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Abstract: This paper presents an efficient shape optimisation technique based 
on Stochastic Response Surfaces (SRS) and adaptive reduction of random 
variables using global sensitivity information. The SRS is a polynomial chaos 
expansion that uses Hermite polynomial bases and provides a closed form 
solution of the model output from a significantly lower number of model 
simulations than those required by conventional methods such as the  
Monte Carlo simulations and Latin Hypercube sampling. Random variables are 
adaptively fixed before constructing the SRS if their corresponding Global 
Sensitivity Indices (GSI) calculated using the low-order SRS are below a 
certain threshold. It has been shown that the GSI can be calculated analytically 
because the SRS employs the Hermite polynomials as bases. Using SRS and 
adaptive reduction of random variables, reliability-based optimisation problems 
are solved with a significant reduction in computational cost. The efficiency 
and convergence of the proposed approach is demonstrated using a benchmark 
case and an industrial Reliability-Based Design Optimisation (RBDO) problem. 
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1 Introduction 

Uncertainty in the design parameters makes shape optimisation of structural systems a 
computationally expensive task due to the significant number of analyses required by 
traditional methods. Critical issues for overcoming these difficulties are those related to 
uncertainty characterisation, uncertainty propagation, ranking of design variables and 
efficient optimisation algorithms. Traditional approaches for these tasks often fail to meet 
constraints (computational resources, cost, time, etc.) typically present in industrial 
environments. 

In particular, Reliability-Based Design Optimisation (RBDO) involving a 
computationally intensive model has been limited by the relatively high number of 
required analyses for uncertainty propagation during the optimisation process. While 
there have been progresses addressing this issue, such as more efficient moment-based 
optimisation algorithms (e.g. RIA, (Tu et al., 1999) PMA (Tu et al., 1999)) and  
the construction of Stochastic Response Surfaces (SRS) for uncertainty propagation,  
(Kim et al., 2006) the possibility of reducing the number of analyses by systematically 
fixing unessential random variables throughout the optimisation process has not been 
fully explored. When the contribution of a random variable to the variability of  
the output is negligible, it can be treated as a deterministic variable with its mean  
value. The issues are how the contribution of a random variable can be calculated 
effectively and what the threshold is so that it can be considered as a deterministic 
variable. 

In this paper, to avoid the shortcomings of the conventional moment-based methods 
(FORM or SORM), the Monte Carlo Simulations, (Doll and Freeman, 1986) Latin 
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Hypercube Sampling, (Iman and Conover, 1980) and those associated with the use of  
the SRS, the following two sensitivities are utilised: 

1 local sensitivity information is also used to reduce the number of sampling 
points and 

2 Global Sensitivity Indices (GSI) are calculated to decide whether to fix random 
variables whose contribution to the output variability is less than a certain 
threshold. 

Local sensitivity is obtained by differentiating the variational equation of mechanics at a 
given design point, whereas global sensitivity is calculated by integrating the 
contribution of a random variable over the entire domain. 

The objective of this paper is to fix unessential random variables during  
reliability-based optimisation process. Unessential random variables are identified and 
fixed based on their contribution to the variability of model output (global sensitivities). 
To make the procedure efficient, a low-order SRS with all random variables is used to 
calculate global sensitivities, whereas a high-order SRS with reduced random variables is 
used to evaluate the probability of failure of the system. As an unessential variable at one 
design may become essential at a different design, the global sensitivities are evaluated at 
each design and different sets of essential random variables can be selected. 

This paper is structured as follows: Section 2 illustrates the proposed procedure of 
RBDO with adaptive reduction of random variables. Section 3 describes the uncertainty 
characterisation of random variables, and the uncertainty propagation to the output using 
SRS. Section 4 presents the procedure to compute GSI to fix unessential random 
variables during the construction of the SRS. An RBDO problem is formulated and the 
results obtained using the proposed approach are the subject of Section 5, followed by 
numerical examples in Section 6. 

