�x��0

fX�x�dx �2�

Since the failed region is in general implicit and complex, the
reliability integral in Eq. �2� is often performed using the Monte
Carlo simulation �MCS� or approximation methods �e.g., first-
order reliability method �FORM�, or second-order reliability
method�. In practice, the reliability level of a structure is usually
represented by the reliability index �=−�−1�Pf� with ��·� being
the CDF of the standard normal random variable.

The computational cost of reliability analysis increases expo-
nentially with the number of parameters, without mentioning the
cost related to the load tolerance analysis. It appears that the only
practical remedy for the computational cost is to construct a re-
sponse surface and perform reliability analysis using it. In this
paper, a stochastic response surface method �2� is used to predict
the relationship between the fatigue life and load capacity coeffi-
cients in the standard Gaussian space. The stochastic response
surface is a particular family of polynomial chaos expansions
�10,11� using orthogonal polynomials. Orthogonal polynomials
have many useful properties in the solution of mathematical and
physical problems. Just as Fourier series provide a convenient
method of expanding a periodic function in a series of linearly
independent terms, orthogonal polynomials provide a natural way
to solve, expand, and interpret solutions to different types of dif-
ferential equations. Orthogonal polynomials associated with the
generalized polynomial chaos �Askey chaos� �11� are different
according to the different weight functions. The type of polyno-
mials is decided by the match between the specific weight func-
tion and the standard probability density function �PDF�. The
types of polynomials and their associated random variables �12�
with various PDFs are listed in Table 1.

In Table 1, for example, Hermite polynomial bases are orthogo-
nal �13� when the Gaussian PDF is used as a weight function.
Thus, the following property holds:

�
�u

��u��i�u�� j�u�du = C	ij, " i, j �3�

where ��u� is the Gaussian PDF and �i�u� is the ith order Hermite
polynomial bases.

The stochastic response surface based on the polynomial chaos
expansion can be viewed as an extension of classical deterministic
response surfaces �14–16�, which are constructed using uncertain
inputs and performance data collected at heuristically selected col-
location points. Let n be the number of random variables and p
the order of polynomial. The model output Gp can then be ex-

Table 1 The type of polynomials and corresponding random
variables for different Askey chaos

Random variable
Orthogonal
polynomials Support range

Gaussian Hermite �−
 ,
�
Gamma Laguerre �0, 
�

Beta Jacobi �a, b�
Uniform Legendre �a, b�
pressed in terms of standard random variables �ui� as
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Gp = a0
p + �

i=1

n

ai
p�1�ui� + �

i=1

n

�
j=1

i

aij
p�2�ui,uj�

+ �
i=1

n

�
j=1

i

�
k=1

j

aijk
p �3�ui,uj,uk� + . . . �4�

where ai
p ,aij

p , . . . are deterministic coefficients to be estimated, and
�p�ui , . . . ,up� are multi-dimensional Hermite polynomials �17� of
degree p given by

�p�ui, . . . ,up� = �− 1�pe1/2uTu �p

�ui . . . �up
e−1/2uTu �5�

where u is a vector of p independent and identically distributed
normal random variables selected among the n random variables
that represent the input uncertainties. In this paper, a modified
version of the Hermite polynomial �13� is used. The first four
terms are u, u2−1, u3−3u, u4−6u2+3, when a single random
variable is involved. The use of the Hermite polynomials has two
purposes: �1� they are used to determine the sampling points, and
�2� they are used as bases for polynomial approximation.

In general, the approximation accuracy increases with the order
of the polynomial, which should be selected by reflecting accu-
racy and computational constraints. The Hermite polynomials,
which are orthogonal with respect to the Gaussian measure, pro-
vide approximation with attractive features, namely: more robust
estimates of the coefficients with respect to those obtained using
non-orthogonal polynomials �18�. They converge to any process
with finite second-order moments �19�, and the convergence is
optimal �exponential� for Gaussian processes �11�. Some numeri-
cal examples of the accuracy and convergence of the stochastic
response surface in the application of structural design can be
found in Kim et al. �20�.

