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Abstract Probabilistic structural design deals with un-
certainties in response (e.g. stresses) and capacity
(e.g. failure stresses). The calculation of the structural
response is typically expensive (e.g., finite element sim-
ulations), while the capacity is usually available from
tests. Furthermore, the random variables that influence
response and capacity are often disjoint. In previous
work we have shown that this disjoint property can be
used to reduce the cost of obtaining the probability
of failure via Monte Carlo simulations. In this paper
we propose to use this property for an approximate
probabilistic optimization based on exact capacity and
approximate response distributions (ECARD). In Ap-
proximate Probabilistic Optimization Using ECARD,
the change in response distribution is approximated
as the structure is re-designed while the capacity dis-
tribution is kept exact, thus significantly reducing the
number of expensive response simulations. ECARD
may be viewed as an extension of SORA (Sequen-
tial Optimization and Reliability Assessment), which
proceeds with deterministic optimization iterations. In
contrast, ECARD has probabilistic optimization itera-
tions, but in each iteration, the response distribution is
approximated so as not to require additional response
calculations. The use of inexpensive probabilistic opti-
mization allows easy incorporation of system reliabil-
ity constraints and optimal allocation of risk between
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failure modes. The method is demonstrated using a
beam problem and a ten-bar truss problem. The for-
mer allocates risk between two different failure modes,
while the latter allocates risk between members. It is
shown that ECARD provides most of the improvement
from risk re-allocation that can be obtained from full
probabilistic optimization.

Keywords Reliability-based optimization ·
Probabilistic design · Uncertainty · Risk allocation ·
Approximation

Nomenclature

xr1 vector of those input random vari-
ables whose mean values cannot
be controlled

xr2 vector of those input random vari-
ables whose mean values can be
controlled

u vector of design variables
u0 vector of initial design variables
up vector of design variables at the

end of the previous iteration
g(xr1; xr2; u) performance function
c(xr1; xr2; u) capacity (failure stress, allowable

displacement, etc)
r(xr1; xr2; u) response (structural stress, maxi-

mum deflection, etc)
r(μxr1; μxr2; u) response at the mean values of

random variables
rECARD(xr1; xr2; u) approximate response used in

ECARD iteration
FCj(•) cumulative distribution function

of c(xr1; xr2; u) for jth mode
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fRj(•) probability density function of
r(xr1; xr2; u) for jth mode

PFSU upper bound of system probability
of failure

PFS system probability of failure
P det

f probability of failure at the deter-
ministic optimum design

PECARD
f approximate probability of failure

P det
FSU upper bound of system probability

of failure at the deterministic opti-
mum design

P det
FS system probability of failure at the

deterministic optimum design
� relative change in response
ε convergence threshold

1 Introduction

Probabilistic structural design deals with uncertainties
in responses (e.g. stresses) and capacities (e.g. failure
stresses). The calculation of the structural response is
typically expensive (e.g., finite element simulations),
while the capacity is usually available from tests. Fur-
thermore, the random variables that influence response
and capacity are often disjoint; i.e., the random vari-
ables that affect response do not affect capacity and
vice versa, and they are also statistically independent.
Even if the performance function is not in disjoint form,
i.e., we have random variables affecting both capacity
and response; we can often separate the variables to
achieve disjoint capacity and response.1 This disjoint
property was used to reduce the cost of obtaining the
probability of failure via Separable Monte Carlo simu-
lations proposed by Smarslok et al. (2006).

In this paper we propose to use this property for
an approximate probabilistic optimization based on
exact capacity and approximate response distributions
(ECARD). In ECARD the change in response distri-
bution is approximated as the structure is re-designed,
while the exact distribution of capacity is used. It turns
out that this approach can significantly reduce the num-
ber of expensive response simulations in calculating
probability of failure.

ECARD may be viewed as an extension of sequen-
tial optimization and reliability assessment (SORA;

1For instance, if performance function is g (r, c) = r/(1 + c) − c,
then we can multiply the equation by (1 + c) and make the
function disjoint with new capacity of c(1 + c). However, we
recognize that there are exceptions like when we have size effect
on strength or implicit, “black-box” transfer functions.

Du and Chen 2004; Ba-abbad et al. 2006) methods.
These methods reduce the cost of reliability calcula-
tions by stipulating the motion of the most probable
point (MPP) as the structure is being re-designed so
that the calculation of the reliability using FORM is
trivial. ECARD may use similar assumptions for the
response, but for the capacity, which is usually com-
putationally cheaper, it does not make any assump-
tions. Like SORA, ECARD requires several iterations
of optimization, with each iteration requiring a single
accurate reliability assessment.

SORA methods do not allocate risk between failure
modes in a structure where many components can fail
simultaneously (Ba-abbad et al. 2006). Ba-abbad et al.
(2006) proposed a modified SORA using FORM to
reallocate risk between multiple failure modes, but this
requires adding the individual failure modes as addi-
tional variables. It also does not cater to the correlation
between various modes of failure. The objective of
the present paper is to demonstrate that ECARD can
provide near optimal risk allocation between failure
modes at a fraction of the cost of full probabilistic
optimization.

The remainder of the paper is organized as follows.
Section 2 proposes an approximate method that allows
probabilistic design based only on probability distrib-
ution of the capacity. The applications of the method
to a beam problem and a ten-bar truss problem are
presented in Sections 3 and 4, respectively. Finally, the
concluding remarks are listed Section 5.