2 Overview of the solution approach 

With reference to Figure 1, the proposed approach for RBDO initially constructs a  
low-order SRS using all random variables, and adaptively reduces them depending on 
the values of their corresponding GSI. GSI are the contributions of random variables to 
the variance of the model output. GSI are calculated using a variance-based method 
(Homma and Saltelli, 1996; Saltelli et al., 1999; Sobol, 1993) – a rigorous and 
theoretically sound approach for global sensitivity. To facilitate the effective calculation 
of the GSI, a low-order SRS is first constructed using all random variables. The use of 
Hermite polynomial bases in SRS makes it possible to calculate GSI analytically. If the 
GSI of a random variable is smaller than a certain threshold, it is considered as a 
deterministic one with its mean value assigned to it. Using the reduced number of 
random variables, a high-order SRS is constructed from which the reliability of the 
performance function is evaluated. The accuracy of SRS and associated reliability are 
compared between two approaches: 

1 when all random variables are used and 

2 when a reduced number of random variables are used based on the GSI. 

The proposed adaptive reduction scheme is applied to the RBDO problem. 



   

 

   

   
 

   

   

 

   

    Adaptive reduction of random variables using global sensitivity 105    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 Adaptive reduction of unessential random design variables using global sensitivity 
indices in RBDO. A low-order SRS is used for global sensitivity analysis, while a  
high-order SRS is used to evaluate the reliability of the system 

 

3 Uncertainty quantification 

Uncertainty quantification can be decomposed in three fundamental steps: 

1 uncertainty characterisation of model inputs 

2 propagation of uncertainty and 

3 uncertainty management/decision making. 

First two steps are explained in this section, while the last step will be incorporated with 
global sensitivity of model input to output. 
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The uncertainty in model inputs is represented in terms of standardised normal 
random variables with mean 0 and variance equal to 1. The selection is supported by the 
fact that they are widely used and well-behaved. For other types of random variables, an 
appropriate transformation must be employed. We will assume that the model inputs are 
independent so each one is expressed directly as a function of the standard normal 
random variable through a proper transformation. Devroye (1986) presents the required 
transformation techniques and approximations for a variety of probability distributions. 
More arbitrary probability distributions can be approximated using algebraic 
manipulations or by series of expansions. Transforming to standard normal random 
variables is important because it maintains the orthogonal property of bases in 
approximation. 

The uncertainty propagation is based on constructing SRS (polynomial chaos 
expansion). The stochastic response surface (Isukapalli et al., 1998) can be viewed as an 
extension of classical deterministic response (Box and Draper, 1987) surfaces for model 
outputs constructed using uncertain inputs and performance data collected at heuristically 
selected collocation points. The stochastic response surface takes into account the 
probabilistic distribution of input variables in approximation. The polynomial expansion 
uses Hermite polynomial bases for the space of square-integrable Probability Density 
Functions (PDF) and provides a closed form solution of the model output from a 
significanty lower number of simulations than those required by conventional methods 
such as the Monte Carlo simulations and Latin Hypercube sampling. 

Let n be the number of random variables and p be the order of polynomial.  
The model output can then be expressed in terms of standard normal random variables  
u = {u1, u2,…, un}

T as: 

( ) ( ) ( )0 1 2 3
1 1 1 1 1 1

, , ,
= = = = = =

= + Γ + Γ + Γ +∑ ∑∑ ∑∑∑ "
jn n i n i

p p p p p
i i ij i j ijk i j k

i i j i j k

G a a u a u u a u u u  (1) 

where Gp is the approximated model output, the , ,…p p
i ija a  are deterministic coefficients 

to be estimated and the ( , , )Γ …p i pu u  are multidimensional Hermite polynomials of 

degree p given by: 

T T1/ 2 1/ 2( , , ) ( 1) −∂Γ = −
∂ ∂

…
"

p
p

p i p
i p

u u e e
u u

u u u u  (2) 

where u is a vector of p independent and identically distributed normal random variables 
selected among the n random variables that represent the model input uncertainties. 
Equation (1) is also called a polynomial chaos expansion (Ghanem and Spanos, 1991). 
The Hermite polynomials ( , , )Γ …p i pu u  are set of orthogonal polynomials with 

weighting function 
2 / 2 ,−ue  which has the same form with the PDF of standard normal 

random variables. In this paper, a modified version of Hermite polynomial (Abramowitz 
and Stegun, 1972) is used. The first four terms are u, u2−1, u3−3u and u4−6u2 + 3, when a 
single random variable is involved. The use of the Hermite polynomials has two 
purposes: 