The coefficients in the polynomial chaos expansion are calcu-
lated as those providing the best fit �least squares solution� con-
sidering a sample of input/output pairs. Since all inputs are repre-
sented using standard normal random variables, more accurate
estimates for the coefficients can be expected if the probability
distribution of the ui’s are considered. The idea of Gaussian
quadrature of a numerical integral can be borrowed to generate
collocation points �17�. In Gaussian quadrature, the function argu-
ments are given by the roots of the next higher-order polynomial.
Similarly, the roots of the next higher-order polynomial are used
as the points where the approximation is being solved, which is
proposed as an orthogonal collocation method by Villadsen and
Michelsen �17,21�.

For example, to solve for a three-dimensional second-order
polynomial chaos expansion, the roots of the third-order Hermite
polynomial, −	3, 0 and 	3, are used; thus the possible collocation
points are �0, 0, 0�, �−	3,−	3,−	3�, �−	3, 0, −	3�, etc. There are
27 possible collocation points. However, from Eq. �4�, there are
only 10 unknowns. Similarly, for higher-dimensional systems and
higher-order approximations, the number of available collocation
points is always greater than the number of unknowns, which
introduces the problem of selecting the appropriate collocation
points. The choice of collocation points is critical for a good ap-
proximation. Hence, a set of points near the high probability re-
gion is heuristically selected among the roots of the one-order
higher polynomial under restrictions of symmetry and proximity
to the mean �20�. Since the origin always corresponds to the high-
est probability in standard Gaussian space, the exclusion of the
origin as a collocation point could potentially lead to a poor esti-
mation. Thus, in addition to the standard orthogonal collocation
method, a modification of including zero into the roots of the
one-order higher polynomial, is made in case there is no zero in
these roots.

When the number of random variables increases, the stochastic

response surface encounters difficulty due to the curse of dimen-
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sionality. This is true for all response surface-based approaches.
There are two possible remedies for this difficulty. The first is to
use the local sensitivity information in constructing the response
surface, as presented by Kim et al. �20�. The second is to reduce
the number of random variables. In many practical cases, only a
handful of random variables significantly contributes to the vari-
ability of the output. In such a case, those random variables whose
contribution to the output variability is small can be considered as
deterministic variables and be fixed at their mean value. For that
purpose, Kim et al. �22� used the global sensitivity index to iden-
tify the contribution of input random variables to the variability of
the output. By utilizing the local and the global sensitivity infor-
mation, the required number of analyses can be significantly re-
duced.

In this paper, the fatigue life of a structural part is considered as
a model output. However, the range of the model output changes
over several orders of magnitude. Accordingly, logarithmic fa-
tigue life is approximated using the stochastic response surface in
Eq. �4�. Reliability analysis is then carried out by the Monte Carlo
simulation �MCS� �23,24� operated on the stochastic response sur-
face. In MCS, the probability of failure is calculated by

Pf =�
�x

I�G�x� � 0�fX�x�dx �6�

where G�x��0 is the failure region, fX�·� the joint probability
density function, and I�G�x��0� the indication function in such a
way that I=1 if G�x��0 and I=0 otherwise. In Eq. �6�, �x de-
notes the entire random design space. In the stochastic response
surface, however, all input random variables are transformed into
the standard random variable space �u. Since the explicit expres-
sion of the model output is given in terms of Hermite polynomial
bases as in Eq. �4�, MCS is inexpensive even with 105 samples.

