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Optimization of a hyper-elastic structure with multibody
contact using continuum-based shape design sensitivity analysis

N.H. Kim,Y.H. Park,, K.K. Choi

Abstract In this paper, a continuum-based shape design
sensitivity formulation is presented for a hyper-elastic
structure with multibody frictional contact. A nearly in-
compressible constraint is treated using the pressure pro-
jection method that projects a hydrostatic pressure into
a lower order space to avoid a volumetric locking. The
variational formulation for multibody frictional contact is
developed using a penalty method that regularizes the so-
lution of the variational inequality. The material deriva-
tive of continuum mechanics is utilized to develop the
continuum-based shape design sensitivity analysis for the
hyper-elastic constitutive relation and penalized contact
formulation. The sensitivity equation is solved at each
converged load step using the same tangent stiffness of
response analysis due to the path dependency of the sen-
sitivity of the frictional contact problem. A very accurate
and efficient sensitivity results are shown through shape
optimization of a windshield wiper.

Key words design sensitivity analysis, multibody con-
tact, hyper-elastic material

1
Introduction

In general, analysis of hyper-elastic material is difficult
because of complexities involved in performing nonlin-
ear finite element analysis of rubber components, which
usually experience very large deformation. An effect-
ive numerical method, which can handle material in-
compressibility under large deformation, is highly de-
sirable in analyzing rubber components. For example,
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the penalty method (Oden and Kikuchi 1982), selec-
tive reduced integration method (Malkas and Hughes
1978), and mixed formulations (Sussman and Bathe
1987) have been used successfully for incompressible
and nearly incompressible media. Recently, Chen et al.
(1996) proposed a pressure projection method which is
a generalization of the B-bar method (Hughes 1987) for
linear problems to avoid volumetric locking for nearly
incompressible materials. This method projects the pres-
sure by imposing a constraint condition between the
hydrostatic pressure calculated from the displacement
and the pressure obtained from the pressure interpo-
lation functions that are in a lower-order space than
the space for the displacement in a least-square sense.
Using the variational principle of the pressure projec-
tion method, the finite deformation analysis for the
hyper-elastic material is developed using the total La-
grangian formulation or material description. The an-
alysis method follows the incremental procedure to ob-
tain the linearized variational form for hyper-elastic
material.

To obtain a better structural design by changing the
shape of the structure, shape design sensitivity analysis
(DSA) is a critical step. Haug et al. (1986) proved the
existence of sensitivity for linear elastic structural sys-
tems and derived shape sensitivity formulation based on
a continuum approach. No mathematical proof is avail-
able for the existence or uniqueness of the shape sen-
sitivity for a nonlinear structure. Under the regularity
assumption, Santos and Choi (1992) derived shape sensi-
tivity of nonlinear elastic materials. Recently, Grindeanu
et al. (1998) developed nonlinear shape design sensitiv-
ity formulation using the meshfree method. The design
sensitivity equation is obtained by taking the material
derivative of the variational equation with respect to the
shape design parameters at the final converged config-
uration. The material description is used instead of the
spatial description since both the constitutive relation
and design perturbation are described in the undeformed
configuration for hyper-elastic material. The design sen-
sitivity equation depends on the nonlinear responses at
the final configuration and the design velocity field at the
undeformed domain. The computational effort of DSA is
basically the same as solving a linear system of equation.
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This makes sensitivity computation quite efficient com-
pared to nonlinear response analysis that requires itera-
tion. In this paper, shape DSA is developed for Mooney-
Rivlin type material that includes a nearly incompressible
constraint.

Contact problems are common and important aspects
of mechanical systems. Metal forming, vehicle crash, pro-
jectile penetration, various sealing designs, bushings and
gear systems are only a few examples where contact
occur. Recent developments in computational mechan-
ics make it possible to solve frictional contact problems
accurately and efficiently. However there are not enough
practical design methods for a structural system that in-
volves frictional contact.

DSA of a contact problem is a challenging topic. For
the linear structures, Mignot (1976) and Haraux (1977)
proved that the projection onto a convex set in Hilbert
space is directionally differentiable. Sokolowski and Zole-
sio (1991) derived sensitivity formulation for variational
inequality (VI). They concluded that the solution of VI
is directionally differentiable, and its shape sensitivity
is a solution of another VI, which is a projection onto
a common convex set of tangential and orthogonal sub-
spaces. Spivey and Tortorelli (1994) presented a sensi-
tivity formulation of a nonlinear contact problem for
beam and optimized the geometry of the rigid surface.
Antunez and Kleiber (1996) derived a sensitivity for-
mulation of a contact problem using a flow approach
to analyze the rigid-plastic structure. Pollock and Noor
(1996) developed a nonlinear dynamic sensitivity formu-
lation for the explicit method by taking derivatives of
the finite element matrix. Many researches in the non-
linear contact DSA are confined to non-shape sensitivity
formulations.

