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SUMMARY

The springback is a manufacturing defect in the stamping process and causes difficulty in product assembly.
An impediment to the use of lighter-weight, higher-strength materials in manufacturing is relative lack of
understanding about how these materials respond to complex forming processes. The springback can be
reduced by using an optimized combination of die, punch, and blank holder shapes together with friction
and blank-holding force. An optimized process can be determined using a gradient-based optimization
to minimize the springback. For an effective optimization of the stamping process, development of an
efficient design sensitivity analysis (DSA) for the springback with respect to these process parameters
is crucial. A continuum-based shape and configuration DSA method for the stamping process has been
developed using a non-linear shell model. The material derivative is used to develop the continuum-
based design sensitivity. The design sensitivity equation is solved without iteration at each converged
load step in the finite deformation elastoplastic non-linear analysis with frictional contact, which makes
sensitivity calculation very efficient. Numerical implementation of the proposed shape and configuration
DSA method is performed using the meshfree method. The accuracy and efficiency of the proposed
method are illustrated by minimizing the springback in a benchmark S-rail problem. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The stamping process was a major industrial breakthrough that made mass production of various
products, which range from automobiles to home appliances, possible. However, the springback
in metal stamping is still very much problematic such that it requires a trial-and-error process to
remove it, which is very expensive. For example, a large size die for a passenger vehicle side
door could cost up to one million dollars. These days, carmakers face ever more frequently the
phenomenon of the springback, especially with new high-strength steels. As a result, industries
need a better understanding of how to compensate for the springback in the stamping process
especially for lightweight materials such as aluminium and high-strength steel.

The stamping process involves a combination of elastoplastic bending and stretching deformation
of the blank sheet through frictional contact. These deformations can lead to large amounts of
the springback after the punch, die, blank holder are removed. The springback behaviour is very
complex and is affected by many factors including material properties, clearance between punch and
die, thickness of the blank sheet, the tool (die, punch, and blank holder) shape, and blank-holding
force. Simulation of such behaviours using numerical methods such as finite element analysis
(FEA) is still very much challenging problem, let alone design sensitivity analysis (DSA). Thus,
extensive research efforts on the simulation of stamping process have been performed. The earliest
studies on FEA of sheet forming are made by Gotoh and Ishie [1], Wang and Budiansky [2], and
Wifi [3]. The first two works utilized an elastoplastic law, while the latter used a rigid-plastic law.
Wang and Budiansky [2] used membrane element and Wifi [3] used continuum element. The FEA
was extended to three-dimensional applications by Tang et al. [4] and Toh and Kobayashi [5, 6].
All studies mentioned above are of static implicit or static explicit type. The dynamic explicit
methods have their roots in the study of Belytschko and Mullen [7]. Application to deformation
mechanics is given in the work of Benson and Hallquist [8]. Batoz et al. [9] proposed the inverse
approach (IA). Recent benchmark tests and accompanying papers [10–13] illustrate the state of
the art in simulation of stamping process using FEA.

There have been several attempts to reduce the springback problem. For example, Wenner [14]
showed that tensile stretching stresses superimposed on the bending stresses of an elastoplastic
material could reduce the springback in two-dimensional formed parts. Liu [15] has proposed
variations of the blank-holding force during the forming process to provide tensile pre-loading
or post-loading on the formed part for springback reduction. However, it is not always possible
to transmit high tensile forces to all parts of a blank sheet with complicated geometry without
causing failure by tearing of the formed part. Karafillis and Boyce [16] proposed a methodology
for tool shape design based on the inverse springback calculation. In their method, the traction
distribution on the formed part is calculated at the fully loaded stage and this traction distribution
was used to elastically load a part to give the desired die shape. However, these methods cannot be
easily applied to the stamping process of complex formed part shape [17, 18]. Gan and Wagoner
[17] and Gan et al. [18] used the displacement vectors at each node to minimize the springback
by adjusting the trial die design until the target part shape is achieved.

In recent years, DSA has been used for the stamping process design. For example, Yang
et al. [19] optimized hydroforming process by applying a gradient-based method including sen-
sitivity analysis. Naceur et al. [20] optimized drawbead restraining force to improve the sheet
metal formability in deep drawing process. Sosnowski et al. [21] presented direct differentiation
method of DSA to optimize two simple contact bodies. As it is pointed out by Choi et al. [22],
there are three approaches for DSA: the finite difference method (FDM), discrete method, and
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continuum-based method. Among them, the continuum-based method differentiates the varia-
tional equation before discretization and thus is more efficient and accurate than the two other
methods, although it requires lengthy and sophisticated mathematical derivations. In this pa-
per, a continuum-based DSA method for a stamping process has been developed. The DSA
for the stamping process is quite challenging because it requires sensitivity analysis of a shell
structure with three non-linearities: elastoplasticity, finite deformation, and frictional contact. De-
tailed discussion of DSA for a finite deformation elastoplastic shell structure is developed by
Yi et al. [23], where the continuum-based DSA method is developed using the elastoplastic
return-mapping algorithm [24] along with the Hughes–Winget’s incrementally objective integration
algorithm [25–27].

By integrating the DSA results by Yi et al. [23] and the newly developed DSA method for the
frictional contact problem in this paper, a continuum-based DSA method for a finite deformation
elastoplastic non-linear shell structure with frictional contact is developed for application to the
stamping process design. Several contact algorithms are available: the Lagrange multiplier, penalty
function, and the direct node projection [28, 29]. Among these algorithms for fictional contact
enforcement, the penalty function is used in this paper. Therefore, for DSA, a penalty-regularized
variational equation [30] is differentiated with respect to the stamping process parameters. The
material derivative that is consistent with the frictional return-mapping scheme is derived. A
piecewise-linear contact surface causes a significant amount of difficulty in the Newton-type
iterative method because it lacks continuity across the surface boundary. Thus, computer-aided
design (CAD) geometry-based representations of die and punch surfaces are used in this paper to
alleviate the difficulty by providing smooth contact surface.

For DSA of the stamping process, the sensitivity equation uses the same tangent stiffness matrix
as the response analysis, which is already decomposed during non-linear analysis, and only a
substitution process using fictitious load vectors is required. Therefore, the computational cost of
DSA is much less than that of the response analysis, which makes the design optimization process
very efficient. Numerical implementation of the proposed shape and configuration DSA method
is carried out using the meshfree method. Accuracy and efficiency of the proposed method are
demonstrated by minimizing the springback of the benchmark S-rail forming problem.