1 they are used to determine the sampling points and 

2 they are used as bases for polynomial approximation. 
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The coefficients in the polynomial chaos expansion are calculated as those providing the 
best fit (least squares solution), considering a sample of input/output pairs. As all inputs 
are represented using standard normal random variables, more accurate estimates for the 
coefficients can be expected if the probability distribution of the ui’s is considered. 
Hence, a set of points near the high probability region is heuristically selected among the 
roots of the one-order higher polynomial under restrictions of symmetry and closeness to 
the mean. In general, the approximation accuracy increases with the order of the 
polynomial and should be selected reflecting the accuracy needs and computational 
constraints. In addition, the approximation in Equation (1) includes robust coefficients; 
that is, their values are not significantly affected when constructing higher order 
polynomials (Kim et al., 2006). In structural applications, the SRS has been applied to 
tolerance analysis (Anile et al., 2003; Kim et al., 2003b) and RBDO (Choi et al., 2003; 
Kim et al., 2006). 

The number of model simulations required to construct the SRS could be reduced 
when local sensitivity information is available. The issue is how efficiently the local 
sensitivity information can be calculated. If the global finite difference method is 
employed, there is no advantage in using sensitivity information because each sensitivity 
calculation requires additional analyses. Recently, Isukapalli et al. (2000) used an 
automatic differentiation program (ADIFOR (Bischof et al., 1996)) to calculate the local 
sensitivity of the model output with respect to random variables and used them to 
construct a stochastic response surface. Their results showed that local sensitivity 
information can significantly reduce the number of sampling points required. However, 
the computational cost of the automatic differentiation is often higher than that of direct 
analysis (Carle et al., 1998). 

In contrast, when the finite element method is used, as discussed by van Keulen  
et al. (2005), design sensitivity analysis can provide a very efficient tool for calculating 
gradient information because the sensitivity equation uses the same coefficient matrix 
that is already factorised from the original analysis. In many finite element-based 
structural analyses, the discrete system is often represented using a matrix equation as 

[ ]{ } { }=K D F  (3) 

where [K] is the stiffness matrix, {F} is the load vector and {D} is the nodal solution. 
The model output in Equation (1) can be expressed as a function of the nodal solution. 
Thus, the local sensitivity of the model output can be easily calculated if the local 
sensitivity of the nodal solution is available. When design parameters are defined, the 
matrix Equation (3) can be differentiated with respect to the design parameter di to obtain 
the following design sensitivity equation: 

[ ] { }
     ∂ ∂ ∂= −     ∂ ∂ ∂     

D F KK D
i i id d d

 (4) 

The above equation can be solved inexpensively because the matrix [K] is already 
factorised when solving Equation (3). The computational cost of sensitivity analysis is 
less than 20% of the original analysis cost. The efficiency of the uncertainty propagation 
approach is critical to RBDO (uncertainty management), as at each design cycle an 
updated version of the PDF for the constraint function (related to model outputs) is 
required. A rigorous development of design sensitivity analysis can be found in reference 
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Choi and Kim (2004a) for linear problems and Choi and Kim (2004b) for non-linear 
problems. 

Once the SRS of performance function is obtained, the reliability of the performance 
function can be obtained through the Monte Carlo simulation performed on the SRS.  
As an analytical expression for the performance function is available, the computational 
cost of Monte Carlo simulation is not significant. 

4 GSI and an adaptive approach for fixing unessential variables 

To reduce the number of simulations required to construct the SRS even further, 
unessential random variables are fixed during the construction of the SRS. A random 
variable is considered unessential (and hence it is fixed) if its contribution to the variance 
of the model output is below a given threshold. GSI considering only main factors are 
calculated to quantify the model input contributions to the output variance hence 
establishing which factors influence the model prediction the most so that: 

1 resources can be focused to reduce or account for uncertainty where it is most 
appropriate or 

2 unessential variables can be fixed without significantly affecting the output 
variability. 

The latter application is the one of interest in the context of this paper. 
Variance-based methods are the most rigorous and theoretically sound approaches  

for global sensitivity calculations (Homma and Saltelli, 1996; Saltelli et al., 1999:  
Sobol, 1993). This section describes the fundamentals of the variance-based approach  
and illustrates how the polynomial chaos expansions are particularly suited for  
this task. 