In this paper, a continuum-based shape DSA is pre-
sented for a multibody frictional contact problem with
hyper-elastic material. In Sect. 2, shape DSA is intro-
duced using the material derivative concept. The effi-
ciency of DSA for hyper-elastic material is discussed. In
Sect. 3, as a continuation of the previous work (Choi et al.
1998), shape DSA of multibody frictional contact is de-
veloped using the penalty method and modified Coulomb
friction model. Accuracy and efficiency of the proposed
method is demonstrated in Sect. 4 through shape opti-
mization of a windshield wiper contact problem.

2
Design sensitivity analysis of hyper-elasticity

If there exists a strain energy density function such that
the stress can be obtained from the derivative of the
strain energy with respect to the strain, the system is
path-independent. The nonlinear variational equation,
however, is solved using a step-by-step incremental pro-
cedure with a number of load steps to finally reach the
total equilibrium. On the other hand, the design sensitiv-
ity equation is solved at the final converged load step with

the same tangent stiffness operator as response analysis.
One linear system of equation is solved for each design
parameter without any iteration. Thus, the cost of sen-
sitivity computation is quite small compared to that of
incremental response analysis.

2.1
Response analysis of nonlinear structures with
hyper-elastic materials

2.1.1
Pressure projection method

The nearly incompressibility of the hyper-elastic material
can be imposed by using a large magnitude of the bulk
modulus that relates the volumetric stress and strain.
For the Mooney-Rivlin type material model with the
displacement-based single field formulation, the strain
energy density functionW is defined by

W (J1, J2, J3) =D10(J1−3)+D01(J2−3)+

K

2
(J3−1)

2 =W1(J1, J2)+W2(J3) , (1)

where D10, D01 are the material constants and K is
the bulk modulus. Also, J1 = I1I

−1/3
3 , J2 = I2I

−2/3
3 , and

J3 = I
1/2
3 are reduced invariants where I1, I2, and I3 are

invariants of the Green deformation tensor. The reason
for introducing the reduced invariants is to separate the
dilation part from the distortion part. SinceW1 contains
only the distortional energy and is independent of dila-
tion, the volumetric locking is related to W2 only. The
hydrostatic pressure is defined as the derivative ofW2

p̃≡
∂W (J1, J2, J3)

∂J3
=
∂W2(J3)

∂J3
=K(J3−1) . (2)

Since a large magnitude of K is used to impose nearly
incompressibility, a numerical instability can be caused
in computing the pressure in (2) from the displacement.
Chen et al. (1996) proposed a pressure projection method
to relieve this instability or volumetric locking. In this
method, the pressure obtained by (2) is projected onto
the lower-order space in the least square sense. That is,
choose p= [p1, p2, . . . , pn]

T to minimize

Ψ(p) =
∥∥p̃−QTp∥∥2

L2
=

∫
Ω

(
p̃−QTp

)2
dΩ , (3)

where Q(x) = [Q1, Q2, . . . , Qn]
T is a basis function for

the projected space. The stationary condition of (3) is∫
Ω

pTQ(p̃−QTp) dΩ = 0 . (4)

The “over bar” is used to denote the first-order variation
throughout this paper. The variable p is added to the sys-
tem and (4) is the additional equations to determine p.
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The pressure projection method is used in this paper
with the constant basis function Q= [1] that implies the
constant pressure interpolation within an element, and
the pressure is condensed at each element. For this choice
of basis function, (4) becomes∫
Ω

pH dΩ = 0 , (5)

whereH ≡ J3−1−p/K is the term corresponding to the
volumetric strain. In the pressure projection method, (5)
is added to the structural variational form.

2.1.2
Principle of virtual work for nonlinear structures

For the hyper-elastic material, the constitutive equation
can be obtained using the strain energy density function
W with an independently projected pressure term. The
second Piola-Kirchhoff stress tensor can be obtained by

S=W,E =D10J1,E+D01J2,E+pJ3,E , (6)

where E is a Lagrangian strain tensor defined as

E=
1

2
(FTF− I) , (7)

and F and I are the deformation gradient and 2-nd order
identity tensor, respectively. The first variation of the
strain energy density function in (1) can be written as

W =W,E :E= S :E , (8)

where E is the variation of the Lagrangian strain defined
by

E= sym(∇zTF) , (9)

and∇= ∂/∂x is the gradient operator with respect to the
undeformed configuration, z is the displacement vector,
and sym(•) denotes the symmetric part of the tensor.

The structural energy form is composed of the varia-
tion of the strain energy density function in (8) and the
pressure projection term in (5). The structural energy
form is defined as

a(r, r)≡

∫
Ω

S :EdΩ+

∫
Ω

pH dΩ , (10)

with a new response variable rT ≡ [zT , p], which contains
all unknown variables in analysis. The virtual work done
by the external force is defined as

�(r)≡

∫
Ω

zT fB dΩ+

∫
ΓT

zT fS dΓ , (11)

where fB is the body force vector; fS is the surface trac-
tion vector; and ΓT is the traction boundary. The applied

external force is assumed to be independent of the defor-
mation. Note that a(r, r) is a nonlinear formwhereas, �(r)
is a linear form. The principle of virtual work states that
for given fB , fS , and ζ, find the response variable r ∈ V
such that

a(r, r) = �(r) , ∀r ∈ Z , (12)

where V is the solution space, ζ is the prescribed dis-
placement, and Z is the space of kinematically admissible
displacements.