2. GEOMETRIC REPRESENTATIONS OF TOOLS AND BLANK SHEET

In the stamping process, deformations of the tools (rigid punch, die, and blank holder) are generally
ignorable. Therefore, in the numerical analysis, these tools can be modelled as rigid bodies and
their discretization is not needed. Only the blank sheet is modelled as the shell structure and
discretized. A CAD geometry-based representation is utilized for both the tool surface and the
shear deformable shell structure. Since the CAD surface representation used in this paper has
C1-continuity, its use for the tool surface provides a continuous contact force and surface normal
vector, as well as a valid contact tangent stiffness matrix. The CAD geometry-based representation
of the tool surface alleviates significant amount of difficulty of the piecewise-linear contact surface
model often used in FEA. In addition, since no element information is generated in the meshfree
method (which is used in this paper for numerical analysis), the surface information from the CAD
geometry is necessary for constructing the surface normal vector and the mapping from global to
local co-ordinates.
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Figure 1. Shell structure.

2.1. Tool surface representation

A CAD geometry-based representation is utilized for the tool surface. Figure 1(c) and (d) show
the general surface geometry in a three-dimensional space and its transformation into parametric
co-ordinate. In the CAD software, a general surface geometry in a three-dimensional space can be
represented by using two parameters as [31, 32]

xn(�, �) =U(�)TMGMTW(�) (1)

where U(�) = [�3, �2, �, 1]T and W(�) =[�3, �2, �, 1]T are vectors in the parametric co-ordinates,
M is the matrix defined as

M=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

and G is the surface geometric matrix defined as

G=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p00 p01 p�
00 p�

01

p10 p11 p�
10 p�

11

p�
00 p�

01 p��
00 p��

01

p�
10 p�

11 p��
10 p��

11

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)
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where pi j are co-ordinates of the corner points on the surface, p�
i j and p�

i j are the tangent vectors

in � and � directions, and p��
i j are the twist vectors.

2.2. Kinematics of the blank sheet

A general shell structure is represented by the neutral surface geometry and thickness data at
each point as shown in Figures 1(a)–(c). The neutral surface geometry can also be represented
using Equation (1). The surface representation method in Equation (1) provides good flexibility
from the computational viewpoint. For example, the normal vector on the surface at (�,�) can be
obtained as

n(�, �) = xn
,� × xn,�

‖xn
,� × xn,�‖

(4)

where, from Equation (1),

xn,� =UT
,�(�)MGMTW(�) (5)

xn,� =U(�)TMGMTW,�(�) (6)

For the shell structure with thickness t (�, �), any points within the structure can be expre-
ssed by

x(�, �, �) =U(�)TMGMTW(�) + �
t

2
n(�, �) (7)

where � =[−1, 1] is the third parametric co-ordinate in the thickness direction, and n(�, �) is
the outward unit vector of the surface, obtained from Equation (4). The Jacobian of the map-
ping relation between physical and parametric co-ordinate can be obtained, from the relation in
Equation (7), as

x,� =UT
,�MGMTW + �

t

2
n,�

x,� =UTMGMTW,� + �
t

2
n,�

x,� = t

2
n

(8)

The notations x=[x, y, z]T =[x1, x2, x3]T and v=[�, �, �]T =[�1, �2, �3]T are used in the fol-
lowing derivations. Using these notations, the Jacobian of the mapping can be represented by

J= �xi
�� j

(9)

For the shell structure, the constitutive relation is given in body-fixed, local co-ordinate, whereas
a displacement–strain relation is provided in global co-ordinate. The unit vectors in the local co-
ordinate are calculated as

l= xn
,�

‖xn
,�‖

, n= xn
,� × xn,�

‖xn
,� × xn,�‖

, m=n× l (10)
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Using the relation in Equation (10), the co-ordinate transformation can be obtained as

x=

⎡
⎢⎢⎣
l1 m1 n1

l2 m2 n2

l3 m3 n3

⎤
⎥⎥⎦ x′ (11)

where x′ is the global co-ordinate of the corresponding point x in the local co-ordinate.

3. CONTACT ANALYSIS

A detailed discussion of the variational equation for the non-linear elastoplastic shell with finite
deformation and continuum-based DSA method is presented by Yi et al. [23], where the structural
energy form, load linear form, and linearized structural energy form are derived. These results
are shown in Figure 2, which will be used in this paper to derive the variation equation for the
stamping process, by integrating with the contact variational form derived in this section.

In this section, contact analysis between a shell structure (a blank sheet) and tools (rigid punch,
die, and blank holder) is described in continuum formulation. Figure 3 illustrates the contact
kinematics between two surfaces, represented by �1

x and �2
x , where �1

x is designated as a slave
surface, while �2

x is designated as a master surface. In the stamping problem, the blank sheet is
referred to as the slave body and the punch, die, and blank holder are referred to as the master

Figure 2. Structural energy and load linear forms.

Figure 3. Contact kinematics.
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bodies. The contact constraints are imposed such that the points on �1
x cannot penetrate into �2

x .

The master surface is represented by the two parameters of the CAD geometric surface as x(�1, �2).
Therefore, two tangential vectors and a normal vector on the master surface are defined as

e1 = x,1, e2 = x,2, n= e1 × e2/‖e1 × e2‖ (12)

where x,� = �x/���, � = 1, 2. Note that e1 and e2 are not necessarily orthogonal to each other, but
are tangent to the master surface.

One of the most important steps in the contact analysis is to locate the contact point in accurate
and efficient way. The contact point xc ∈ �2

x corresponding to the slave point x∈ �1
x is determined

first using an optimization for minimum distance, and then refined using the consistency condition

e� · (x − xc) = 0, � = 1, 2 (13)

Note that xc is the closest projection point corresponding to x. Using the normal gap function,
which is the normal distance between two bodies, the impenetrability condition can be imposed as

g= n · (x − xc)�0 (14)

It is well known that the contact variational inequality is equivalent to the constrained mini-
mization problem, which can be approximated using the Lagrange multiplier or penalty method. In
this paper, the penalty method is used without introducing additional unknowns in the variational
governing equation.