In estimating the safety envelope, the sensitivity information
plays an important role. When moment-based methods are used,
the sensitivity of the reliability index can be calculated without
requiring additional computation. However, sensitivity calculation
in sampling-based methods, such as in Eq. �6�, is not trivial due to
the uncertainty involved in the Monte Carlo integral. Let � be a
statistical parameter. Then, the sensitivity of failure probability
can be obtained by following a similar Monte Carlo integral as

�Pf

��
=�

�u


I�G�x� � 0�� �fX�x�
fX�x���

�
x=T−1�u�

��u�du �7�

where ��u� is the joint PDF of standard normal random variables.
Using the relation between the probability of failure and the reli-
ability index, the sensitivity of the reliability index can be ob-
tained as

��

��
= −

1

��− ��
�Pf

��
�8�

Detailed expressions of �Pf /�� for different distribution types are
summarized in the Appendix. When the input variable is normally
distributed, sensitivity with respect to random parameters in Eq.

Table 2 Accuracy of samp

Distribution
type Performance FOR

Normal Pf
0.09

�0, 0.42� �Pf /�� 0.41
Lognormal Pf

0.32
�0.5, 0.42� �Pf /�� 1.17
Uniform Pf

0.15
�−2, 1� �Pf /�� 0.33
�7� can be obtained from Eq. �A1�.
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As an illustration of the accuracy of sampling-based probability
sensitivity analysis, consider a simple linear analytical function
G�X�=1.6−3X, with X being a random variable. Three different
distribution types are considered. The accuracy of the sampling-
based sensitivity calculation in the above equations can be evalu-
ated by comparing it with the sensitivity from the first-order reli-
ability method �FORM� �25–27� or from the exact solution. When
the function is linear and the input is normally distributed, the
reliability and its sensitivity from FORM will yield the exact val-
ues. Table 2 compares the probability of failure and its sensitivity
with respect to random parameters. The proposed sensitivity cal-
culation results agree with those from FORM �28� and the exact
solution.

5 Estimation of the Load Tolerance Using Sensitivity
First, a single parameter is selected to estimate the load toler-

ance of the structure using sensitivity information. Suppose the
average value of the dynamic load remains constant, while the
amplitude changes randomly. From Eq. �1�, the uncertainty of the
amplitude can be represented using the following parametrization
of the dynamic load:

f�t� = fave + ��f0�t� − fave� �9�

When �=1, we can recover the original load history. When �=0,
the dynamic load becomes a static one with the average value. In
this definition, � cannot take a negative value.

Since accurate information is unavailable for the dynamic load
and also many uncertainties are involved, the load capacity coef-
ficient �LCC� � is defined as a random variable with normal dis-
tribution: ���=1 and �=0.25�. The standard deviation of � is
obtained from the coefficient of variance of the measured load
data f0�t�. This distribution type will be compared with the log-
normal distribution in the following section.

For other types of random variables, an appropriate transforma-
tion must be employed. Devroye �29� presents the required trans-
formation techniques and approximations for a variety of prob-
ability distributions. More arbitrary probability distributions can
be approximated using algebraic manipulations or by series ex-
pansions.

The random variable � can be converted into the standard nor-
mal random variable u by

u =
� − ��

�

�10�

where u�N�0,12�. In order to see the effect of the mean change,
we further fix the standard deviation. Thus, the only variable is the
mean value of the random variable �. The goal is to find the value
of ��, the point where the structure fails.

For any given sample point u, a corresponding � can be ob-
tained from Eq. �10�, and using �, a new dynamic load history can
be obtained from Eq. �9�. By applying this dynamic load history,
we can calculate the fatigue life of the structure. Since this pro-
cedure includes multiple steps, we can construct a stochastic re-
sponse surface for the fatigue life and then perform the reliability

-based sensitivity analysis

MCS on SRS
�105 samples� Exact

0.0914 0.0915
0.4109 0.4100
0.3287 0.3287
1.1763 1.1765
0.1556 0.1556 �7/45�
0.3333 0.3333 �1/3�
ling

M

15
00
87
57
55
34
analysis using the stochastic response surface. Since the fatigue
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life changes by several orders of magnitude, we construct the
stochastic response surface for the logarithmic fatigue life. We
construct a cubic stochastic response surface as a surrogate model
for the logarithmic fatigue life as