2 Approximate probabilistic optimization using
exact-capacity-approximate-response-distribution
(ECARD)

2.1 Approximation of change in response distribution

In probabilistic optimization, the system constraint is
often given in terms of failure probability of a perfor-
mance function. We consider here a specific form of
performance function, given as

g (x; u) = c (xc; u) − r (xr; u) (1)

where c(xc; u) and r(xr; u) are capacity and response,
respectively. Both the capacity and response are ran-
dom because they are functions of random variables xc

and xr, respectively, and both may depend on design
variables u. The system is considered to be failed when
the response exceeds the capacity. We assume that
the probability distribution of c(xc; u) is well known,
while that of r(xr; u) requires a large number of analy-
ses to define. The separable form in (1) is used here
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for simplicity. However, as explained later, the only
requirements are that xc and xr are independent, and
that the calculation of the limit state g(x, u) is inex-
pensive given r and c. Furthermore, we can separate
random variables, x, into those variables whose mean
values cannot be controlled, xr1, and those variables
whose mean values can be controlled, xr2. Therefore,
vector u contains only the remaining deterministic de-
sign variables. This distinction facilitates the approxi-
mation of response distribution by measuring changes
in response due to changes in mean values of random
variables that can be controlled, xr2.

Since the capacity and response are independent, the
probability of failure jth mode may be calculated as
(Melchers 2002a)

Pf j = Pr
[
g j (xr1; xr2; u) ≤ 0

] =
∫ ∞

−∞
FCj (ξ) fRj (ξ) dξ.

(2)

In the above equation, FCj(ξ) is the cumulative dis-
tribution function (CDF) of capacity for jth mode,
and fR(ξ) is the probability density function (PDF)
of response for the same mode. When FCj(ξ) is given,
evaluation of the integral using Monte Carlo simulation
(MCS) of the response is known as the conditional
MCS. That is, with N simulations of the response sys-
tem probability of failure is given by (3), where ‘m’ is
number of modes of failure. This equation is based on
the fact that for a given response the capacities for the
modes are independent.

Pf = 1

N

N∑

i=1

⎡

⎣1 −
m∏

j=1

{
1 − FCj (ri)

}
⎤

⎦ (3)

Smarslok et al. (2006) showed that the conditional MCS
is much more accurate than the traditional MCS where
(1) is used. For a more general limit state, it is still
possible to use a similar approach, called separable
MCS (Smarslok et al. 2006).

When design variables are changed, the distributions
of both capacity and response may change. We consider
the case that it is inexpensive to update the distribution
of the capacity but it is expensive to update the dis-
tribution of the response. There are different ways to
update the distribution of the response. For instance,
Nikolaidis et al. (2008) proposed a method to update
the system failure probability when the mean values
of random variables change according to redesign and
there are no other changes. However, here we use the
simplest possible approach, with the aim of showing
that even with a very crude approximation it can pro-
vide reasonable risk allocation between failure modes.

Fig. 1 Distributions of response before and after redesign. Re-
design only changes the mean value. Distribution of capacity is
also shown

In ECARD, the change in response distribution is
represented by the change in the mean value μxr2 of the
random variable xr2 and changes in u. That is, if r(xr1;
xr2; u0) is the response distribution at a given design u0,
then the response distribution at a new design u, can be
approximated by

r (xr1; xr2; u) = r
(
xr1; μxr20

; u0
) + �;

� = r
(
μxr1; μxr2; u

) − r
(
μxr1; μxr20

; u0
)

(4)

Figure 1 illustrates the change in response distribution,
along with the distribution of capacity. The change
in response distribution is approximated such that the
standard deviation of the response remains constant
in (4). This assumption may be acceptable when the
changes in design variables are small. We start the pro-
cedure with the deterministic design. Since the prob-
abilistic optimum design can usually be found close
to the deterministic optimum design, the above as-
sumption will not cause large error. In addition, since
ECARD recalculates r(xr1; xr2; u) at every ECARD
iteration, the error will be reduced toward the prob-
abilistic optimum design. This simple approximation
may not always work and should be replaced with
more sophisticated approximations if needed. In fact
convergence of ECARD iterations is not guaranteed.2

But even this simple minded approximation worked

2We know that SORA developers faced convergence problems
and this algorithm may also jump between feasible and infeasible
regions for some problems.
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very well with ECARD for the two examples shown
here.

Another important aspect of the proposed ECARD
is that it directly perturbs the distribution of out-
put response, rather than input design variables. This
contributes the significant efficiency of the proposed
method because it does not require calculating prop-
agation of input uncertainty to the output response
distribution. The new response distribution in (4)
can be obtained with a single deterministic analysis
of r(xr1; xr2; u).

We have also considered a similar approximation
where the response is scaled by 1 + �

/
r (xr1; xr2; u0) so

that the coefficient of variation is preserved in Acar
et al. (2007). The difference in performance was not
significant.

The change in the response distribution will change
the probability of failure. Combining (3) and (4),
the probability of failure at the new design is approx-
imated by

PECARD
f = 1

N

N∑

i=1

FC (ri + �) (5)

2.2 Approximate probabilistic optimization using
ECARD

In this section the ECARD optimization process is
explained. The goal is to further reduce the objective
function from the deterministic optimal design, while
maintaining the same level of probability of failure.
This can be achieved by re-allocating risk between
either different failure modes or different structural
members. The process takes the following steps:

1. Perform deterministic optimization with safety fac-
tors to obtain a deterministic optimum design udet

and objective function Wdet.
2. Set the initial ECARD design u0 = udet. The prob-

abilistic design starts from the deterministic opti-
mum design; u0. Set p = 0. Perform conditional
MCS to generate distribution of response r(xr;
u0) and its probability of failure, Pdet

f = P0
f . It is

possible to use the First-Order Reliability Method
(FORM) instead of MCS (see Acar et al. 2007).