If a region denoted �c(⊂ �1
x ) exists that violates the impenetrability condition of Equation (14),

then this region is penalized using a penalty function, which is defined as

P = 1

2
�n

∫
�c

g2 d� (15)

where �n is the penalty parameter. Let the symbol ‘over-bar’ denote a variation of the quantity
such that z represents a variation of the displacement z. The variation of the penalty function
in Equation (15) contains the variation of the gap function, which can be obtained from its
definition as

g=n · (z − zc) ≡ n · ẑ (16)

where the notations ẑ= z−zc and ẑ= z−zc are used for the relative displacement and its variation
between two contact points. Note that the variation of the normal vector n vanishes because it is
orthogonal to the vector (z − zc).

The variation of the penalty function becomes the contact variational form, which is defined as

bN(n+1z, z) ≡ P = �n

∫
�c

gg d� (17)

where �ng corresponds to the compressive normal force. The left superscript ‘n + 1’ denotes the
configuration at time tn+1.

By combining Equation (17) with the structural energy form a�(n+1z, z) and load linear form
��(z) shown in Figure 2, the finite deformation elastoplastic non-linear variational governing
equation for the penalized contact condition becomes

a�(n+1z, z) + bN(n+1z, z) = ��(z) ∀z∈ Z (18)
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where

Z ={z∈ [H1(�)]3|z(x)= 0, x∈ �g} (19)

is the space of kinematically admissible displacement, and H1(�) is the first-order Sobolev space
and �g is the essential boundary where the displacement is prescribed. Note that even if the
structure encounters only elastic deformation, Equation (18) is non-linear since the inequality
constraint is imposed throughout the penalty method.

In this paper, the return-mapping algorithm on the subspace defined by the zero-normal stress
condition is used for elastoplastic integration. In order to handle the finite deformation, the Hughes–
Winget’s incrementally objective integration scheme is used [23]. The non-linear equation (18)
is first linearized, and then solved using a Newton iterative method to obtain the solution. The
linearized structural energy form, a∗

�(n+1z;�z, z), is given in Figure 2.
The linearization of contact variational form, b∗

N(n+1z; �z, z), will be derived in next section in
the process of DSA. By combining the linearization of the contact variational form with that of
the structural energy form, the incremental equation becomes

a∗
�(n+1zk;�zk+1, z) + b∗

N(n+1zk;�zk+1, z)

= ��(z) − a�(n+1zk, z) − bN(n+1zk, z) ∀z∈ Z (20)

where the right superscript k denotes the current iteration counter. For a given load step, Equation
(20) is solved iteratively until the residual force vanishes. After convergence, the decomposed
tangent stiffness matrix is stored to be used for DSA. The continuum-based DSA method for a
finite deformation elastoplastic shell structure is developed by Yi et al. [23], which will be used
here to combine with DSA of the frictional contact problem.

4. DESIGN SENSITIVITY ANALYSIS OF SHELL CONTACT PROBLEM

For design of the stamping process, the design variables are the shape of the stamped workpiece
(for multistage stamping process) and tool surfaces (punch, die, and blank holder). Even when the
shape of the workpiece is initially flat and thus does not render a shape design, the DSA formulation
must include the design velocity field of the workpiece because the updated Lagrangian formulation
is used for the non-linear analysis. For DSA of the contact problem, instead of differentiating the
contact variational inequality, the penalty-approximated variational equation is differentiated with
respect to the design variable.

4.1. Material derivative formulas

In shape and configuration DSA, a material point 0x is moved to a new point 0x�(= 0x + �0V) due
to design perturbation. A design velocity field 0V of the undeformed configuration represents the
direction of the design perturbation, and � is a scalar parameter that determines the perturbation
size. In the updated Lagrangian formulation, the reference frame is updated after each incremental
analysis using the following relation:

nx= 0x + nz (21)
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where nx is spatial co-ordinate at time tn and nz is the sum of the incremental displacement up
to time tn . By differentiating the above relation, the following design velocity update formula is
obtained:

d

d�
(nx�)

∣∣∣∣
�=0

= d

d�
(0x� + nz�)

∣∣∣∣
�=0

= 0V + n ż= nV (22)

The superposed dot will be used to denote the material derivative of the variable. Note that even
when the shape of the slave surface (workpiece) is not a design variable, and thus initial design
velocity field, 0V, is zero, the design velocity field at time tn is non-zero due to n ż.

Using the relation in Equation (22), the material derivative of the structural point on the slave
surface at the current configuration becomes

d

d�
(n+1x�)

∣∣∣∣
�=0

= d

d�
(nx� + �z�)

∣∣∣∣
�=0

= nV + �ż (23)

On the other hand, the perturbation of the contact point on the master surface (tool surface) can
be obtained by using the chain rule and by perturbing the natural co-ordinate corresponding to the
contact point in the tangential direction as

d

d�
(n+1xc�)

∣∣∣∣
�=0

= nVc + �żc + e��̇� (24)

where a summation rule is used for the repeated indices.
The material derivatives of the structural energy form are [23]

d

d�
[a�(n+1z�, z�)]

∣∣∣∣
�= 0

= a∗
�(n+1z;�ż, z) + a′

V (n+1z, z) (25)

where a∗
�(n+1z;�ż, z) is the same form as the linearized energy form in Equation (20) by sub-

stituting �zk for �ż. a′
V (n+1z, z) is the structural fictitious load form as given in Figure 4, which

includes all known terms from the response analysis and DSA up to the previous time step and
its expression. The material derivative of the load linear form is obtained by Yi et al. [23] as

d

d�
[��(z�)]

∣∣∣∣
�=0

=
∫ ∫ ∫

n+1�
zi f

B
i div V d� ≡ �′

V (z) (26)

Figure 4. Fictitious load form for DSA.
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Figure 5. Example of die composed of three surfaces.