4.1 Variance-based global sensitivity analysis 

The variance-based methods 

1 decompose the model output variance as the sum of partial variances and then 

2 establish the relative contribution of each random variable (global sensitivity 
indexes) to the model output variance. 

To accomplish step (i), the model output is decomposed as a linear combination of 
functions of increasing dimensionality as described by the following expression: 

( ) ( ) ( )0 12 12 1 2
1 1

(x) , , , ,
= = >

= + + + +∑ ∑∑ … …" …
n n n

i i i ij ij i j n n n
i i j i

f a a f x a f x x a f x x x  (5) 

subject to the restriction that the integral of the weighted product of any two different 
functions vanishes. Formally, 

1 1 1 1, , , , 1 1( ) ( , , ) ( , , ) 0 for , , , ,= ≠ …∫ ∫ x … …" … … …
s s s si i i i j j j j s sp f x x f x x d i i j jx  (6) 



   

 

   

   
 

   

   

 

   

    Adaptive reduction of random variables using global sensitivity 109    
 

    
 
 

   

   
 

   

   

 

   

       
 

where p(x) is the joint PDF of input random variable x. If, for example, the weighting 
function is the uniform distribution for the random variables or the Gaussian probability 
distribution, the functions of interest can be shown as Legendre and Hermite orthogonal 
polynomials, respectively. 

The model output variance can now be calculated using a well-known result in 
statistics. The result establishes that the variance of the linear combination of random 
variables (Ui) can be expressed as: 

( ) ( )2
0

1 1 1

2 COV ,
= = = >

 + = + 
 

∑ ∑ ∑∑
n n n n

i i i i i j
i i i j i

V b bU b V U U U  (7) 

Hence, the model output variance can be shown as: 

( ) ( ) ( )2 2 2
12 12

1 1

( )
= = >

= + + +∑ ∑∑ … …"
n n n

i i ij ij n n
i i j i

V f a V f a V f a V f  (8) 

where the terms represent partial variances and each V(⋅) may be found by definition as: 

( ) 2
( ) ( ) ( ) ( ) = − ∫V f f x E f x p x dx  (9) 

In the above formula, f(x) represents the function under consideration and the symbol 
E(⋅) denotes expected value. 

Of interest here is the global sensitivity index Si considering only main factor 
associated with each of the random variables which is represented by Equation (8): 

( )( )2

( )
= i i i

i

a V f x
S

V f
 (10) 

By comparing Equations (1) and (5), a linear polynomial chaos expansion is enough in 
obtaining the GSI considering only main factors. The current algorithm with linear 
polynomial chaos expansion for the reduction of random variables could be modified to 
use a sensitivity index that accounts for interactions. These interactions will only appear 
in higher order polynomial chaos expansions. The choice of a non-linear polynomial 
chaos expansion would reduce the computational efficiency of the proposed approach 
with unclear significant advantages. 

As stated at the beginning of this section, once the GSI are calculated, factors that 
have the least influence on the model variance (unessential variables) can be identified 
and eventually held fixed without significantly affecting the output variability.  
The procedure is adaptive because the GSI are calculated at each design iteration and as a 
result different sets of random variables may be fixed throughout the RBDO process. 

4.2 Global sensitivity analysis using polynomial chaos expansion 

The polynomial chaos expansion is particularly suited for computing GSI. Firstly, the 
model output is already decomposed as a sum of functions of increasing dimensionality. 
In addition, the functions are orthogonal with respect to the Gaussian measure (Hermite 
polynomials) and the variance of the bases are analytically available. For example, the 
functions associated with a two dimensional chaos expansion of order 2 and the 
corresponding variances are shown in Table 1. 
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Table 1 Variances of the Hermite bases up to the second order 

Function f V(f) 

X
1
 1 

X
2
 1 

X
1

2−1 2 

X
1
X

2
 1 

X
2

2−1 2 

Secondly, given the polynomial chaos expansion (i.e. the coefficients of the linear 
combination of Hermite polynomials), the model output variance and GSI can be easily 
computed using Equations (7) and (10), respectively. In both equations, the variances 
V(⋅), are readily available for polynomial chaos expansions of arbitrary order and number 
of variables. 