L„��u�… = log10�Life� = 5.7075 − 0.7223u − 0.0581�u2 − 1�

+ 0.0756�u3 − 3u� �11�
The above response surface shows that the mean of the logarith-
mic fatigue life is 5.7075 and the standard deviation is about
0.7223. It also shows that the contribution of the higher-order
terms is relatively small compared to the constant and linear
terms. Thus, we can conclude that the performance is mildly non-
linear with respect to the random variable. The accuracy of the
stochastic response surface is evaluated using the various statisti-
cal error measures in Tables 3 and 4, which show the good quality
of the approximation.

For a given logarithmic target life Ltarget �=60,000 h�, the struc-
ture is considered failed when the predicted life in Eq. �11� is less
than the target life. Accordingly, we can define the probability of
failure as

Pf ª P�L��� − Ltarget � 0� � Ptarget �12�

where Ptarget is the target probability of failure. For example, when
Ptarget=0.1, the probability of failure should be less than 10%.
Even though the interpretation of Eq. �12� is clear, it is often
inconvenient because the probability changes by several orders of
magnitude. In reliability analysis, it is more common to use the
reliability index, which uses the notion of the standard normal
distribution. Equation �12� can be rewritten in terms of the reli-
ability index as

��− �� ª Pf � Ptarget ª ��− �target� �13�

When Ptarget=0.1, �target�1.3. The advantage of using the reli-
ability index will be clear in the following numerical results.

Using the response surface in Eq. �11�, reliability analysis is
carried out using the first-order reliability method �FORM� at
��=1. The results of the reliability analysis are as follows:

Table 3 Error measures of the stochastic response surface

Error statistics RMSE SSe R2 Radj
2

DOE 0.0406 0.0082 0.9980 0.9921
Fig. 5 Reliability index � with respect to random variable ��

Journal of Mechanical Design
Pf = 0.178

� = 0.922, �14�

��

���

= − 3.972

where �� /��� is the sensitivity of the reliability index with re-
spect to ��. By comparing this with the target reliability, the cur-
rent system does not satisfy the reliability requirement.

It is obvious that for a linear and deterministic system, the
response is linear with respect to the applied load. Thus, estimat-
ing the load tolerance is trivial. However, the fatigue reliability of
the structure is not linear with respect to the applied load history.
When the fatigue reliability is mildly nonlinear, it is still possible
to estimate the safety envelope using sensitivity information.
Based on the result from Eq. �14�, the value of �� that satisfies the
required reliability can be estimated using a linear approximation.
The linear estimation of �� can be obtained by

��
estimated = 1 −

����=1 − �target�

����=1

���

= 0.905 �15�

which means that �� needs to be decreased by 10% from the
original load amplitude in order to satisfy the required reliability.

In order to verify the accuracy of the estimated result, reliability
analyses are performed for different values of ��. Figure 5 shows
the reliability index with respect to ��, while Fig. 6 shows the
probability of failure Pf with respect to ��. The solid line is the
linearly approximated reliability using the sensitivity information,
and the triangular marks are the results from the direct reliability
analyses. The reliability index is almost linear and the estimation
using sensitivity is close to the actual reliability index. Such an
interesting result is expected, because the amplitude parameter is
normally distributed and the reliability index is based on the stan-
dard normal distribution. On the other hand, the probability of

Table 4 T statistics for the estimation of coefficients

Coefficient 1 u u2−1 u3−3u

T statistics 122.7590 15.9279 3.5759 4.0828

Fig. 6 Probability of failure Pf with respect to random variable

��
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failure shows nonlinear behavior even in the logarithmic scale
because its magnitude changes by several orders of magnitude.