4.2. Design velocity field computation

The computation of design velocity fields 0V and 0Vc are directly related to the parametric
representation of the surface, as given in (1). For example, Figure 5 shows die geometry, which is
composed of three surfaces. Each surface is characterized by its surface geometric matrix Gi=1,2,3
as in (3). If the corner radius R is considered as a design parameter, the design dependence of the
surface is written as

0xci (R) =U(�)TMGi (R)MTW(�), i = 1, 2, 3 (27)

Since geometric matrix Gi (R) is a function of the corner radius R, the design velocity can be
obtained by perturbing R to R + ��R, and then differentiating with respect to � as

0Vc
i = d0xci (R + ��R)

d�

∣∣∣∣∣
�=0

=U(�)TM
(

�Gi

�R
�R

)
MTW(�)

=U(�)TM(Gnew
i − Gi )MTW(�) (28)

where Gnew
i is a geometric matrix of each surface when the corner radius is changed to Rnew using

the CAD geometry.
Suppose the contact surface �c change its shape due to the die shape design perturbation. The

contact form in Equation (17) depends on the design in two ways: explicitly through the contact

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 71:1483–1511
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surface design change and implicitly through the response z. The material derivative of the contact
form can be obtained as

d

d�
[bN(n+1z, z)]

∣∣∣∣
�=0

=�n

∫
�c

[ġg + gġ + gg�nVn] d� (29)

where � is the curvature of the master surface, and nV is the normal component of the design
velocity. For DSA, ġ and ġ need to be expressed in terms of the implicit term �ż and the explicit
term nV. From its definition in Equation (14), the material derivative of the gap function can be
obtained as

ġ=n · (� ˆ̇z + nV̂) (30)

where � ˆ̇z ≡ �ż−�żc and nV̂ ≡ nV− nVc. However, the derivation of ġ is not straightforward and
the relation of z= gn + gn + e��� is needed to make the stiffness matrix symmetric. By taking
the material derivative of g in Equation (16),

ġ= − n · zc,��̇� − (n · ė�)�� + g(n · ė�)m−1
�	 (n · e	) (31)

where m�	 = e� · e	. In Equation (31),

ė� ≡ d

d�
(n+1xc,�)

∣∣∣∣
�=0

= �żc,� + nVc
,� + n+1xc,�	�̇	 (32)

The expression of �̇	 can be obtained from the consistency condition in Equation (13) as

�̇	 = A−1
�	 (� ˆ̇z · e�) + A−1

�	 (nV̂ · e� + gn · nVc
,�)

≡ �	(�ż) + �	(
nV) (33)

where A�	 =m�	 − gn · n+1xc
,�	. By using the relations from Equations (30) to (33), the material

derivative of the contact variational form can be separated into two parts: the implicitly dependent
and the explicitly dependent parts as

d

d�
[bN(n+1z�, z�)]|�=0 = b∗

N(n+1z;�ż, z) + b′
N(n+1z, z) (34)

where

b∗
N(n+1z;�ż, z) = �n

∫
�c

ẑ · nn · � ˆ̇z d� − �n

∫
�c

g[n · zc,���(�ż) + n · �żc,���

+ n · n+1xc,�	���(�ż)] d� + �n

∫
�c

g2[(n · e�(�ż))m−1
�	 (n · e	)] d� (35)

is the same form as the linearization of the contact variational form in Equation (17) if we substitute
�zk for �ż. This linearized form is used in the incremental equation (20) of the governing variational
equation (18). The second term on the right of Equation (34) is the fictitious load form, for the
problem with frictionless contact, which is defined as

b′
N(n+1z, z) ≡ b∗

N(n+1z; nV, z) + �n

∫
�c

[�gz · nnVn] d� (36)
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5. FRICTIONAL CONTACT DESIGN SENSITIVITY ANALYSIS

When friction exists on the contact surface, the structure experiences a tangential frictional force,
in addition to the normal contact force. Since the frictional behaviour is complicated, many
idealizations have been made. The Coulomb friction law is one of the frequently used methods to
describe the frictional behaviour. However, this method presents numerical difficulties because of
a discontinuity of the frictional force. A more advanced friction model assumes that the frictional
force elastically increases until it reaches the limit value, and then the macroscopic slip occurs
along the contact surface. This model is based on the experimental observation and corresponds to
the non-associative flow rule in elastoplasticity. Thus, the return-mapping algorithm can be used
to determine the frictional force similar to the elastoplasticity case.

5.1. Frictional model

The frictional force appears parallel to the contact surface and is expressed as

f= f�e� (37)

where e� is the dual basis of e� and has the following relation:

e� · e	 = ��	

e� =m−1
�	 e	

(38)

where m�	 = e� · e	 and ��	 is the Kronecker delta symbol, i.e. having a value of one when � = 	,
and otherwise remaining at zero. The frictional contact form of the problem can then be defined
by multiplying the frictional force by the virtual relative slip as

bT(z, z) =
∫

�c
f��� d� (39)

The expression �� can be obtained from the consistency condition in Equation (13) as

�	 = A−1
�	 (ẑ · e� + gn · zc,�) (40)

In the regularized frictional model, frictional force f� is calculated by using a return-mapping
algorithm similar to the elastoplasticity case. Initially, the frictional force increases in proportion
to the relative slip amount. This trial frictional force is then compared with the limit value 
�Ng,
where 
 is Coulomb friction coefficient. If the trial force is smaller than the limit value, then the
trial force becomes the frictional force (stick condition). If the trial force is greater than the limit
value, then the limit value is used for the frictional force (slip condition). Figure 6 shows the
frictional force used in this paper.

Similar to the frictionless contact form, the non-linear frictional contact form in Equation (39)
has to be linearized as part of the implicit solution process. The linearized frictional contact form
is denoted by b∗

T(z;�z, z), whose expression is derived in the following section. If the following
notations are used:

b�(n+1z, z) = bN(n+1z, z) + bT(n+1z, z)

b∗
�(n+1z;�z, z) = b∗

N(n+1z;�z, z) + b∗
T(n+1z;�z, z)

(41)
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Figure 6. Return-mapping algorithm for frictional force.

then the linearized incremental equation can be extended to the frictional contact problem as

a∗
�(n+1zk;�zk+1, z)+b∗

�(n+1zk;�zk+1, z) = ��(z)−a�(n+1zk, z)−b�(n+1zk, z) ∀z∈ Z (42)

It is shown in the next section that the same left-hand side of Equation (42) can be used in DSA.
Also, the linearized frictional contact form b∗

T(n+1z; •, z) in Equation (41) will be derived during
the process of design sensitivity formulation of the friction form in next section.

5.2. Design sensitivity formulation of friction form

Unlike the frictionless contact form, the frictional contact form depends on analysis results at the
previous load step because of the updating algorithm of the frictional force. Thus, the sensitivity
equation constitutes three parts: implicitly dependent terms, explicitly dependent terms, and path-
dependent terms. The material derivative of the frictional contact form can be obtained from
Equation (39) as

d

d�
[bT(n+1z, z)]

∣∣∣∣
�=0

=
∫

�c
( ḟ��� + f��̇� + � f���

nV) d� (43)

The material derivative of �	 can be obtained from Equation (40) as

A�	�̇	 = −e� · zc,��̇�+ẑ · ė�+e� · � ˆ̇z−e� · e	�̇	−ė� · e	�	−[e� · xc,�	−gn · xc,��	]�̇	��

−e� · �żc,	�� + gn · �żc,����+gn · zc,�	�̇	+e� · nV̂−e� · nVc
,	��+gn · nVc

,���� (44)

Note that Equation (44) includes the implicitly dependent (�ż) and the explicitly dependent term
(nV). No path-dependent term exists, and the expression is the same for both stick and slip
conditions.