2.1.3
Linearization of variational equation

Since the structural energy form a(r, r) is nonlinear,
a step-by-step incremental solution procedure is used for
each load step to finally reach the total applied load after
a number of load steps. Let the solution at time tn−1 be
known and the solution at time tn is required. Here time is
not a physical time for a quasi-static problem but denotes
a discrete load step. For the finite deformation nonlinear
hyper-elastic material, the governing variational equation
at time tn is

a(nr, r) = �(r) , ∀r ∈ Z , (13)

where the left superscript n is used to denote the con-
figuration time tn and will be omitted unless necessary
for clarification. Since the configuration at tn is unknown,
(13) can be solved by the Newton-Raphson iteration
method using linearization. The stress can be expressed
by an incremental form as

∆S∼=W,E,E :∆E+W,E,p∆p=C :∆E+J3,E∆p , (14)

where C is the 4-th order incremental stress-strain ten-
sor at time tn referred to the configuration at time t0, and
∆E = sym(∇∆zTF) and ∆p are the incremental strain
and pressure, respectively.

The linearized structural energy form can be obtained
using (14) as

a∗(r;∆r, r)≡

∫
Ω

[
E : (C :∆E+J3,E∆p)+

S :∆E
]
dΩ+

∫
Ω

p

(
J3,E :∆E−

∆p

K

)
dΩ , (15)

where∆E= sym(∇zT∇∆z). Note that a∗(r;∆r, r) is bi-
linear with respect to ∆r and r, and depends on the con-
figuration at time tn through r. Since the applied load is
assumed to be conservative, the load form in (11) is lin-
ear and thus no linearization is required. Let the current
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time be tn and the current iteration count be k+1, then
the linearized incremental equation is

a∗
(
nrk;∆rk+1, r

)
= �(r)−a

(
nrk, r

)
, ∀r ∈ Z . (16)

The pressure term can be condensed at an element level
by directly solving terms containing the pressure varia-
tion in (15).

2.2
Shape design sensitivity analysis of nonlinear
structures with hyper-elastic materials

2.2.1
Material derivatives

In shape design, the shape of the domain that a struc-
tural component occupies is treated as the design vari-
able. Consider an undeformed domain Ω with boundary
Γ at the initial design τ = 0 as shown in Fig. 1. Suppose
that only one parameter τ defines the mapping T for
shape perturbation between the original and perturbed
geometries at the undeformed configuration. The map-
ping for shape perturbation, T :X→Xτ (X), X ∈ Ω, is
given by

Xτ =T(X, τ) , Ωτ =T(Ω, τ) , Γτ =T(Γ, τ) . (17)

The mapping of (17) can be interpreted as a dynamic pro-
cess perturbing a continuum shape design from an initial
domain Ω, at τ = 0, to a perturbed domain Ωτ . Define
a design velocity field as

V(Xτ , τ)≡
dXτ
dτ

=
dT(X, τ)

dτ
=
∂T(X, τ)

∂τ
, (18)

with τ playing the role of time. In a neighborhood of
τ = 0, under the reasonable regularity hypothesis and ig-
noring higher order terms,

T(X, τ) =T(X, 0)+ τ
dT(X, 0)

dτ
+O(τ2) ≈

X+ τV(X, 0) , (19)

where X ≡ T(X, 0) and V(X) ≡V(X, 0). Detailed for-
mulae for the material derivative can be found in Haug
et al. (1986).

Consider the governing variational equation at tn for
the perturbed shape designΩτ as

aΩτ (rτ , rτ ) = �Ωτ (rτ ) , ∀rτ ∈ Zτ , (20)

where Zτ is the space of the kinematically admissible dis-
placements space for the perturbed design and the sub-
script Ωτ indicates the dependence of these terms on the
shape of the domain.

Fig. 1 Variation of undeformed domain by one-parameter
family of mappings

The solution rτ (Xτ ) of (20) referred to the initial co-
ordinates Xτ of the perturbed domain is assumed to be
differentiable with respect to the shape design variable.
The pointwise material derivative of rτ (Xτ ) at X ∈Ω is
defined as

ṙ≡
d

dτ
rτ [X+ τV(X)]|τ=0 =

lim
τ→0

rτ [X+ τV(X)]− r(X)

τ
. (21)

2.2.2
Nonlinear shape design sensitivity analysis with
hyper-elastic materials

Consider the structural energy form at Ωτ ,

aΩτ (rτ , rτ )≡

∫
Ωτ

(Sτ :Eτ +pτHτ ) dΩ . (22)

The 2-nd Piola-Kirchhoff stress sensitivity can be ob-
tained by taking derivative of (6) with respect to the dis-
placement and pressure,

d

dτ
(S) =C :

d

dτ
(E)+J3,E

d

dτ
(p) . (23)

Since the Lagrangian strain tensor is defined by the defor-
mation gradient, the design derivative of F is derived first
as

d

dτ
(F) =

d

dτ
(I+∇z) =∇ż−∇z∇V . (24)

Thus, the material derivative of the Lagrangian strain
tensor in (7) can be expressed as

d

dτ
(E) =∆E(ż)+EV (z) , (25)
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where EV (z) represents terms depending on the response
analysis result and design velocity field. If the response
analysis result is known then EV (z) can be obtained as

EV (z) =−sym
[
(∇z∇V)TF

]
. (26)

The material derivative of the Lagrangian strain variation
can be derived from (9) as

d

dτ
(E) =∆E(ż, z)+EV (z, z) , (27)

where from the response analysis result and design vel-
ocity field, EV (z, z) can be obtained using

EV (z, z) =−sym
[
(∇z∇V)TF

]
− sym

[
∇zT (∇z∇V)

]
.