When the target probability of failure is 0.1 and � has the
distribution of N��� ,0.252�, the load tolerance can be defined as

0 � �� � 0.9049 �16�
Thus, the current design, considering the 0.25 standard deviation
in the load amplitude, is not enough to achieve 90% reliability.
The structure should be operated under milder working conditions
by reducing the mean of the load amplitude by about 10%. The
predicted load tolerance shows a good agreement with the actually
calculated load tolerances �triangular marks�. These results are
promising in estimating the load-carrying capability of the struc-
ture.

6 Effect of Different Distribution Types on Load Tol-
erance and a Conservative Distribution Type

In the previous section, we assumed that the load history had
specific uncertainty characteristics �distribution type and corre-
sponding parameters�. Identifying the load distribution, however,
is one of the most difficult tasks in uncertainty analysis, because
different operating conditions may yield completely different dis-
tribution types. Instead of identifying uncertainty distribution ac-
curately, design engineers often look for a conservative distribu-
tion type. Figures 7 and 8 show the difference between normal
and lognormal distributions. Note that lognormal distribution
shows higher nonlinearity in the relation of reliability indices and
the mean of LCC. The linear prediction of load tolerance for log-
normal LCC cannot be accurate enough, but it is still possible to
apply piecewise linear prediction to the load tolerance design by
restricting the step size to an acceptable range. The lognormal
distribution is more conservative when the amplitude of the ap-
plied load is small, whereas normal distribution is more conserva-
tive when the amplitude is large. Using sensitivity and linear ap-
proximation, it is possible to predict which distribution type has a
significant effect on the load tolerance. Once a dominant distribu-
tion type is selected, the detailed load tolerance can be constructed
by following the procedure explained in the previous section.

7 Multi-Dimensional Safety Envelope
When more than one parameter is involved in load tolerance

estimation, the safe region of the parameters constitutes a closed,
multi-dimensional domain. The boundary of the domain is called

Fig. 7 Reliability index � with respect to �� for both normal
and lognormal distributions with the same parameters
the safety envelope. For illustration purposes, consider two pa-

924 / Vol. 128, JULY 2006
rameters, � and �. When the two parameters are gradually in-
creased from zero, the initially safe structure becomes unsafe at
certain values of the parameters. Due to the property of a trun-
cated cone, a single failure boundary can be found when two
parameters are increased proportionally. If all combinations of the
parameter values that make the structure unsafe are connected, a
closed envelope can be constructed. Figure 9 shows a schematic
illustration of the safety envelope when two parameters are in-
volved. However, searching for all possible values of parameters
is time consuming and, in many applications, impractical. The
technical challenge is how to find the boundary of the envelope
without using the trial-and-error approach.

In this paper, a systematic way of searching the boundary of the
safety envelope is proposed using a predictor-corrector method,
which is similar to the Euler-Newton continuation method �30�.
When the relationship between the safety of the structure and the
applied loads is linear or mildly nonlinear, this approach can pro-
duce an efficient way of estimating the safety envelope. In the
context of reliability-based safety measure, the boundary of the
safety envelope is the location where the probability of failure is
equal to the target probability.

The predictor-corrector algorithm is explained below with two
random variables, � and �. First, the distribution type of random
variables is assumed. The effect of different distribution types on
the safety envelope can be investigated by following the same
procedure as in the previous section. It is clear that the two pa-
rameters must have non-negative values, which means that the
safety envelope only exists in the first quadrant. The capacity of

Fig. 8 Probability of failure Pf with respect to �� for both nor-
mal and lognormal distributions with the same parameters

Fig. 9 Safety envelope for two variables and the predictor-
corrector algorithm finding the boundary of the envelope. The
accuracy can be improved by using a smaller size of move limit

��.
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the structure with respect to ��� ,��� is interesting. If the required
probability of failure is Ptarget �i.e., �target=−�−1�Ptarget��, the fol-
lowing steps can be taken to construct the safety envelope:

1. Set k=1. Set the move limit �� and a small parameter �.
Initialize ��� ,���= ���

0 ,��
0�.