3. At the current design, up, calculate the response
at the mean value of the random variables, rμ =
r
(
μX; up

)
.

4. Obtain optimum design uopt and optimum objective
function Wopt by solving the following determin-

istic optimization problem with target probability
Pdet

f = P0
f :

Minimize
u

W (μX,u)

s.t. PECARD
f ≤ Pdet

f

(6)

where

� = r
(
μxr1; μxr2; u

) − r
(
μxr1; μxr20

; u0
)

rECARD (xr1; xr2; u) = r
(
xr1; μxr20

; u0
) + �

PECARD
f = 1

N

N∑

i=1

FC
(
rECARD

i

)
(7)

5. Perform MCS to generate accurate distribution of
response r(xr; uopt) and its probability of failure Pf ,
at uopt. This step requires full reliability analysis,
which is the expensive part.

6. Check accuracy and convergence: The ECARD
approximation is considered accurate when∣∣PECARD

f − Pf
∣∣ ≤ ε, and convergence is assumed

when the changes in design variables are small.
If the process is accurate and converged, stop the
process. Otherwise, set p = p + 1, up = uopt and
go to Step 3.

The accuracy of ECARD to locate the true optimum
depends on the magnitudes of errors involved in the
approximations. The simple approximation used here
is accurate if changes in distribution parameters of the
response due to redesign are small. In addition, the ac-
curacy in estimating the probability of failure affects the
convergence rate of the proposed method. However,
more accurate approximations such as Nikolaidis et al.
(2008) can be used to improve accuracy.

Note that (7) is easily applicable to a single mode
of failure. For multiple modes of failure we need to
use the joint distribution of the capacities to calculate
the system failure probabilities for a vector of response
quantities. In the examples used in this paper we use
instead the Ditlevsen upper bound (Melchers 2002b).
However, the proposed method should work even

L=100" FY

t FX

w

Fig. 2 Cantilever beam: geometry and loadings
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Table 1 The mean and coefficient of variation of the random
variables x

Random variable Mean Coefficient of variation

FX (lb) 500 20%
FY (lb) 1,000 10%
E (psi) 2.9E7 5%
σf (psi) 40,000 5%

All variables follow normal distribution

with the more accurate system probabilities obtained
from MCS.

3 Application of ECARD to beam optimization
problem

Deterministic optimization based on safety factors typ-
ically may have sub-optimal risk allocation between
failure modes compared to probabilistic optimization.
In this section, design optimization of a cantilever beam
is presented in order to show the risk allocation capa-
bility of ECARD optimization. In order to gage the
effectiveness of ECARD compared to full probabilistic
optimization, we compare both to the deterministic
optimization.

3.1 Problem description

The cantilever beam design problem (Fig. 2) has been
analyzed by many researchers including Wu et al.
(2001), Qu and Haftka (2004), and Ba-abbad et al.
(2006). The beam has two failure modes: stress failure
and excessive displacement. The minimum weight de-
sign is sought by varying the width w and thickness t
of the beam; i.e., u = [w, t]. The applied loads FX and
FY along with the elastic modulus E and failure stress
σ f are random variables. All random variables are as-
sumed normally distributed with mean and coefficient
of variation as listed in Table 1. The beam width w and
thickness t are modeled as deterministic variables.

The performance function corresponding to stress
failure mode can be written as

g1 = σf −
(

600

wt2
FY + 600

w2t
FX

)
≡ c1 (x) − r1 (x; u) , (8)

where c1 and r1 are the capacity and response of g1.
Similarly, the performance function corresponding to
displacement failure mode can be written as

g2 = D0 E
4L3

− 1

wt

√(
FY

t2

)2

+
(

FX

w2

)2

≡c2 (x) − r2 (x; u) ,

(9)

where c2 and r2 are the capacity and response of g2, and
D0 (here 2.2535′′) is the critical displacement. We re-
arranged the performance functions so that the capacity
is independent of design variables. The probabilities
of failure, Pf 1 and Pf 2, can be calculated using the
conditional MCS in (5).

3.2 Deterministic optimization

If the deterministic optimization is performed with the
two performance functions in (8) and (9), the prob-
ability of failure at the optimum design will be close
to 50%. The deterministic design takes into account
the effect of random variables using a safety factor.
We employ a safety factor, SF = 1.5, to the applied
loads that is typical of aerospace structural design. Then
the deterministic optimization problem for minimum
weight can be written as

Minimize
w,t

A = w t

s.t. c1 − SFr1 ≥ 0

c2 − SFr2 ≥ 0 (10)

The deterministic optimization problem in (10) is
solved using the Sequential Quadratic Programming
algorithm in MATLAB (using the function fmincon).
The results of deterministic optimization are listed in
Table 2. The probabilities of failure are calculated us-
ing conditional MCS. The probabilities of failure for
stress and displacement constraints are denoted by Pdet

f 1

and Pdet
f 2 , respectively. We use one million samples

for the conditional MCS. With the traditional MCS,
the coefficient of variation associated with probabil-
ity of failure of stress constraint would have been
10% and 2% for displacement constraint. Numerical
experiments showed that with the conditional MCS the
corresponding coefficients of variation are 3% and 1%,