(28)

Evaluation of the second integrand of (22) is straightfor-
ward.

By using relations in (23) through (28), the material
derivative of the structural energy form becomes

d

dτ
[aΩ(r, r)] = a∗Ω(r; ṙ, r)+a′V (r, r) , (29)

where

a′V (r, r)≡

∫
Ω

[
E :C :EV +S :EV +pJ3,E :EV +

(S :E+pH)divV
]
dΩ , (30)

is the structural fictitious load form, which explicitly de-
pends on the design velocity fields and the solution at
time tn. If a converged solution is obtained at tn, then
(30) can be computed using the given design velocity field
V. The expression a∗Ω(r; ṙ, r) in (29) is the same form as
in (15) if ∆r is substituted into ṙ.

The load linear form defined in (11) can be perturbed
the same way as the structural energy form. For the per-
turbed domain Ωτ , the load linear form is

�Ωτ (rτ ) =

∫
Ωτ

zTτ f
B
τ dΩ+

∫
ΓTτ

zTτ f
S
τ dΓ , (31)

and the material derivative is d�Ω(r)/ dτ = �′V (r) where
the fictitious load due to the external force is

�′V (r) =

∫
Ω

[
zT (∇fB

T
V)+zT fBdivV

]
dΩ+

∫
ΓT

[
zT (∇fS

T
V)+κzT fS(VTn)

]
dΓ . (32)

Here it is assumed that the external force is indepen-
dent of the design change. By combining (29) and (32),
the material derivative of the variational equation for the
hyper-elastic material is obtained as

a∗Ω(
nr;n ṙ, r) = �′V (r)−a

′
V (
nr, r) , ∀r ∈ Z , (33)

which can be solved using the already decomposed tan-
gent stiffness matrix at the converged configuration with
a different fictitious load for each shape design param-
eter.Even though analysis requires an iterative method
to converge at tn, the linear sensitivity equation (33) is
solved without iteration using the tangent stiffness ma-
trix at tn, which is the converged configuration. Since the
left side of (33) is already decomposed from analysis, it
is quite efficient to solve the linear system of sensitivity
equations.

3
Design sensitivity analysis of multibody frictional
contact problem

3.1
Response analysis of contact problem

Unlike a flexible-rigid body contact case (Choi et al.
1998), for the multibody contact (or flexible-flexible body
contact) problem, the contact point depends on the mo-
tion of a slave body and a master body together since
the second body also moves as it deforms. The normal
contact condition prevents penetration of one body into
another and the tangential slip represents frictional be-
haviour of the contact surface. A regularized Coulomb
friction law proposed by Wriggers et al. (1990) is utilized
in this paper.

3.1.1
Contact condition

Figure 2 shows a general contact condition between two
bodies in R2. Body 1 is referred to as the slave body and
body 2 as the master body. The surface coordinate of the
master body xc ∈ Γ 2c can be represented by a natural co-
ordinate ξ along the master surface. As the point x ∈ Γ 1c
on the slave surface is in contact with the point xc ∈ Γ 2c
on the master surface, xc can be represented using the
natural coordinate ξc at the contact point as xc(ξc). The
contact point moves as the slave body is deformed by the
change of ξc in addition to the deformation of the mas-
ter body. The tangential vector at xc(ξc) along the master
surface can be obtained by t(ξc) = xc,ξ where comma rep-
resents the partial derivative.

The normal contact condition can be imposed on the
structure by measuring the distance between parts of the
boundaries Γ 1c and Γ

2
c . The impenetration condition can
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Fig. 2 Multibody contact condition

be defined, using the normal gap function gn which mea-
sures the normal distance, as

gn ≡ [x−xc(ξc)]
T en(ξc)≥ 0 , x ∈ Γ 1c , xc ∈ Γ

2
c ,

(34)

where en(ξc) = e3×et is the unit outward normal vector
of the master surface at the contact point, et = t/‖t‖ is
the unit tangential vector, and e3 is the unit vector out of
plane direction fixed inR2.The contact point xc ∈ Γ 2c cor-
responding to the slave surface point x∈ Γ 1c is determined
by solving the following contact consistency condition

ϕ(ξc) = [x−xc(ξc)]
T et(ξc) = 0 . (35)

Note that, in (35), xc(ξc) is the closest projection point
of x ∈ Γ 1c onto the master surface. As the contact point
moves along the master surface, a frictional force that re-
sists the tangential relative movement exists along the
tangential direction of the surface of the master body.
The tangential slip function gt is the measure of the rela-
tive movement of the contact point along the master sur-
face as

gt ≡ ‖t
0‖(ξc− ξ

0
c ) , (36)

where t0 and ξ0c are the tangential vector and natural
coordinate of the previous converged time step, respec-
tively.