For the stick condition, the traction force increases in proportion to the amount of relative
slip between two contact surfaces. The material derivative of the frictional force in Equation (37)
becomes

n+1 ḟ� = �t��	�	(�ż) + �t[e	 · �żc,� + e� · �żc,	](n+1�	 − n�	) + �t��	�	(
nV)

+�t[e	 · nVc
,� + e� · nVc

,	](n+1�	 − n�	) + n ḟ� + �tm�	
n �̇	 (45)
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where ��	 ≡ �t{[xc,�	 · e� + e� · xc
,�	](n+1�� − n��) + m�	}. In Equation (45), first and second

terms on the right represent the implicitly dependent terms, third and fourth terms represent the
explicitly dependent terms, and fifth and sixth terms represent the path-dependent terms.

By substituting Equations (44) and (45) into Equation (43), the material derivative of the
frictional contact form is explicitly obtained in terms of �ż, nV, and the path-dependent terms, as

d

d�
[bT(n+1z, z)]

∣∣∣∣
�=0

≡ b∗
T(n+1z;�ż, z) + b′

T(n+1z, z) (46)

where the linearized friction form is defined by collecting all terms that include �ż as

b∗
T(n+1z;�ż, z) =

∫
�c

{�t��	�	(�ż)�� + �t[�żc,� · e	 + e� · �żc,	](n+1�	 − n�	)��

+ f�A
−1
�	 (−e� · zc,���(�ż) + ẑ · e�(�ż) + e� · � ˆ̇z − e� · e	�	(�ż)

+ e�(�ż) · e	�	 + gn · zc,�	�	(�ż) − [e� · xc,�	 − gn · xc,��	]�	(�ż)��

− e� · �żc,	�� + gn · �żc,�����)} d� (47)

and the fictitious load form due to friction is obtained by collecting those explicitly dependent
terms and path-dependent terms as

b′
T(n+1z, z) = b∗

T(n+1z; nV, z) +
∫

�c
� f���

nV d� +
∫

�c
(n ḟ��� + �tm�	��

n �̇	) d� (48)

For the slip condition, the magnitude of the frictional force is determined from the normal
contact force, while the applied direction is parallel to the trial force. From the return-mapping
algorithm given in Figure 6, the material derivative of the frictional force for the slip condition is
obtained as

n+1 ḟ� = 
�n p�n · (�ż + nV̂) + 
�ng

‖ftr‖ [ ḟ tr� − p� p
	 ḟ tr	 − f tr� p	p · ė	] (49)

where p= ftr/‖ftr‖, p� = f tr� /‖ftr‖, and p	 =p ·e	. In Equation (49), ḟ tr� is the same as in Equation
(45) for the stick condition. By substituting Equations (44) and (49) into Equation (43), the material
derivative of the frictional contact form is obtained. If the implicitly dependent terms are combined,
the linearized frictional contact form can be obtained as

b∗
T(n+1z;�ż, z) = 
�n

∫
�c

{p���n · �ż + �tg(��	 − p� p
	)/‖ftr‖[�	���(�ż)

+�t[e	 · �żc,� + �żc,	 · e�](n+1�� − n��)]��} d�

− 
�n

∫
�c

{gp� p
	��{[p · xc,	� − ([xc,	� · e� + e	 · xc,��]p · e�)]��(�ż)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 71:1483–1511
DOI: 10.1002/nme



DESIGN SENSITIVITY ANALYSIS 1497

+p · �żc,	 − (�żc,	 · e� + �żc,� · e	)p · e�}} d�

+
∫

�c
{ f�A−1

�	 (−e� · zc,���(�ż) + ẑ · e�(�ż) + e� · � ˆ̇z − e� · e	�	(�ż)

+ e�(�ż) · e	�	 + gn · zc,�	�	(�ż) − e� · �żc,	�� + gn · �żc,����

−[e� · xc,�	 − gn · xc,��	]�	(�ż)��)} d� (50)

In a similar way, the explicitly dependent terms and path-dependent terms are combined to define
the fictitious load form due to friction as

b′
T(n+1z, z) = b∗

T(n+1zk; nV, z) +
∫

�c
� f���

nV d�

+
∫

�c


�ng

‖ftr‖ (��	 − p� p
	)(n ḟ� + �tm�	

n �̇	)�� d� (51)

By adding Equations (36) and (48) for the stick condition, or Equations (36) and (51) for the slip
condition, the total fictitious load from due to frictional contact can be defined as

b′
V (n+1z, z) ≡ b′

N(n+1z, z) + b′
T(n+1z, z) (52)

Finally, by adding the material derivatives in Equations (25), (34), and (46), and using Equation
(52), the design sensitivity equation for the frictional contact problem is obtained as

a∗
�(n+1z;�ż, z) + b∗

�(n+1z;�ż, z) = �′
V (z) − a′

V (n+1z, z) − b′
V (n+1z, z) ∀z∈ Z (53)

where

b∗
�(n+1z;�ż, z) ≡ b∗

N(n+1z;�ż, z) + b∗
T(n+1z;�ż, z) (54)

Since the left-hand side of Equation (53) is same as the left-hand side of Equation (42) if �ż
is replaced by �zk+1, the design sensitivity equation uses the same stiffness matrix as response
analysis that already has a factorized form. This provides an excellent efficiency in computation
of design sensitivity.