Table 2 Deterministic optimum results of the cantilever beam problem

w (in) t (in) A (in2) Pdet
f 1 Pdet

f 2 Pdet
FSU

Conditional MCS 2.275 4.414 10.042 9.82E–05 2.66E–03 2.76E–03

The subscript 1 corresponds to stress failure and the subscript 2 to displacement failure
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Table 3 Comparison of system probability of failure Pdet
FS and its upper bound Pdet

FSU for the deterministic optimum of cantilever beam
problem using one million traditional MCS

Pf 1 Pf 2 Pdet
FSU Pdet

FS

∣
∣Pdet

FSU − Pdet
FS

∣
∣

Traditional MCS 8.50E–05 2.61E–03 2.69E–03 2.66E–03 3.90E–05

Small differences with Table 2 are due to the use of traditional MCS. The subscript 1 corresponds to stress failure and the subscript 2
to displacement failure

respectively. We used MCS with one million samples
to calculate also the system probability of failure Pdet

FS
and compare it in Table 3 to the Ditlevsen’s first-
order upper bound Pdet

FSU that estimates the system
failure probability as the sum of the individual failure
probabilities (Melchers 2002b). The traditional MCS
has poorer accuracy than the conditional MCS, so the
numbers are slightly different. However, they still show
that the failure modes are well correlated because the
Ditlevsen approximation error is close to half of the
lower probability of failure (see Table 3).

Note that the deterministic optimization allocates
risk between two failure modes such that the proba-
bility of failure for the displacement mode is 27 times
higher (see values from Table 2) than that of the stress
mode. This is based on the use of the same safety factor
for both failure modes. Its contributions to the different
failure modes are different. We will show that the prob-
abilistic optimization reduces the difference in failure
probabilities significantly in the following section.

3.3 Probabilistic optimization

The probabilistic optimization is formulated with the
same objective function. However, the constraint is im-
posed on the approximate (upper bound) system prob-
ability of failure. The goal is to reduce the objective
function further by reallocating the risk between the
two failure modes, while the system probability of fail-
ure should not be greater than that of the deterministic
optimization. The probabilistic optimization problem is
then formulated as

Minimize
w,t

A = w t

s.t. PFS = (
Pf 1 + Pf 2

) ≤ Pdet
FSU (11)

The results of probabilistic optimization are listed in
Table 4. The probabilistic optimization is computation-

ally expensive, requiring 61 reliability assessments. As
can be seen from the table, the design obtained at
the end of the optimization satisfied the probability
constraint with a small margin. Compared with the
deterministic optimum (Table 2), the probabilistic opti-
mization reduced the weight by 6%, while reducing the
system failure probability by 2%. The reduction in both
the weight and the system probability of failure is ob-
tained by risk reallocation between two failure modes.
The deterministic design leads to smaller probability of
failure for the stress mode than that of the displacement
mode, while the situation is reversed for the probabilis-
tic design. This is based on the fact that displacement
is cheaper to control than stress in terms of weight ex-
penditure. For example, if w and t are scaled uniformly,
then the stress is proportional to the cube of the scale
factor while the displacement is proportional to the 4th
power. Similar results are also reported by Ba-abbad
et al. (2006) using a modified SORA. Table 5 compares
the system probability of failure and its upper bound
used in probabilistic optimization procedure. It is seen
that again the error is a substantial fraction of the lower
of the two probabilities of failure, indicating substantial
correlation.

3.4 Approximate probabilistic optimization
using ECARD

The approximate probabilistic optimization problem is
formulated based on (11) by replacing the probability
of failure with approximate one, as

Minimize
w,t

A = wt

s.t. PECARD
FSU =

(
PECARD

f 1 + PECARD
f 2

)
≤ Pdet

FSU

(12)

Table 4 Probabilistic optimum results of the cantilever beam problem

w (in) t (in) A (in2) Pf 1 Pf 2 PFS

Conditional MCS 2.651 3.559 9.437 2.37E–3 3.31E–4 2.70E–3

The subscript 1 corresponds to stress failure and the subscript 2 to displacement failure
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Table 5 Comparison of system probability of failure PFS and its bound PFSU for the probabilistic optimum of cantilever beam problem
using one million traditional MCS

Pf 1 Pf 2 PFSU PFS |PFSU − PFS|
Crude MCS 2.38E–03 3.35E–04 2.72E–03 2.61E–03 1.10E–04

Small differences with Table 4 are due to the use of the traditional MCS. The subscript 1 corresponds to stress failure and the subscript
2 to displacement failure

where PECARD
f 1 and PECARD

f 2 are, respectively, approxi-
mations of Pf 1 and Pf 2 using the ECARD method
described in Section 2.2. The approximate probabilities
of failure are calculated as

PECARD
f 1 = 1

N

N∑

i=1

FC1
(
ri

1 + �1
)

PECARD
f 2 = 1

N

N∑

i=1

FC2
(
ri

2 + �2
)

(13)

where FC1 and FC2 are CDFs of the two capacities.
The optimization in (12) is solved iteratively until the
convergence criterion in Section 2.2 is satisfied. We
have used a gradient based method, SQP implemented
by MATLAB’s fmincon function. However, in general
any optimization method can be used.