If there exists a region Γc which violates the impene-
tration conditions of (34), it is penalized by the penalty
function. Similarly, the tangential movement of (36) can
also be penalized. Define the contact penalty function for
the violated region by

P =
1

2
ωn

∫
Γc

g2n dΓ +
1

2
ωt

∫
Γc

g2t dΓ , (37)

where ωn and ωt are the penalty parameters for normal
contact and tangential slip, respectively. To combine with
the structural variational equation, the first-order vari-

ation of P , which is the contact variational form, is ob-
tained as

b(z, z)≡ P = ωn

∫
Γc

gngn dΓ +ωt

∫
Γc

gtgt dΓ , (38)

where ωngn and ωtgt correspond to the compressive nor-
mal force and tangential traction force, respectively.

For the variational equation, the contact variational
form in (38) needs to be expressed in terms of the dis-
placement variation. For the convenience of the deriva-
tions to follow, define several scalar symbols

α≡ eTnxc,ξξ , β ≡ eTt xc,ξξ , γ ≡ eTnxc,ξξξ ,

c≡ ‖t‖2− gnα , v ≡ ‖t‖‖t0‖c . (39)

The variations of the normal gap and tangential slip func-
tions can be obtained by considering the variation of the
contact consistency condition in (35) as

gn(z; z) = (z−zc)
Ten = ẑ

T
en , (40)

gt = ‖t
0‖ξc = vẑ

T
et+

gn‖t0‖

c
zTc,ξen , (41)

where ẑ= z−zc is the relative displacement between the
slave and master contact points.

Using (40) and (41), the contact variational form (38)
can be rewritten in terms of the variation of the displace-
ment as

b(r, r) = bN(r, r)+ bT (r, r) , (42)

where

bN(r, r) = ωn

∫
Γc

gnẑ
T
en dΓ , (43)

bT (r, r) = ωt

∫
Γc

gt

(
vẑ
T
et+

gn‖t0‖

c
zTc,ξen

)
dΓ , (44)

are the normal contact and tangential slip variational
form, respectively. Note that the frictional effect in (44)
also acts in the normal direction by the displacement
variation of the master surface. Figure 3 shows a friction
curve used in this paper. The stick condition occurs when
the frictional traction force generated by the tangential
slip and the penalty parameter is less than the normal
force multiplied by the frictional coefficient

|ωtgt| ≤ |µωngn| . (45)

Otherwise, it becomes a slip condition. In (45), µ is the
Coulomb friction coefficient. For the case of the slip con-
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Fig. 3 Frictional interface model

dition, the tangential slip variational form (44) is written
as

bT (r, r) =

−µωnsgn(gt)

∫
Γc

gn

(
vẑ
T
et+

gn‖t0‖

c
zTc,ξen

)
dΓ . (46)

3.1.2
Linearization of stick condition

The nonlinear contact variational form in (42) is lin-
earized for the Newton-Raphson iteration. The incremen-
tal forms of the normal gap and tangential slip functions
can be computed using the similar procedures as obtain-
ing the first-order variations in (40) and (41),

∆gn(z;∆z) = eTn∆ẑ , (47)

∆gt(z;∆z) = veTt ∆ẑ+

(
gn‖t0‖

c

)
eTn∆zc,ξ , (48)

and the incremental forms of the unit normal and tangen-
tial vectors can be derived as

∆et =

(
αeTt ∆ẑ

c
+
‖t‖eTn∆zc,ξ

c

)
en ,

∆en(ξc) = e3×∆et . (49)

Using the linearization process, the normal contact bi-
linear form is obtained as

b∗N (r;∆r, r)≡ ωn

∫
Γc

(
ẑ
T
ene

T
n∆ẑ−

αgn

c
ẑ
T
ete

T
t ∆ẑ
)
dΓ −

ωn

∫
Γc

gn‖t‖

c

(
ẑ
T
ete

T
n∆zc,ξ+zTc,ξene

T
t ∆ẑ
)
dΓ −

ωn

∫
Γc

g2n
c
zTc,ξene

T
n∆zc,ξ dΓ . (50)

Using the similar procedure of linearization as in the nor-
mal contact variational form, the tangential stick bilinear
form can be obtained as

b∗T (r;∆r, r)≡ ωt

∫
Γc

{
v2+

vgt

c2
×

[
(γ‖t‖−2αβ)gn−β‖t‖

2
]}

ẑ
T
ete

T
t ∆ẑdΓ +

ωt

∫
Γc

‖t0‖gn

(
v

c
− gt

2β‖t‖2+αβgn−γgn‖t‖

c3

)
×

(
ẑ
T
ete

T
n∆zc,ξ+zTc,ξene

T
t ∆ẑ
)
dΓ +

ωt

∫
Γc

αvgt

c
ẑ
T (

ene
T
t +ete

T
n

)
∆ẑdΓ +

ωt

∫
Γc

vgt‖t‖

c

(
ẑ
T
ene

T
n∆zc,ξ+zTc,ξene

T
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(51)