Figure 7 shows the flow chart of the response analysis and DSA. The response analysis of
a stamping process involves elastoplasticity, finite deformation, and frictional contact of shell
structure. For the response analysis of the finite deformation elastoplastic shell structure, which
corresponds to a∗

�(n+1zk;�zk+1, z) and a�(n+1zk, z) in Equation (42), the Hughes–Winget’s incre-
mentally objective integration with the elastoplastic return-mapping algorithm for the shell structure
is used. The detail discussion of the response analysis and DSA using the meshfree method can be
found in Yi et al. [23]. The non-linear response analysis is to find the equilibrium state correspond-
ing to the applied loads. Time variable t is used to denote the intensities of load applications, or
different punch location in a stamping process, and correspondingly different configurations. The
basic approach in non-linear response analysis is to assume that the solution at time t is known
and that the solution at time t + �t is required. That is, Equation (42) is solved iteratively to
obtain the incremental displacement �z based on the Newton–Raphson iteration method. After the
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Figure 7. Flow chart of response analysis and design sensitivity analysis.

converged solution is obtained, Equation (53) is solved without iteration to calculate the design
sensitivity of incremental displacement �ż. In DSA, since the left-hand side of Equation (53) is
same as that of (42), the sensitivity calculation is carried out without iteration, which makes DSA
very efficient.

The sensitivity at the points of interests before springback is evaluated by simply summing design
sensitivity of the incremental displacement up to before springback. Likewise, the sensitivity at
the points of interests after springback is evaluated by simply summing design sensitivity of the
incremental displacement up to after springback. For example, if 200 time steps are used for loading
and 40 time steps are used for unloading, summing sensitivity of incremental displacement from
the first to the 200th time step will give sensitivity before springback, and summing from the first
to the 240th time step will give sensitivity after springback.
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6. NUMERICAL EXAMPLES

Two numerical example problems are used in this section to demonstrate accuracy and efficiency
of the proposed DSA method and its application to optimization of metal stamping process for the
springback problem.

6.1. Design sensitivity analysis of deep drawing problem

In deep drawing problem, a sheet of metal is clamped by a constant blank-holding force between
the blank holder and die, and then subjected to bending by the punch as shown in Figure 8,
which shows half of the model using symmetry. The final shape after unloading is sought to
compute the springback. This problem is one of the benchmark problems of NUMISHEET’93 and
considered in this section to verify the proposed continuum-based DSA method. The springback
in this problem is expected to be very large. A total of 205 meshfree particles are used. A 2.45 kN
blank-holding force is used. Due to symmetry, a half of deep drawing is modelled. The dimensions
of blank sheet are 175 mm(L) × 17.5 mm(W ) × 0.78 mm(t). The total punch stroke is 70 mm.
The material properties are Young’s modulus E = 206GPa, Poisson ratio  = 0.3, yielding strength
�Y = 167 MPa, and the hardening slope H = 20 GPa.

The frictional contact constraints are imposed between the blank metal sheet and rigid punch and
die with a friction coefficient of 
= 0.14. Symmetric boundary condition is imposed at the end of
the blank sheet metal that contacts punch. The non-linear response analysis is carried out with 200
loading steps and 40 unloading steps, respectively. The computed unloading shape (springback) is
shown in Figure 9.

DSA is carried out using design parameters, which are illustrated in Figure 10: u1 and u2 are
the horizontal and vertical locations of the punch, respectively, u3 and u6 are the punch and die
corner radii, respectively, u4 and u5 are the horizontal and vertical locations of the die, respectively,
and u7 is the blank-holding force. In case u1 and u4 are changed the same amount, then the gap

Figure 8. Schematic diagram of deep drawing problem.
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Figure 9. Result of deep drawing problem analysis.

Figure 10. Shape and configuration design parameters for deep drawing problem.

between punch and die remains same. However, this would change the width of punch. Therefore,
u1 and u4 are defined independently. Also, if u2 and u5 are changed the same amount, then
the vertical gap between punch and die remains the same. But, this would change the distance
between the blank holder and die as well as the total punch stroke. Therefore, u2 and u5 are
defined independently. The non-linear DSA is carried out at each converged load steps to compute
the material derivative of the displacement with the same tangent stiffness matrix as the response
analysis without iteration. The vertical displacement sensitivity results at randomly selected blank
location after unloading are compared with the finite difference results in Table I.The first column
denotes the design variable ID; the second column denotes the performance measure, which
is the vertical displacement; the third column denotes the performance value; the fourth column
denotes the perturbed result from FDM; the fifth column denotes the prediction from the calculated
sensitivity results; and the last column compares the results between the fourth and fifth columns.
The sensitivity results are very well matched with the finite difference results. The response analysis
is carried out in 12 314 s, whereas DSA in 987 s per design variable, which means that the cost
of sensitivity computation is only 8% of the response analysis time (or FDM computation time),
which is quite efficient compared to the finite difference method.
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Table I. Accuracy of sensitivity analysis results of deep drawing.

Performance Difference
measure Calculated between
(vertical FDM �� sensitivity FDM and calculated

displacement (it took 12 314 s �′ ×�� (it took sensitivity
Design at randomly Performance per design 987 s per ((�� − �′ ×��)/
variable selected point) � variable) design variable �′ ×��) × 100

u1 z99 −1.93126E − 02 −3.24044E − 10 −3.24054E − 10 0.00
z104 −2.10971E − 03 5.77483E − 10 5.77540E − 10 −0.01
z115 −1.29131E − 02 1.23001E − 09 1.23006E − 09 0.00
z123 −2.11297E − 02 1.62901E − 09 1.62906E − 09 0.00

u2 z99 −1.93126E − 02 8.99570E − 10 8.99603E − 10 0.00
z104 −2.10971E − 03 −1.02359E − 10 −1.02251E − 10 0.00
z115 −1.29131E − 02 −1.49452E − 10 −1.49155E − 10 0.20
z123 −2.11297E − 02 1.05384E − 10 1.05834E − 10 −0.42

u3 z99 −1.93126E − 02 5.67422E − 10 5.67422E − 10 −0.02
z104 −2.10971E − 03 −4.00822E − 11 −3.97581E − 11 0.82
z115 −1.29131E − 02 −6.65856E − 11 −6.62435E − 11 0.52
z123 −2.11297E − 02 9.15206E − 11 9.19059E − 11 −0.42

u4 z99 −1.93126E − 02 1.00422E − 10 1.00397E − 10 0.02
z104 −2.10971E − 03 1.10236E − 09 1.10225E − 09 0.01
z115 −1.29131E − 02 1.14945E − 09 1.14915E − 09 0.03
z123 −2.11297E − 02 8.94604E − 10 8.94165E − 10 0.05

u5 z99 −1.93126E − 02 −5.23843E − 10 −5.23876E − 10 −0.01
z104 −2.10971E − 03 −2.94645E − 10 −2.94821E − 10 −0.06
z115 −1.29131E − 02 −8.39441E − 10 −8.39846E − 10 −0.05
z123 −2.11297E − 02 −1.46829E − 09 −1.46887E − 09 −0.04

u6 z99 −1.93126E − 02 −3.08749E − 10 −3.08716E − 10 0.01
z104 −2.10971E − 03 −9.20905E − 10 −9.21081E − 10 −0.02
z115 −1.29131E − 02 −1.98298E − 09 −1.98324E − 09 −0.01
z123 −2.11297E − 02 −2.95603E − 09 −2.95635E − 09 −0.01

u7 z99 −1.93126E − 02 2.11959E − 13 2.15909E − 13 1.19
z104 −2.10971E − 03 −4.63656E − 13 −4.63121E − 13 0.12
z115 −1.29131E − 02 −8.10140E − 13 −8.07624E − 13 0.31
z123 −2.11297E − 02 −9.13079E − 13 −9.08616E − 13 0.49