Figure 3 shows the deterministic and probabilistic
optimum designs, along with the iteration history of
the ECARD design. The contour lines of PFSU =
0.0027 and A = 9.4356 in2 are shown for reference.
It is seen that the approximate ECARD probability
of failure at iteration 1 has an error compared to the

Fig. 3 ECARD design history with deterministic and probabilis-
tic designs

accurate one. However, it is gradually reduced in the
following iterations. Table 6 lists the designs obtained
during iterations of the ECARD optimization using
conditional MCS. After the 4th iteration, the ECARD
optimization was considered converged because the
design variables changed by less than 0.1% and the
approximate and exact probabilities of failure were
close. The ECARD design was close to the probabilistic
optimum. The difference between approximate and
full probabilistic optimizations can be explained by the
convergence tolerance ε, error in probability estima-
tion, and small change in objective function near the
optimum design. However, in general, in the limit the
error may not be negligible or it may take more number
of iterations to converge depending on the tightness
of convergence criteria. In fact we might need better
approximation to deal with the issue of accuracy and
efficiency.

Table 7 compares the system probability and its up-
per bounds for the ECARD design. Comparing to the
probabilistic optimum, the ECARD optimum is about
0.3% heavier, while having the same system probability
of failure. As in the probabilistic optimization, this is
achieved by increasing the risk of the more expensive
(in terms of weight) stress mode and decreasing the risk
of the cheaper displacement mode. Note that ECARD
requires only four reliability assessments as opposed
to 61 used by full probabilistic optimization. Every
ECARD iteration needs a reliability assessment in or-
der to correct errors introduced by the approximations
involved in the response distribution. In the first two
iterations, steps are larger and accuracy is not good. It
improves in subsequent iterations.

4 Application of ECARD to ten-bar truss problem

The second example is a ten-bar truss problem, as
shown in Fig. 4. First, we present deterministic opti-
mization of the problem. Then, probability of failure
calculation using MCS is discussed. Finally, probabilis-
tic optimization is performed using ECARD, and the
accuracy and efficiency of the method is evaluated.
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Table 6 Iterations of approximate ECARD probabilistic optimization for the cantilever beam problem using conditional MCS

Iter. w (in) t (in) A (in2) Pf 1 PECARD
f 1 Pf 2 PECARD

f 2 PFSU PECARD
FSU

0 2.2752 4.4137 10.042 9.56E–05 9.56E–05 2.76E–03 2.76E–03 2.86E–3 2.70E–3
1 2.4490 3.9723 9.7281 4.00E–04 4.00E–04 6.00E–04 2.30E–03 1.00E–3 2.70E–3
2 2.5234 3.7561 9.4783 1.70E–03 1.50E–03 7.00E–04 1.20E–03 2.40E–3 2.70E–3
3 2.5162 3.7569 9.4530 1.90E–03 1.90E–03 9.00E–04 8.00E–04 2.80E–3 2.70E–3
4 2.5180 3.7582 9.4630 1.80E–03 1.80E–03 8.00E–04 9.00E–04 2.60E–3 2.70E–3

4.1 Problem description

The problem definition for the ten-bar truss problem
is taken from Haftka and Gurdal (1992) (page 237).
The ten-bar truss structure in Fig. 4 is under two loads,
P1 and P2. The design goal is to minimize the weight,
W, by varying the cross-sectional areas, Ai, of the truss
members. The design should satisfy stress constraints
and minimum gage constraints. Input data are summa-
rized in Table 8. In the traditional deterministic design
of aircraft structures, uncertainty in material failure
stress is taken into account using a knockdown fac-
tor, with so-called A-basis or B-basis properties (Little
2003). The relationship between allowable stress and
the mean value of failure stress is

σallowable = Kdcσf (14)

where Kdc is the knockdown factor. In this example, A-
basis allowable stress is used in which the knockdown
factor becomes Kdc = 0.87. In addition, uncertainties
in applied loads and errors in stress calculations are
considered by multiplying the applied loads by a safety
factor of 1.5.

4.2 Deterministic optimization

The deterministic optimization protects against uncer-
tainties using safety factor and knockdown factor. The
deterministic optimization problem can be formulated
as

min
Ai

W =
10∑

i=1

ρLi Ai

s.t.
Ni (SF P1, SF P2, A)

Ai

= σi ≤ (σallowable)i , i = 1, . . . , 10 (15)

where Li, Ni, and Ai are, respectively, the length, mem-
ber force, and cross-sectional area of element i. A is the
vector of cross-sectional areas, σ i and (σ allowable)i are
the stress and allowable stress of an element, respec-
tively. In this example, (σ allowable)i corresponds to the
capacity, while σ i to the response. The applied loads
are multiplied by a safety factor in order to consider
the effects of uncertain parameters. The analytical so-
lutions for the member forces are given in Appendix.
The results of deterministic optimization are listed in
Table 9. It is noted that Element 5 is a zero-force
member and the cross-sectional areas of Elements 2, 5,
and 6 reach the minimum gage.

The probabilities of failure of the elements, given in
the second last column of Table 9, are calculated using
the conditional MCS discussed in the next section. Last
column of Table 9 presents component probability of
failure calculations using 10 million samples of tradi-
tional MCS, and it is similar to the values obtained with
conditional MCS. However, the system failure (2.90E–
02) in the last row is significantly lower than the upper
bound obtained by adding elemental probabilities of
failure (4.03E–02). It is noted that three elements (2, 6,
and 10) contribute about 80% of the system probability
of failure (approximated with the Ditlevsen bounds).
Since Elements 2 and 6 are at minimum gage and
Element 10 is close to it, it is easy to reduce the system
probability of failure by reallocating small additional
weights to these members. However, the deterministic
optimization did not do it because it applies uniform
safety factors and knockdown factors to all members.