From (50) and (51), the linearized contact form can be
written as

b∗(r;∆r, r) = b∗N (r;∆r, r)+ b∗T (r;∆r, r) . (52)

Note that the contact bilinear form in (52) for the stick
condition is symmetric with respect to∆z and z.
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3.1.3
Linearization of slip condition

For the slip contact condition, (46) is used for tangen-
tial slip. The normal contact variational form bN(r, r) in
(43) has the same form as in the stick condition and its
linearized form b∗n(r;∆r, r) is given in (50). Using the
relationship ωt =−µωnsgn(gt) for the case of the slip con-
tact, the linearization of (46) leads to the tangential slip
bilinear form as

b∗T (r;∆r, r)≡ ωt

∫
Γc

vẑ
T
ete

T
n∆ẑdΓ +

ωt

∫
Γc

vgn
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[(
γ‖t‖−2αβ

)
gn−β‖t‖

2
]
ẑ
T
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T
t ∆ẑdΓ −
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∫
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(53)

Then, the linearized contact form in (52) is applicable
where (53) is used for b∗T (r;∆r, r). Unlike the stick con-
tact, in the case of the slip contact, the contact bilinear
form in (52) is not symmetric. The system is not conser-
vative as the frictional slip dissipates energy.

3.1.4
Variational principle for finite deformation with
frictional contact problem

The principle of virtual work with contact constraint can
be written as

a(r, r)+ b(r, r) = �(r) , ∀r ∈ Z . (54)

Let the current configuration be tn and k is the last iter-
ation counter. Assuming that the external force is inde-
pendent of the displacement, the linearized incremental
equation of (54) is obtained as

a∗(nrk;∆rk+1, r)+ b∗(nrk;∆rk+1, r) =

�(r)−a(nrk, r)− b(nrk, r) , ∀r ∈ Z , (55)

which is linear in incremental displacement for a given
displacement variation. The linearized system (55) is
solved iteratively for the incremental displacement until
the residual forces [right side of (55)] become zero at each
load step. The path dependency of the problem comes
from the tangential slip function.

3.2
Design sensitivity analysis of frictional contact
problem

Consider the governing variational equation at tn for the
perturbed shape design Ωτ as

aΩτ (rτ , rτ )+ bΓCτ (rτ , rτ ) = �Ωτ (rτ ) , ∀rτ ∈ Zτ . (56)

The material derivative of a structural energy form and
external load form in (56) for the hyper-elastic material
was derived in (33).

The contact point on the master surface can be per-
turbed by changing the natural coordinate corresponding
to the contact point in the tangential direction as

d

dτ
(xc) =Vc+ żc+ t

d

dτ
(ξc) . (57)

Since the normal contact variational form appears in both
the stick and slip conditions, the material derivative of
the normal contact variational form is considered first.
A normal contact variational form at the perturbed do-
main is

bNτ (rτ , rτ ) = ωn

∫
ΓCτ

gnτ ẑ
T

τ enτ dΓ . (58)

The derivatives of the unit normal vector and the normal
gap function in (58) depend on the derivative of the natu-
ral coordinate at the contact point, which can be obtained
from the variation of the contact consistency condition in
(35) as

d

dτ
(ξc) =

‖t‖

c
eTt

(
V̂+ˆ̇z

)
+
gn

c
eTn (Vc,ξ+ żc,ξ) , (59)
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where V̂ =V−Vc and ˆ̇z = ż− żc. The material deriva-
tives of the unit normal vector and the tangential vector
can be expressed in terms of design velocity and material
derivative of the displacement as

d

dτ
(et) =

[
α

c
eTt

(
V̂+ˆ̇z

)
+
‖t‖

c
eTn (Vc,ξ+ żc,ξ)

]
en ,

(60)

and d/ dτ(et) = e3× d/ dτ(et). The material derivative
of the normal gap function can be found by taking the
derivative of (34) and considering (59) as

d

dτ
(gn) =

(
V̂+ˆ̇z

)T
en . (61)

Using (60) and (61), the derivative of the normal con-
tact variational form in (58) at the perturbed boundary
Γτ can be obtained as

d

dτ
bN(r, r) = b∗N (r; ṙ, r)+ b′N(r, r) , (62)

where b∗N (r; ṙ, r) is the same form as in (50) by substitut-
ing ∆r into ṙ and b′N(r, r) is the normal contact fictitious
load form

b′N (r, r) = b∗N (r;V, r)+ωn

∫
Γc

κgnẑ
T
en(V

Tn) dΓ , (63)

which depends explicitly on the design velocity field.