5 Reliability-based optimisation 

To illustrate and evaluate the proposed approach, a simple formulation of the more 
general RBDO problem (Chandu and Grandhi, 1995; Enevoldsen and Sorensen, 1994; 
Grandhi and Wang, 1998; Wu and Wang, 1996) is discussed. The cost function is 
assumed to be easily evaluated using the design variables and the constraints are defined 
using the probability of failure of the performance functions. Specifically, consider the 
following form of the RBDO problem: 

( ) ,

Minimise ( )

subject to ( ) 0 , 1,2, ,< ≤ =

≤ ≤

…�

d

x

d d d
j f j

L U

c

P G P j np  (11) 

with x = [xi]
T (i = 1, 2,…, n) being the vector of random variables. Each random variables 

are assumed to be normally distributed, that is, 2( , ),µ σ∼i i ix N  with mean µi and SD  

σi. In Equation (11), d = [di]
T = [µi]

T represents the design variables chosen as the mean 
values of x, and c(d) identifies the cost function. The system performance criteria are 
described by the performance functions Gj(x) such that the system fails if Gj(x) < 0. Each 
Gj(x) is characterised by its cumulative distribution function FG(g): 

( ) X 1

( )

( ) ( ) ( )
<

= < = ∫ ∫
x

x " "
j

j

G j n

G g

F g P G g f dx dxx  (12) 

where fX(x) is the joint PDF of all random system parameters and g is the probabilistic 

performance measure. The reliability analysis of the performance function requires 
evaluating the non-decreasing FG(g) ∼ g relationship, (Tu et al., 1999) which is 
performed in the probability integration domain bounded by the system parameter 
tolerance limits. As the probability integration domain is in general complicated,  
many approximation methods (FORM or SORM) are often used. In this paper, the 
probability of failure estimated using the polynomial chaos expansion and Monte Carlo 
simulation is used for evaluating reliability constraints hence providing better 
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approximations than traditional linearisation and thus significantly improving the rate of 
convergence of RBDO. Once the cost and constraint functions are evaluated, the 
optimisation problem in Equation (11) can be solved using conventional mathematical 
programming techniques. 

6 Numerical examples 

6.1 Stochastic response surface for the torque-arm model 

The use of the proposed polynomial chaos expansion for the uncertainty propagation and 
reduction of unessential random variables is demonstrated using a reliability-based 
optimisation of a structural component. Consider the torque-arm model depicted in 
Figure 2 (Kim et al., 2003a). The locations of boundary curves have uncertainties due to 
manufacturing processes.  Thus, the relative locations of corner points of the boundary 
curves are defined as random variables. 

Figure 2 Shape design parameters for the torque-arm model. Design parameters are the  
mean values of corner coordinates of boundary curves. Due to manufacturing  
processes, the coordinates are represented as normal random variables with a  
SD of 0.1 

 

For simplicity, we assumed that all random variables exhibit a normal distribution with 
mean 0 and SD equal to 0.1; that is, x ∼ N(µ, 0.12). The mean values of these random 
variables are chosen as design parameters, whereas the SD remains constant during the 
design process. 

As illustrated in Figure 2, the initial model consists of eight design parameters.  
For example, design parameter d1 is the mean of the relative location of point A in the  
x-direction. To show how the SRS is constructed and the PDF of the model output is 
calculated, we choose the three design parameters (d2, d6 and d8) that most significantly 
contribute to the stress performance at points A and B. 

A meshfree method (Kim et al., 2003a) is employed to solve the structural response.  
In the initial design, the maximum stress of 305 MPa occurs at location A. For reliability 
analysis, the stress limit is established to be 800 MPa. In the reliability analysis, the 
performance function is defined such that G ≤ 0 is considered failure. Thus, in the case of 
stress constraints, the following performance function is defined: 

max(x) : ( )= − AG σ σ x  (13) 

where σmax is the maximum allowed equivalent stress and σA is the stress at location A. 
Before constructing the stochastic response surface, it is important to transform the 

random variables {xi(di, 0.1)} into standard random distributions {ui}. After transforming 
to the standard random distributions, the stochastic response surface can be defined using 
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the polynomial chaos expansion. The third-order Hermite polynomial chaos expansions 
can be written as 