4.3 Calculation of probability of failure using
conditional MCS

Many uncertainties are involved in the design of ten-bar
truss, such as variability from manufacturing, loading,

Table 7 Probability of failure of system at last iteration of ECARD for cantilever beam problem using one million traditional MCS

Pf 1 Pf 2 PFSU PFS |PFSU − PFS|
Traditional MCS 1.85E–03 7.97E–04 2.65E–03 2.47E–03 1.80E–04

The subscript 1 corresponds to stress failure and the subscript 2 to displacement failure
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Fig. 4 Geometry and loadings of the ten-bar truss example

and material properties, and errors from modeling and
numerical calculation. In the following, we will detail
these uncertainties.

Failure of an element is predicted to occur when the
stress in the element is larger than its failure stress.
That is, the performance function for an element can
be written as

g = (
σf

)
true − σtrue (16)

where the subscript ‘true’ stands for the true value of
the relevant quantity, which is different from its cal-
culated (or predicted) value due to errors. Introducing
errors, (16) can be re-written as

g = (
1 − ef

)
σf − (1 + eσ ) σ (17)

Here, ef is the error in failure stress prediction (e.g.,
due to size effects), eσ is the error in stress calculation
(e.g., due to errors in mathematical model). We for-
mulated the errors such that positive errors correspond
to a conservative decision. Hence, the sign in front of
error in stress is positive, while that in failure stress is
negative. Even though our stress calculation is exact, we
pretend that we have error, eσ , considering the analysis
of a more complex structure where the stresses are
calculated using Finite Element Analysis (FEA). The
calculated stress can be written in a compact form as

σ = σFEA
[
(1 + eP1) P1, (1 + eP2) P2, (1 + eA) A

]
(18)

where σFEA[•] stands for calculated stresses using FEA,
eP1 and eP2 are errors in loads P1 and P2, and eA is
the vector of errors corresponding to 10 cross-sectional

areas. The performance function for Element i can be
arranged in a form (i.e., in a form that allows the use of
conditional MCS) as

gi = (
σf

)
i − (1 + eσ )

(
1 − ef

)σFEA

× [
(1 + eP1) P1, (1 + eP2) P2, (1 + eA) A

]
i

≡ ci − ri (19)

where ci and ri are, respectively, the capacity and
response.

In addition to the errors, variability is also present
in the performance function through σf , P1, P2, and
A, which are modeled as random variables. These er-
rors and variability are considered random variables.
The distribution types and probabilistic parameters of
errors and variability are listed in Table 10.

The probabilities of failure of the elements are cal-
culated using conditional MCS in (5). The system prob-
ability of failure is again approximated by Ditlevsen’s
first-order upper bound

PFSU =
10∑

i=1

(
Pf

)
i (20)

4.4 Probabilistic optimization

Starting from the deterministic optimum design, the
probabilistic optimization problem can be formulated
such that the weight of the structure is minimized (cal-
culated using mean values of the areas), while maintain-
ing the same system probability of failure with that of
the deterministic optimum design. Thus, we have

Minimize
Ai

W =
10∑

i=1

ρLi Ai

s.t. PFSU ≤ Pdet
FSU (21)

where PFSU is the upper bound on the system probabil-
ity of failure. The design variables are the mean values

Table 8 Input data for ten-bar truss problem

Parameters Values

Dimension, b 360 in
Safety factor, SF 1.5
Load, P1 66.67 kips
Load, P2 66.67 kips
Knockdown factor, Kdc 0.87
Density, ρ 0.1 lb/in3

Modulus of elasticity, E 104 ksi
Allowable stress, σ allowable 25 ksia

Minimum gage 0.1 in2

aFor Member 9, allowable stress is 75 ksi
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Table 9 Results of
deterministic optimization of
the ten-bar truss problem

The probability of failure is
calculated using conditional
MCS with 106 samples

Element Adet
i

(
in2) Wi (lb) Stress (ksi) Conditional MCS

(
Pdet

f

)
i 107 Samples of traditional

crude MCS
(
Pdet

f

)
i

1 7.900 284.4 25.0 2.13E–03 2.10E–03
2 0.100 3.6 25.0 1.06E–02 1.05E–02
3 8.100 291.6 −25.0 4.80E–04 5.00E–04
4 3.900 140.4 −25.0 2.19E–03 2.30E–03
5 0.100 3.6 0.0 4.04E–04 4.00E–04
6 0.100 3.6 25.0 1.07E–02 1.04E–02
7 5.798 295.2 25.0 1.69E–03 1.70E–03
8 5.515 280.8 −25.0 1.89E–03 1.80E–03
9 3.677 187.2 37.5 5.47E–13 0.00E+00
10 0.141 7.2 −25.0 1.07E–02 1.06E–02
Total – 1,497.6 – 4.08E–02 4.03E–02
System probability of failure 2.90E–02

Table 10 Probabilistic
distribution types and
parameters for errors and
variability in the ten-bar truss
problem

Uncertainties Distribution type Mean Scatter

Errors
eσ Uniform 0.0 ±5%
eP1 Uniform 0.0 ±10%
eP2 Uniform 0.0 ±10%
eA (10 × 1 vector) Uniform 0.0 ±3%
e f Uniform 0.0 ±20%

Variability
P1, P2 Extreme type I 66.67 kips 10% c.o.v.
A (10 × 1 vector) Uniform A (10 × 1 vector) ±4%
σf Lognormal 25/Kdc ksi or 75/Kdc ksi 8% c.o.v.