3.2.1
DSA formulation for stick condition

Before taking the material derivative of the tangential slip
function in (36), the material derivatives of ξ0c and ‖t

0‖
are computed first using the relation (59) at load step
tn−1 as

d

dτ
ξ0c =

‖t0‖

c0
e0
T

t

(
V̂+ˆ̇z

0
)
+
g0n
c0
e0
T

n

(
Vc,ξ+ ż0c,ξ

)
, (64)

d

dτ
‖t0‖= e0

T

t

(
Vc,ξ+ ż0c,ξ

)
+
β0‖t0‖

c0
e0
T

t

(
V̂+ˆ̇z

0
)
+

β0g0n
c0

e0
T

n

(
Vc,ξ+ ż0c,ξ

)
, (65)

where ż0 is the material derivative of the displacement at
load step tn−1. Even though all the quantities are evalu-
ated at time tn−1, the design velocity is evaluated at the
undeformed configuration because the design perturba-

tion occurs at 0Ω. The material derivative of tangential
slip function in (36) becomes

d

dτ
gt = veTt

(
V̂+ˆ̇z

)
+
gn‖t0‖

c
eTn (Vc,ξ+ żc,ξ) +

β0gt−‖t0‖2

c0
e0
T

t

(
V̂+ˆ̇z

0
)
+

g0n

[
β0
(
ξc− ξ0c

)
−‖t0‖

]
c0

e0
T

n

(
Vc,ξ+ ż0c,ξ

)
+

(ξc− ξ
0
c )e
0T

t

(
Vc,ξ+ ż0c,ξ

)
. (66)

Thus, the material derivative of the tangential slip func-
tion at time tn depends on quantities at configuration at
time tn−1 which makes the problem path dependent.

Using (66), the material derivative of the tangential
stick variational form in (44) at the perturbed configura-
tion becomes

d

dτ
bT (r, r) = b∗T (r; ṙ, r)+ b′T (r, r) , (67)

where b∗T (r; ṙ, r) is same as the tangential stick bilinear
form in (51) by replacing ∆r with ṙ and b′T (r, r) is the
tangential stick fictitious load form defined as

b′T (r, r) = b∗T (r;V, r)+

ωt

∫
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ete
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(VTn) dΓ . (68)
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3.2.2
DSA formulation for slip condition

The material derivative of (46) can be taken using the
similar procedure as in the stick condition, except the
normal gap function, to obtain (67) where b∗T (r; ṙ, r) is
obtained from the tangential slip bilinear form in (53) by
replacing ∆r with ṙ and b′T (r, r) is the tangential slip fic-
titious load form defined as

b′T (r, r) = b∗T (r;V, r)+

ωt

∫
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c
ẑ
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ete
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t
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)
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(VTn) dΓ . (69)

Note that the same symbol b′T (r, r) is used for stick and
slip conditions. Thus, the material derivative of the con-
tact variational form can be obtained by combining (62),
(67), and (68) for the stick condition and (62), (67), and
(69) for the slip condition,

d

dτ
bΓc(r, r) = b∗Γc(r; ṙ, r)+ b′V (r, r) , (70)

where

b∗Γc(r; ṙ, r) = b∗N (r; ṙ, r)+ b∗T (r; ṙ, r) , (71)

b′V (r, r) = b′N (r, r)+ b′T (r, r) . (72)

Thus, if all the terms regarding the material derivative
of variational (57) is collected, then the following linear
system of equations can be obtained

a∗Ω(
nr;n ṙ, r)+ b∗Γc(

nr;n ṙ, r) =

�′V (r)−a
′
V (
nr, r)− b′V (

nr, r) , ∀r ∈ Z . (73)

The left side of (73) is the same form as in (55). Thus,
the same decomposed stiffness matrix can be used for
computation of the material derivative of the displace-
ment with the fictitious load. Since the tangent stiffness
operator in (55) is not symmetric, the direct differenti-
ation method is more suitable. Since the tangential slip
fictitious load depends on the material derivative of the
previous converged configuration, the linear system (73)
is solved at each load step. Sensitivity computation does
not require convergence iterations; only the stiffness ma-
trix at the converged configuration of each load step is
used for linear analysis. Since the contact variational term
is independent of structural terms in the sensitivity equa-
tion, other types of material model can be treated using
(73) if an appropriate derivative form of structure and
load are used.

4
Numerical example: Shape DSA and optimization of
windshield wiper problem

The continuum-based response analysis (55) and DSA
(73) are discretized by reproducing kernel particle method
(RKPM) (Chen et al. 1998) where the structural domain
is represented by finite number of particles. RKPM in-
troduces a modified kernel function that is constructed
based on the enforcement of reproducing conditions
such that the kernel estimates of displacement vari-
ables exactly reproduce polynomials up to certain de-
gree. RKPM is an ideal choice since, unlike the con-
ventional FEA method, the solution is much less sen-
sitive to the mesh distortion which causes many diffi-
culties in large deformation analysis as well as shape
optimization.

Figure 4 shows the geometry of the windshield blade
and the geometry of the glass with discretized particles of
RKPM. Since there is enough difference in stiffnesses be-
tween rubber and glass, the glass material is assumed to
be rigid compared to the rubber material. For the conve-
nience of analysis, the shape of the rigid wall is approx-
imated as a straight line, and a vertical geometry of the
rigid wall is added for smooth deformation of the contact
region. The upper part of the blade is supported by a steel
slab. The material constants and contact parameters are
shown in Table 1.