( )

( )

( )

3 3 3 3 2
0

1 1

1
3 3 3

1 1

2 1
3 2 3

1 1 1

1

3

= =

−

= = >

− −

= = = > >

= + + −

+ − +

+ − +

∑ ∑

∑ ∑∑

∑∑ ∑∑∑

n n

i i ii i
i i

n n n

iii i i ij i j
i i j i

n n n n n

ijj i j i ijk i j k
i j i j i k j

G a a u a u

a u u a u u

a u u u a u u u

 (14) 

Note that the polynomials are constructed in the standard Gaussian space rather than  
the original design space. For the third-order expansion, the number of unknown 
coefficients are 20. 

The coefficients of the polynomial chaos expansion are obtained using the model 
outputs at selected collocation points. The collocation points are selected from the roots 
of the polynomial that is one order higher than the polynomial chaos expansion 
(Villadsen and Michelsen, 1978). For example, to solve for a three-dimensional  
second-order polynomial chaos expansion, the roots of the third-order Hermite 
polynomial, −√3, 0 and √3 are used, thus the possible collocation points are (0, 0, 0), 
(−√3, −√3, −√3), (−√3, 0, √3), etc. There are 27 possible collocation points and  
10 unknown coefficients in the case of second-order expansion. For robust estimation of 
the regression coefficients, the number of collocation points in general should be twice 
the number of unknown coefficients. 

After choosing collocation points in the standard normal space, a transformation is 
applied from the standard Gaussian space to design space according to the PDF 
associated with the design variables. In the torque-arm model, the PDF of the 
performance function is plotted in Figure 3(a) for polynomials of different orders. The 
accuracy and the convergence of the SRS are compared with the PDF obtained using  
the Monte Carlo simulation with 100,000 sample points. As expected, the error is 
reduced for higher-order polynomials. 

Figure 3 PDF of performance function G(x) – torque-arm problem: (a) only function  
values are used and (b) function values and local sensitivities are used 

 

In order to reduce the required number of sampling points in constructing the SRS, local 
sensitivity information is also used. At each sampling point, n + 1 data are available 
(function value + gradients of n random variables). To account for the local sensitivity 
information, the expression in Equation (14) is differentiated with respect to the random 



   

 

   

   
 

   

   

 

   

    Adaptive reduction of random variables using global sensitivity 113    
 

    
 
 

   

   
 

   

   

 

   

       
 

variables. However, the SRS are defined in the standard Gaussian space. As a result, it is 
necessary to transform the local sensitivity in the design space into the standard Gaussian 
space using the following equation: 

1( )
( ) ( )

−∂∇ = ∇
∂

T u
u x

u
G G  (15) 

where T: x → u is the transformation between the design and standard Gaussian spaces. 
Using local sensitivity, information increases by a factor of n the number of data 

obtained from each sampling point (from one to four for the case of three design 
variables), hence the number of sampling points can be reduced n + 1 times.  
In Figure 3(b), the PDFs of the performance function are plotted for alternative 
polynomial expansions and that obtained using the Monte Carlo simulation. Note that a 
stochastic response surface with the same level of accuracy to that showed in Figure 3(a) 
can be obtained with four times less number of sampling points. 

6.2 Reliability-based design optimisation 

The reliability optimisation problem under consideration requires to minimise the mass 
of the torque arm while satisfying stress reliability constraints. Let the model output Gi be 
defined as 

max

( ) 1
σ
σ

= −x i
iG  (16) 

Using Equation (11), the design optimisation problem can be defined as 

( ) ( )
Minimise Mass( )

subject to ( ) 0 , 1, ,NCβ≤ ≤ Φ − =

≤ ≤

d

x

d d d

…i t

L U

P G i  (17) 

where βt is the target reliability index and Φ is the cumulative distribution function  
of the standard normal distribution. For the reliability analysis, a target reliability  
index of 3.0 is used, which is equivalent to 99.87% reliability. The stress values at four 
(i.e. NC = 4) different locations are monitored. Table 2 gives the lower and upper bounds 
of the mean values associated with the design variables (modelled as random variables). 
Since the design parameters are the relative movement of the corner points, the initial 
values for all design parameters is 0. The lower and upper bounds are chosen such that 
the topology of the boundary is preserved throughout the whole design process. 