2. Find an initial state ���
1 ,��

1� such that ����
1 ,��

1�=�target.
The initial state can be found, for example, by fixing ��

1

=��
0 and searching ��

1 as described in the previous sections.
3. Determine the trial state �predictor�.

The trial state can be obtained by moving in the tangent
direction of the boundary of the envelope. From the first-
order Taylor series expansion of ����

k ,��
k�=constant and

from the move limit of ��, the following two conditions can
be used to determine the trial increments:

����
tr�2 + ����

tr�2 = ��2 �17�

� ��

���
�

��=�
�
k

· ���
tr + � ��

���
�

��=�
�
k

· ���
tr = 0 �18�

Of the two possible directions, the one that provides a clock-
wise �or counterclockwise� direction is selected. Then, the
trial state can be obtained by

��
tr = ��

k + ���
tr

��
tr = ��

k + ���
tr �19�

According to the convex property of the envelope, the trial
state in Eq. �19� can be either inside or outside the envelope.
The reliability index at the trial state is �tr=����

tr ,��
tr�.

4. Return to the boundary of the envelope �corrector�.
Since the trial state is not on the boundary, it needs to be

returned to the boundary of the envelope. The correcting
direction is perpendicular to the trial direction.

�target = �tr + � ��

���
�

��=�
�
tr

· ���
cr + � ��

���
�

��=�
�
tr

· ���
cr

�20�

���
cr · ���

tr + ���
cr · ���

tr = 0 �21�

Then, the new state on the boundary of the envelope can be
obtained by

��
k+1 = ��

pr + ���
cr

��
k+1 = ��

pr + ���
cr �22�

5. Stop if ����
k+1 ,��

k+1�− ���
1 ,��

1����.
6. Otherwise, set k=k+1 and go to Step 3.

As schematically explained in Fig. 9, the limit of the envelope
is first found in one parameter ��, while �� is fixed �Point A�. The
reliability result and sensitivity information are calculated at this
point, from which the new search direction is found using sensi-
tivity information and linear Taylor series expansion. The trial
state can be obtained by moving the parameters by �� in the
search direction. From the trial state, the location of the boundary
can be recovered by moving in the perpendicular direction to the
search direction. Using the linear search, a new position B on the
envelope can be found. This sequence can be repeated to create a
closed safety envelope. As expected, the accuracy of the safety
envelope can be improved by using a smaller size of move limit.
This safety envelope provides important information in identify-
ing a capacity of the current design, a future reference for design
upgrade, maintenance and control, etc.

Figure 10 shows the two-dimensional safety envelope for the
civil construction equipment when both parameters are normally

distributed. As discussed before, the safety envelope is defined

Journal of Mechanical Design
only on the first quadrant because both parameters are positive. It
is clear from the figure that the structure has a larger safety margin
in the average value than that of the amplitude. In fact, the struc-
ture is not safe with the initial dynamic load amplitude. This ob-
servation is consistent with the one-dimensional case study in the
previous sections. As expected, the safety envelope satisfies the
property of a truncated cone such that it fails only once if the
mean values of the parameters are increased proportionally from
the origin. In addition, the boundary of the safety envelope shows
a mild non-linear variation.

Figure 10 also shows the safety envelope when the two param-
eters have a lognormal distribution with the same random param-
eters, i.e., mean and standard deviation. This information is useful
because in many cases the random parameters are identified, but
the distribution type is unclear. In such a case, the different dis-
tribution types are assumed and the conservative safety envelope
can be selected. In the particular example, it turns out that the
normal distribution is more conservative than the lognormal dis-
tribution. In some cases, it is possible that one distribution type is
more conservative than the other only on a portion of the safety
envelope. Thus, a conservative safety envelope can be constructed
by considering all possible distribution types associated with dif-
ferent working conditions. The completed safety envelope yields a
more reliable operation and provides a reference for future design
upgrades.