6.2. Optimization of metal stamping process for springback problem

The S-rail benchmark problem of NUMISHEET’96 is selected in this paper to demonstrate the
efficiency and effectiveness of the proposed method for a stamping process optimization. This is
a challenging problem, even for accuracy of the analysis, let alone for DSA and optimization.

The blank sheet with thickness t = 0.92 mm is placed on the die and hold by the blank holder
with constant force 10 kN. Then, the punch is pressed down with 37mm stroke and removed. Due to
elasticity, significant springback occurs. The material properties are Young’s modulus E = 69GPa,
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Poisson ratio  = 0.33, and the yield strength �Y = 241 MPa. For elastoplasticity, the combined
linear isotropic–kinematic hardening rule is used with a hardening slope of H = 200 MPa. The
modified Coulomb friction law is used with a friction coefficient of 0.1. Figure 11 shows the
tool surfaces for the S-rail forming process and Figure 12 shows the blank sheet. As stated in

Figure 11. Schematic diagram of S-rail forming and springback.

Figure 12. Blank sheet of S-rail forming and springback.
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Figure 13. Deformed shape: (a) before springback and (b) after springback.

Introduction, the numerical implementation of the non-linear analysis DSA is carried out using
the meshfree method. Since no element information is available in the meshfree method, FE mesh
is used to represent results. Each FE node is selected as the meshfree particle.

Since the die, punch, and blank holder are rigid, only blank sheet is discretized using 540
meshfree particles. In addition, the vertical displacement of the blank holder needs to be computed.
Therefore, 2701 degrees-of-freedoms are used to model the stamping process. The order of the
meshfree shape function is much higher than FEA. Therefore, the springback deformation can be
simulated better than FEA even with rather coarse meshfree particles. Two hundred time steps have
been used to carry out the non-linear analysis, which took 39 908s using a workstation with 1GHz
Itanium CPU. Figures 13(a) and (b) show deformed shapes before and after springback. In order
to calculate the deformed shape after the tools are removed, one point is fixed to avoid rigid-body
motion as shown in Figure 12. Since each point in shell formulation has translation and rotation
degree-of-freedom, fixing one point is enough to avoid rigid-body motion. Fixing more than one
point results in unnecessary constraint on unloading (when the tools are removed) deformation, thus
the unloading deformation will be different for different fixing point. Even in the case when only
one point is fixed during unloading, the deformed shape after springback depends on the location
of the fixing point. For example, different fixing point will yield different unloading deformation.
However, those different unloading deformations can be identical by rigid-body translation and
rotation. Therefore, the choice of the fixing point location is not critical to the optimal solution.
The same point is fixed throughout the optimization iterations. The deformed shape along the
line A–A′ on Figure 12 is shown in Figure 14, where significant springback has occurred. Thus,
stamping process optimization is carried out to minimize the springback. In this example, the die
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Figure 14. Deformed shape along line A–A′ before and after springback.

Figure 15. Shape and configuration parameters for S-rail stamping process.

and punch cross-section shapes are assumed to be constant along the S-lane. With this assumption,
it is not viable to reduce the springback at the entire part. Therefore, one two-dimensional section
(which is used to judge numerical simulation quality in NUMISHEET’96) is selected to reduce
the springback.

The stamping parameters are defined as shown in Figure 15. The stamping parameters u1–u4
represent the horizontal and vertical location of each side of punch and u6–u9 represent those of
die. The stamping parameters u5 and u10 represent corner radius of punch and die, respectively.
The stamping parameter u11 represents the blank-holding force. The computational time for the
continuum-based DSA per each stamping parameter is 2113 s, which corresponds to 5.3% of the
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Table II. Accuracy of design sensitivity results.

Difference between
Performance measure FDM �� Calculated sensitivity FDM and calculated
(vertical displacement (it took 39 908 s �′ ×�� (it took sensitivity
at randomly Performance per design 2113 s per ((�� − �′ ×��)/
selected point) � variable) design variable �′ ×��) × 100

Z109 −1.3555E − 03 5.1913E − 10 5.1989E − 10 −0.15
Z114 −5.2567E − 03 −3.2754E − 09 −3.2873E − 09 −0.36
Z119 −2.8827E − 02 −3.2496E − 09 −3.2619E − 09 −0.38
Z122 −3.7159E − 02 4.4464E − 10 4.4617E − 10 −0.34
Z125 −3.6658E − 02 −3.2416E − 10 −3.2346E − 10 0.22
Z126 −3.7233E − 02 −5.0735E − 10 −5.0659E − 10 0.15
Z131 −3.1223E − 02 2.2928E − 09 2.3064E − 09 −0.59
Z133 −2.1987E − 02 2.2657E − 09 2.2798E − 09 −0.61
Z138 −9.0185E − 04 −2.4509E − 10 −2.4106E − 10 1.67
Z141 −6.2609E − 04 −1.1656E − 09 −1.1672E − 09 −0.14
Z142 −1.0870E − 03 −3.4639E − 10 −3.4813E − 10 −0.50
Z144 −1.3831E − 05 −1.5467E − 10 −1.5505E − 10 −0.24

response analysis time, and thus very efficient compared to the FDM. The accuracy of the sensitivity
results of vertical displacements after springback along the lines A–A′ and B–B ′ with respect to
stamping parameter u6 is compared with the finite difference results in Table II. Extremely accurate
sensitivity results are obtained, as shown in Table II.