Table 11 Results of probabilistic optimization of the ten-bar truss problem using conditional MCS with 10,000 samples

Elements Adet
i Ai Mean Stresses Conditional Conditional 107 Samples crude

in ksi at Ai MCS
(
Pdet

f

)
i MCS

(
Pf

)
i MCS

(
Pf

)
i

1 7.900 7.1920 18.349 2.14E–03 5.88E–03 5.80E–03
2 0.100 0.3243 15.675 1.04E–02 3.07E–03 3.00E–03
3 8.100 7.1620 −19.329 5.07E–04 8.26E–03 8.30E–03
4 3.900 3.7010 −16.965 2.41E–03 2.15E–03 2.10E–03
5 0.100 0.4512 04.434 3.66E–04 3.18E–05 0.00E+00
6 0.100 0.3337 15.287 1.07E–02 2.14E–03 2.00E–03
7 5.798 5.1697 19.492 1.56E–03 1.02E–02 1.05E–02
8 5.515 4.9782 −18.286 1.92E–03 3.75E–03 3.80E–03
9 3.677 3.5069 25.302 4.10E–13 4.70E–13 0.00E+00
10 0.141 0.4325 −16.579 1.06E–02 5.46E–03 5.90E–03
Total 1,497.6 lb 1,407.13 lb 4.10E–02 4.10E–02 4.14E–02
System probability of failure using crude MCS 3.37E–02
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Table 12 Results of approximate probabilistic optimization and progress toward the accurate optimum

Element Determ. des. iter_01 iter_02 iter_03 iter_04 iter_05

Areas (in2)
1 7.900 7.2383 7.4793 7.3684 7.4215 7.395
2 0.100 0.100 0.100 0.100 0.100 0.100
3 8.100 6.8277 7.2051 7.0629 7.1187 7.0944
4 3.900 3.9645 3.9954 3.9511 3.9842 3.9636
5 0.100 0.100 0.100 0.100 0.100 0.100
6 0.100 0.100 0.100 0.100 0.100 0.100
7 5.798 4.9161 5.2133 5.0925 5.1422 5.1198
8 5.515 5.2035 5.3075 5.2562 5.2834 5.2688
9 3.677 3.9924 4.0504 3.9732 4.0212 3.9953
10 0.141 0.1256 0.1364 0.1296 0.1336 0.1311
Weight (lb) 1,497 1,384 1,432 1,408 1,420 1,414

Mean stresses (ksi)
1 16.667 18.294 17.672 17.949 17.817 17.882
2 16.667 13.691 14.478 14.233 14.333 14.276
3 −16.667 −19.663 −18.666 −19.031 −18.886 −18.949
4 −16.667 −16.471 −16.323 −16.513 −16.373 −16.459
5 0.0000 4.514 2.8830 3.418 3.252 3.304
6 16.667 13.691 14.478 14.233 14.333 14.27
7 16.667 19.442 18.399 18.814 18.639 18.718
8 −16.667 −17.869 −17.455 −17.646 −17.548 −17.6
9 25.000 23.13 22.771 23.223 22.942 23.093
10 −16.667 −15.417 −15.014 −15.537 −15.17 −15.395

Approximate PF
1 1.90E–03 5.40E–03 5.80E–03 5.80E–03 5.80E–03 5.80E–03
2 1.04E–02 3.10E–03 2.50E–03 2.70E–03 2.60E–03 2.60E–03
3 6.00E–04 6.30E–03 6.70E–03 6.70E–03 6.60E–03 6.70E–03
4 2.60E–03 2.40E–03 2.00E–03 2.20E–03 2.10E–03 2.10E–03
5 2.00E–04 8.00E–04 1.60E–03 1.20E–03 1.40E–03 1.30E–03
6 1.14E–02 3.40E–03 2.70E–03 2.90E–03 2.80E–03 2.80E–03
7 1.60E–03 9.70E–03 1.01E–02 1.01E–02 1.01E–02 1.01E–02
8 1.60E–03 3.70E–03 3.90E–03 4.00E–03 3.90E–03 4.00E–03
9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
10 1.15E–02 7.00E–03 6.40E–03 6.30E–03 6.50E–03 6.30E–03
System 4.18E–02 4.18E–02 4.17E-02 4.19E–02 4.18E–02 4.17E–02