Table 1 Material constants and contact parameters

D10 = 80 kPa D01 = 20 kPa K = 80MPa

µ= 0.15 ωn = 10
7 ωt = 10

6

As the rigid body moves to the left, the lead of blade
is in contact with the glass, which is modeled as flexible-
rigid body contact. The deformation of blade is large
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Fig. 4 Geometry and design parameters of windshield wiper

enough that the first wing of the blade is in contact
with the second wing of the blade, which is modeled
as a flexible-flexible body contact. Also the second wing
is in contact with the steel slab, which is modeled as
a flexible-rigid body contact. The function of the thin
neck is to generate flexibility such that the direction
of the blade can be easily turned over when the blade
changes its moving direction. The role of wing is to sup-
ply enough contact force at the lead point. Figure 5 shows
von Mises stress contour plot with the deformed geom-
etry at the final configuration. The stress concentration
is found at the neck and the lead because of the bending
effect.

The geometry of the structure is parameterized using
9 shape design variables as shown in Fig. 4. The design
velocity field at the boundary is obtained first by per-
turbing the boundary curve corresponding to the design
variable, and the domain design velocity field is com-
puted using an isoparametric mapping method (Choi and
Chang 1994). Four performance measures are chosen:
the total area of structure, two von Mises stresses of the
neck region, and the y directional contact force at the
lead.

DSA is carried out at each converged load step to com-
pute the material derivative of the displacement. The sen-
sitivities of the performance measures are computed at
the final converged load step using the material derivative
of the displacement. The cost of sensitivity computation
is about 4% of that of response analysis per design pa-
rameter, which is quite efficient compared to the finite
difference method. The accuracy of the sensitivity is com-
pared with the forward finite difference results for the
perturbation size of τ = 10−6. Table 2 shows the accuracy
of the sensitivity results. In Table 2, the second column,

Fig. 5 Von Mises stress contour plot of windshield wiper

∆Ψ denotes the finite difference results and the third col-
umn represents the change of the performance measure
from the proposed method. Excellent sensitivity results
are obtained.

Table 2 Sensitivity results and comparison with finite differ-
ence method

Performance ∆Ψ Ψ ′ (∆Ψ/Ψ ′)×100

u1
Area .28406E-5 .28406E-5 100.00
vm53 .19984E-3 .19984E-3 100.00
vm54 .28588E-3 .28588E-3 100.00
Fcy .55399E-5 .55399E-5 100.00

u3
Area .68663E-5 .68663E-5 100.00
vm53 .19410E-3 .19410E-3 100.00
vm54 .68832E-4 .68832E-4 100.00
Fcy .43976E-4 .43976E-4 100.00

u5
Area .33000E-5 .33000E-5 100.00
vm53 .22762E-4 .22762E-4 100.00
vm54 .77289E-5 .77286E-5 100.00
Fcy .62356E-5 .62355E-5 100.00

u6
Area −.24000E-5 −.24000E-5 100.00
vm53 −.16452E-4 −.16452E-4 100.00
vm54 .36694E-5 .36690E-5 100.01
Fcy −.26072E-5 −.26072E-5 100.00

The objective of the design problem is to reduce the
material of the blade by changing the shape of the blade.
The stress concentration is to be reduced and the contact
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Fig. 6 Optimization history of windshield wiper contact problem

force at the lead is to be increased at the same time. The
design optimization problem is

min Area(39) ,

s.t. σ53(75), σ54(45), σ76(32), σ84(34)≤ 55 ,

Fy128(5)≥ 5.5 ,

−0.2≤ ui ≤ 0.2 , i= 1, 3, 7, 8 ,

−0.3≤ ui ≤ 0.3 , i= 2, 4 ,

−0.6≤ ui ≤ 0.6 , i= 5, 6 ,

−0.1≤ ui ≤ 0.1 , i= 9 , (74)

where the values within the parenthesis are the original
response values. Design optimization is carried out using
the sequential quadratic programming method. The per-
formance values are supplied to the optimizer by solv-
ing nonlinear analysis (RKPM) and the sensitivity coef-
ficients are provided by the proposed method. Optimiza-
tion is converged after 10 iterations and Fig. 6 shows the
history of the cost and constraint functions. The cost
function, which is the total area, is reduced by 3.5%. Fig-
ure 7 shows the optimized geometry and the analysis re-
sult. As shown in the figure, the thickness of the lead is
increased to increase the contact force, whereas the thick-
ness of the neck is reduced to decrease the bending stress
at that region. The thickness of the first wing is reduced
to the lower bound since the level of the stress is relatively
low. Fig. 7 Optimized shape design and analysis result



208

5
Conclusions

A continuum-based shape design sensitivity formulation
of the multibody frictional contact problem for hyper-
elastic material is developed. DSA uses the same tangent
stiffness matrix as analysis at the converged configura-
tion. No convergence iterations are required for sensi-
tivity computation, and thus sensitivity analysis takes
much less effort than nonlinear response analysis. It is
also demonstrated that shape optimization of the multi-
body frictional contact problem can be performed effi-
ciently due to accuracy of the design sensitivity of the
continuum-based DSA method.
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