For comparison purposes, this RBDO problem is solved using all random variables 
without any adaptive reduction. At each design point, the eight random variables are used 
to construct the SRS. To generate the third-order SRS, a total of 89 sampling points are 
used; at each sampling point stress and local sensitivity information is gathered.  
The optimisation problem converges at the 21st iteration. The design variables at the 
optimum design are listed in the fourth column of Table 2, and the optimum geometry is 
plotted in Figure 4(a). Figure 4(b) shows the stress distribution of the torque-arm model 
at the optimum design. The maximum stress occurs at Point A with a value of 704 MPa. 
Considering the maximum allowable stress limit is 800 MPa, the mean value of the 
optimum design has about 96 MPa margin. Figure 5 shows the design history of the cost 
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function. The initial mass of 0.878 kg is reduced to 0.522 kg (about 59.4%) at the 
optimum design. Most reduction has been achieved in the first five design cycles, and 
after that the optimisation slowly converged by adjusting design parameters. 

Table 2 Definition of random design parameters and mean value bounds 

Random 
variables 

dL d (Initial) d* (Optimum) dU SD Distribution type 

d
1
 −3.0 0.0 −0.7532 1.0 0.1 Normal 

d
2
 −0.5 0.0 −0.5000 1.0 0.1 Normal 

d
3
 −1.0 0.0 −0.1346 1.0 0.1 Normal 

d
4
 −2.7 0.0 −2.5443 1.0 0.1 Normal 

d
5
 −5.5 0.0 −0.8508 1.0 0.1 Normal 

d
6
 −0.5 0.0 1.9998 2.0 0.1 Normal 

d
7
 −1.0 0.0 0.8319 7.0 0.1 Normal 

d
8
 −0.5 0.0 0.0000 0.0 0.1 Normal 

Figure 4 Optimum design and stress distribution of the torque-arm model with eight  
random variables: (a) --- – initial design, –– optimum design and (b) maximum  
equivalent stress = 704 MPa at point A 

 

Figure 5 Optimisation history of cost function (mass) for the torque-arm model with  
eight random variables 

 

6.3 Reduction of random variables 

The RBDO problem in the previous section was solved with all random variables. 
However, some random variables did not significantly contribute to the stress function 
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variance. Thus, a significant amount of computational cost can be saved if the random 
variables whose contribution to the variance of the output is small are considered as 
deterministic variables at their mean values. This section describes how the GSI 
considering only main factors that can be used for deciding whether to fix unessential 
random variables during the construction of SRS. 

At the initial design stage, a low-order stochastic response surface is constructed 
using all random variables. In this particular example, the first-order SRS is constructed 
using 17 sampling points. At the initial design, the first-order SRS with eight random 
variables can be expressed as, 

1
0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1 2 3 4

5 6 7 8

4.95 0.0063 0.117 0.00008 0.0019

+0.0026 0.052 0.0002 0.016

= + + + + + + + +
= + + + −

− − −

G a a u a u a u a u a u a u a u a u

u u u u

u u u u

 (18) 

One useful aspect of the polynomial chaos expansion is that the coefficients in  
Equation (18) are a measure of the contribution of the corresponding random variable to 
the variation of the output, and these coefficients will not change significantly in  
higher-order SRS. In addition, typically the global sensitivity index associated with a 
particular variable is responsible for most of its contribution to the output variance. Thus, 
evaluating the GSI using the first-order SRS can be justified. As all random variables are 
transformed into standard normal random variables, the variance of G1 can be evaluated 
analytically. Using Equation (10), the global sensitivity index of each random variable is 
calculated. Using Eqution (18) and assuming the design variables are independent, the 
global sensitivity index can be calculated as: 

2

2

1=

=
∑

i
i n

jj

a
S

a
 (19) 

Note that the denominator in Equation (19) is the total variance of G1 using the first-order 
approximation. Thus, the global sensitivity index, Si, is the ratio of the contribution of ith 
random variable to the total variance. If the global sensitivity index of a specific variable 
is less than a threshold value, the variable is considered as deterministic and fixed at its 
mean value. 