The optimization problem is formulated to minimize the springback by the following equations:

min
(
zbefore sb
144 − zafter sb

144

)

s.t.
(
zbefore sb
109 − zafter sb

109

)
�0.0015

ep�0.2

−0.1�u1�0.001

−0.001�u2–4�0.1

−2.0�u5�2.0

−0.001�u6�0.1

−0.1�u7–9�0.001

−2.0�u10–11�2.0

(55)

The target shape is considered to be the deformed shape before unloading. The optimal shape is
obtained to minimize the springback at the flange located at two top ends.

For optimization, the springback at flange is minimized. In (55), zbefore sb
144 and zafter sb

144 are the
vertical displacements at the left end of the blank sheet in Figure 14 before and after springback,
respectively. Similarly, zbefore sb

109 and zafter sb
109 are vertical displacements at the right end of the blank

sheet before and after springback, respectively. The initial values of (zbefore sb
144 − zbefore sb

144 ) and
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Figure 16. Cost function history of S-rail forming.

Figure 17. Constraint history of S-rail forming.

(zbefore sb
109 − zbefore sb

109 ) are 3.2 and 2.7mm, respectively. Thus, the first constraint, which is imposed
on the amount of the springback at the right end of the blank sheet is violated significantly at
the initial design of the manufacturing process. This optimization formulation was used, instead
of trying to minimize the springback at both ends simultaneously, since it converged better in the
optimization process. The effective plastic strain constraints are imposed to limit the amount that
may result in material failure or severe necking. The maximum effective plastic strain at the initial
stamping process is 0.188, which makes the initial stamping process satisfy the effective plastic
strain constraints. Limits of stamping parameters are established according to work piece geometry
and kinematics. Since the stamping parameters represent structure’s relative movements, the initial
values are set to zero.

The stamping process optimization problem is solved using the sequential linear programming
method in DOT [33] by providing the meshfree analysis results and design sensitivity computed
using the proposed method. As shown in Figure 16, the optimization problem is converged in six
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Figure 18. Design parameter history of S-rail forming.

Figure 19. Punch and die shape of the initial and optimum design.

iterations, which is quite fast considering the degree of high non-linearity involved in the structural
analysis. The cost function, which is the springback at the left end of the blank sheet, is reduced by
75% (from 3.2 to 0.8 mm) during the optimization. On the other hand, the springback at the right
end of the blank sheet, which is the first constraint, is reduced significantly from 2.7 to 0.35mm as
shown in Figure 17. The effective plastic strain constraints are also satisfied. The design parameter
history is given in Figure 18. The punch and die shape of the initial and optimum designs are
shown in Figure 19. It is noticed that the corner radius of the die, u10, and the corner radius of
the punch, u5, are significantly reduced. It is also interesting to note that the blank-holding force,
u11, is decreased from the initial design, which in turn reduces the frictional force. Unlike some
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Figure 20. Deformed shape along A–A′ before and after springback of the optimum stamping process.

optimum design results of linear models, it is not easy to explain why these optimum stamping
process parameters yield minimized springback.

The deformed shape for the optimum manufacturing process is shown in Figure 20. Over
deflection of the initial stamping process around the blank holder area is significantly reduced in
order to minimize the springback that is shown in Figure 14. The vertical slope is also improved as
compared to the initial stamping process. By comparing the Figures 14 and 20, it can be noticed that
the base of the deformed shape after springback in Figure 20 is higher than that in Figure 14. This
is because the optimal design is obtained by minimizing the springback at flange located at two top
ends. If the base of the deformed shape after springback is considered as one of design constraints,
a different optimal design would be obtained. However, it was not easy to obtain optimal design
that reduces the springback at every point with the limited manufacturing parameters. Thus, in this
example, the springback at the flange is considered because it is assembled with the other part.

7. CONCLUSION

A continuum-based design sensitivity analysis (DSA) and optimization method for the stamping
process has been developed. A penalty-regularized contact variational equation is differentiated
with respect to the shape design parameter. A shape DSA is carried out by defining a design
velocity field at the tool surface geometry. The material derivative concept is used to develop
the continuum-based design sensitivity. Since the proposed DSA method uses the same tangent
stiffness as the analysis at the converged configuration of each time step, no iteration is required
to solve the sensitivity equation. Consequently, the proposed DSA takes much less computational
time than finite difference method (FDM). For example, the proposed DSA takes only 8 and 5.3%
of the FDM computational time for the deep drawing problem and S-rail benchmark problem,
respectively. The sensitivity information is compared with finite difference results with excellent
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agreement. The effectiveness of the proposed continuum-based DSA method is demonstrated
through successful optimization of the benchmark S-rail stamping process, where the springback
is significantly reduced by determining optimal tool shape and blank-holding force.

NOMENCLATURE

n surface normal vector
l,m surface tangent vectors
J Jacobian matrix between the physical and parametric co-ordinate
J1 Jacobian between configuration tn and tn+1
F deformation gradient matrix
z displacement field
�z incremental displacement vector
z virtual displacement
r local Cauchy stress vector of dimension 5
rg global Cauchy stress vector of dimension 9
rl local Cauchy stress vector of dimension 9
s deviatoric Cauchy stress vector of dimension 5
e local strain vector of dimension 5
eg global strain vector of dimension 9
el local strain vector of dimension 9
a(n+1z, z) structural variational form
a∗(n+1zk;�zk+1, z) linearized structural variational form
a′
V (n+1z, z) structural fictitious load form

b�(n+1z, z) contact variational form
bN(n+1z, z) normal contact variational form
bT(n+1z, z) tangential slip variational form
b∗
�(n+1zk; �zk+1, z) linearized contact variational form

b′
V (n+1z, z) contact fictitious load form

�(z) external load form
�′
V (z) external fictitious load form

nV design velocity field at time tn
G surface geometric matrix
C(D; D− DI ) correction function
�a(D− DI ) kernel function
�I meshfree shape function at particle I
a back stress
a′ deviatoric back stress
ep effective plastic strain
�(ep) radius of the yield surface
H hardening parameter
f yield function
P mapping matrix between Cauchy stress and deviatoric Cauchy stress
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P mapping matrix modified from P in order to account for the factor of two
in the shear strain component

Z space of kinematically admissible virtual displacement
n+1Q global-to-local transformation matrix at configuration tn+1
D elastic constitutive matrix after enforcing zero-normal stress condition
g normal gap function
�n normal contact penalty parameter
�t tangential slip penalty parameter
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