8 Conclusion
In this paper, a systematic road map of constructing the safety

envelope has been presented. Finite element-based fatigue evalu-
ation, stochastic response surface-based reliability and sensitivity
analysis, and a predictor-corrector algorithm are integrated to con-
struct a design reference for a structure. Accuracy and robustness
of the sampling-based probability sensitivity analysis has been
shown through a simple numerical example. For one-dimensional
problems, it is shown that the load tolerance can be estimated
using a sensitivity of the reliability index. The conservative distri-
bution type is considered to offer a safer design of load without
complete knowledge of uncertainty properties. The procedure of
safety envelope construction has been presented by introducing a
two-dimensional uncertainty model for load tolerance estimation.
When the safety is mildly nonlinear with respect to the random
parameters, the proposed approach provides a very efficient way
of constructing the safety envelope. Complete work has been done
by constructing a multi-dimensional safety envelope for load tol-

Fig. 10 Two-dimensional safety envelope of fatigue reliability
for different distribution types with the same random param-
eters. The normal distribution shows more conservative esti-
mation than lognormal distribution.
erance with investigation of the conservative distribution type.
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Appendix: Probability Sensitivity for Various Distribu-
tion Types

In this section, the detailed sampling-based sensitivity expres-
sions in Eq. �7� are presented for different distribution types. The
expression of the normally distributed variable is available in Wu
�4�. Other distribution types can be derived based on their prob-
ability distribution function and transformation to the standard
normal random variable.

1. Normally distributed variables

�Pf

��
=

1

N�
j=1

N

Ij

1

i
ui

j �A1�

�Pf

�
=

1

N�
j=1

N

Ij

1

i
�ui

jui
j − 1� �A2�

2. Lognormally distributed variables

�Pf

��i
=�

�u

I�G�u� � 0� · � �f�x�
f�x���i

�
x=T−1�u�

��u�du

=
1

N�
j=1

N � ln�xi
j� − �̃i

̃i
2 · � 1

�i
+

vi

��i − a��1 + vi
2��

+
v2

̃i�� − a��1 + v2�
· � 1

̃i

−
�ln�xi

j� − �̃i�2

̃i
3 ��

x=T−1�u�

�A3�
3. Uniformly distributed variables

The probability density function for uniform distribution is

f�x� =
1

b − a
, a � x � b

� =
a + b

2
,  =

b − a

	12
�A4�

Thus

a = � − 	3

b = � + 	3

Using the step function and the trigonometric function, the uni-
form distribution function can be rewritten as

f�x� =
1

b − a
�H�x − a� − H�x − b��

�
1

�b − a��
�arctan�c�x − a�� − arctan�c�x − b��� �A5�

where the arc-tangent function is used to approximate the step
function into a continuous function for the purpose of derivation.
When c→
, the right-hand side of Eq. �A5� converges to f�x�.
For an N-dimensional system, by assuming that all system random
variables are independent, the joint probability distribution func-

tion is defined as
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f�x� = �
i=1

N
1

�bi − ai��
�arctan�c�xi − ai�� − arctan�c�xi − bi���

�A6�

The sensitivity of failure probability Pf to the mean of the uniform
random variable Xi can be written as

�Pf

��i
=�

�X

I�G�x� � 0�
�f�x�
��i

dx

=
c

N�
j=1

N � 1

1 + c2�xi
j − bi�2 −

1

1 + c2�xi
j − ai�2

arctan�c�xi
j − ai�� − arctan�c�xi

j − bi��
�

x=T−1�u�

�A7�

Nomenclature
f � load history

G � system response
�, � � load capacity coefficients

� � reliability index
Pf � probability of failure
� � mean
 � standard deviation
T � transformation from any random space

to standard normal space
u � standard normal random variable
L � logarithmic fatigue life

�p � multi-dimensional Hermite polynomials
of degree p

a � polynomial coefficient
�u � standard normal space
�x � random space

FORM � first-order reliability method
MCS � Monte Carlo simulation
LCC � load capacity coefficient
DOF � degree of freedom
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