To show the advantage of fixing unessential random variables, the GSI of the  
torque-arm model are calculated. Table 3 gives the GSI of the torque-arm model  
using the first-order SRS at the initial design. The total variance of stress function is 
1.670 × 10−2. On the basis of the GSI, there are only three random variables whose 
contribution is greater than 1.0%; that is, u2, u6 and u8. Thus, in the reliability analysis, 
only these three random variables are used in constructing the third-order SRS, which 
now requires only 19 sampling points. All other random variables are considered as 
deterministic variables at their mean values.  If the total number of sampling points for 
both low (17) and higher-order (19) polynomial expansions are compared with the 
higher-order SRS using all random variables (89), a significant reduction of the number 
of sampling points was achieved. 

The RBDO problem, defined in Equation (17) is now solved using the proposed 
reduction of random variables. The optimisation algorithm converges after the  
17th iteration. As seen in Figure 6, the optimum design using the adaptively reduced SRS 
is slightly different from that obtained in the previous section (without adaptive 
reduction). The former has a longer interior cutout than the latter. This can be explained 
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from the fact that some variables were considered deterministic throughout the design  
process. Furthermore, the optimum value achieved using the adaptively reduced SRS 
converges to a lower value than the one (without adaptive reduction). The total mass of 
the torque arm is reduced in 57.6%. The difference between the two approaches is 
approximately 1.8%. 

Table 3 Global sensitivity indices considering only main factors for the torque-arm  
model at the initial design. Only three random variables (u

2
, u

6
 and u

8
) are  

preserved when a threshold value of 1.0% is in place 

SRV Variance GSI (%) 

u
1
 3.916 × 10−5 0.235 

u
2
 1.369 × 10−2 82.0 

u
3
 6.403 × 10−9 0.00003834 

u
4
 3.667 × 10−6 0.02197 

u
5
 6.864 × 10−6 0.04109 

u
6
 2.702 × 10−3 16.179 

u
7
 4.818 × 10−8 0.0002885 

u
8
 2.538 × 10−4 1.519 

Figure 6 Optimum designs for the full SRS (solid line) and adaptively reduced SRS  
(dotted line). Because some variables are fixed, the interior cutout of the  
design from the adaptively reduced SRS is larger than that from the full SRS 

 

The number of active random variables associated with the modelling of the first 
constraint during the design iterations are listed in Table 4. On average, four random 
variables were preserved as such, which implies that only 29 sampling points were 
required for constructing the SRS. This is three times less than the SRS approach without 
adaptive reduction (89 sampling points). 

Table 4 Comparison of the number of random variables in each design cycle.  
The threshold of 1.0% is used. The first constraint is listed 

Design cycle Full SRS Reduced SRS 
1 8 3 
2 8 3 
3 8 3 
4 8 3 
5 8 4 
6 8 4 
7 8 5 
8 8 4 

   

17 8 4 

  – 
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7 Conclusions 

In this paper, we present an approach for solving reliability-based optimisation problems 
involving a computationally demanding model. Key aspects of the approach are: 

1 the uncertainty propagation of random variables using a polynomial chaos 
expansion and local sensitivity information and 

2 the use of global sensitivity information to adaptively reduced the number of 
random variables throughout the design process. 

The convergence and accuracy of the proposed approach was demonstrated using a 
benchmark case and an industrial reliability-based optimisation problem (automotive 
part). 
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Nomenclature 
u   vector of standard normal random variables 

x   vector of random variables 

d   vector of design parameters 

( , , )Γ …p i pu u  multidimensional Hermite polynomials of degree p 

[K]   structural stiffness matrix 

{F}   structural load vector 

{D}   nodal solution vector (displacement) 

Si   global sensitivity index of ith random variable 

total
iS    total sensitivity index of ith random variable 

COV(·,·)  covariance of two random variables 

E(⋅)   expected value 

V(⋅)   variance 

Gp   pth-order stochastic response approximation 

σmax   maximum allowable equivalent stress 

c(d)   cost function 

Pf   failure probability 

p(x)   joint PDF of input random variable x 

βt   target reliability index 

Φ  cumulative distribution function of the standard normal random 
variable 