Actual PF
1 1.90E–03 8.20E–03 4.90E–03 6.20E–03 5.60E–03 5.90E–03
2 1.04E–02 1.70E–03 3.00E–03 2.50E–03 2.70E–03 2.60E–03
3 6.00E–04 1.28E–02 5.20E–03 7.30E–03 6.40E–03 6.80E–03
4 2.60E–03 2.20E–03 1.90E–03 2.30E–03 2.00E–03 2.20E–03
5 2.00E–04 2.40E–03 1.10E–03 1.50E–03 1.30E–03 1.40E–03
6 1.14E–02 1.90E–03 3.20E–03 2.70E–03 2.90E–03 2.80E–03
7 1.60E–03 1.74E–02 8.00E–03 1.11E–02 9.70E–03 1.03E–02
8 1.60E–03 5.20E–03 3.50E–03 4.20E–03 3.80E–03 4.00E–03
9 0.00 0.00 0.00 0.00 0.00 0.00
10 1.15E–02 7.50E–03 5.00E–03 7.50E–03 5.80E–03 6.80E–03
System 4.18E–02 5.93E–02 3.58E–02 4.53E–02 4.02E–02 4.28E–02

of the areas. Results of the probabilistic optimization
are shown in Table 11. The table shows the change in
area as well as the stresses corresponding to the mean
values of the variables, and the change in probability of
failure of each element. It also presents evaluation of
system probability of failure using 10 million samples

of traditional MCS at the probabilistic optimum design.
Overall weight was reduced by 6% (90.47 lb), while
maintaining the same bound on the system probability
of failure as the deterministic optimum design. We used
10,000 samples for conditional MCS, and optimization
problem converged after 59 iterations. A total of 728
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reliability assessments were required during the prob-
abilistic optimization. We used fixed random variables
to eliminate the effect of random noise.

In the probabilistic optimum design, the areas of
three small-area elements (2, 6, and 10) that have high
probability of failure in the deterministic optimum are
slightly increased and the corresponding stresses are
slightly reduced. However, the reduction in the prob-
ability of failure is significant for these elements. Thus,
the risk reallocation between different members occurs
by moving small amount of weight to the small-weight,
high-risk members. By reallocating the risk, the total
weight is saved by 6%.

4.5 Approximate probabilistic optimization
using ECARD

The approximate probabilistic optimization problem
can be written based on (21) as

Minimize
Ai

W =
10∑

i=1

ρLi Ai

s.t. PECARD
FSU ≤ Pdet

FSU (22)

where the approximate system probability of failure is
the sum of individual contributions. The optimization
in (22) is solved iteratively until convergence criterion
in Section 2.2 satisfies. In order to approximate the
response of a design when the cross sectional areas
change from Adet to A we use the following equations:

r
(

p1; p2; . . . ; A) = r
(

p1; p2; . . . ; μA
) + �;

� = r
(
μp1; μp2; . . . ; μA

)

− r
(
μp1; μp2; . . . ; μA det

)
(23)

Table 12 shows the results of approximate proba-
bilistic optimization and progress toward the proba-
bilistic optimum shown in Table 11. For this example,
the ECARD method converged after five iterations
when the changes in design variables and weight were
below 0.4% and the accuracy of the system probability
of failure was about 5%. In addition, the errors in el-
ement failure probability approximations are less than
7%. Since the probability of failure of the Element 9
is very small, the error in its probability of failure is
not taken into account. As expected, the mean stresses

Table 13 Probabilities of failure of each element and system
probability of failure after last Iteration of ECARD using crude
MCS

Elements Ai 107 Samples 104 Separable
traditional MCS (Pf )i

MCS (Pf )i

1 7.395 6.00E–03 5.90E–03
2 0.100 2.70E–03 2.60E–03
3 7.0944 6.90E–03 6.80E–03
4 3.9636 1.80E–03 2.20E–03
5 0.100 1.20E–03 1.40E–03
6 0.100 2.70E–03 2.80E–03
7 5.1198 1.03E–02 1.03E–02
8 5.2688 4.20E–03 4.00E–03
9 3.9953 0.00E+00 0.00
10 0.1311 6.00E–03 6.80E–03
Total 1,414.0 lbs 4.18E–02 4.28E–02
System failure probability 3.33E–02 –

in the light weight elements decrease, while the mean
stresses in the heavier elements increase. This reflects
the fact that having higher safety factor to low-weight
elements is more weight efficient than to high-weight
elements in the overall risk allocation. Note that while
the total weight is very similar to the exact probabilistic
design, the individual areas are quite different. For ex-
ample, in the probabilistic design, the stress reduction
in Element 2 is achieved by tripling its area, while in the
ECARD design the stress is reduced without changing
the area. Also notice that the total approximate failure
probability bound stays close to 4.2 × 10−2 with small
variations due to numerical noise in the algorithm.
The true probability bound however changes as design
changes.

The ECARD optimization required only five relia-
bility assessments one for each of the five iterations,
which is a significant reduction from the probabilistic
optimization that consumed 728 reliability assessments.
Table 13 shows system probability of failure using
10 million samples at the design obtained in last iter-
ation of ECARD Method. Again, the system failure
probability is substantially lower than the Ditlevsen
bound. This suggests that it may be worthwhile to apply
ECARD in the future with conditional MCS so as to
allow the use of a system probability constraint.

5 Concluding remarks

An approximate probabilistic optimization method us-
ing exact-capacity-approximate-response-distribution
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(ECARD) is presented. The proposed method sig-
nificantly reduces expensive reliability calculations
(typically done via MCS). ECARD was demonstrated
with the simplest approximation of the response
distribution—one that translates the entire distribution
based on the mean values of the random variables. Two
examples were used to test ECARD. First, probabilis-
tic optimization of a cantilever beam was performed,
where risk was allocated between two different failure
modes. Then, probabilistic optimization of a ten-bar
truss problem was performed, where risk was allocated
between ten truss members. From the results obtained
in these two demonstration problems, we reached the
following conclusions.

1. In both problems, ECARD converged to near
optima that allocated risk between failure modes
much more efficiently than the deterministic op-
tima. The differences between the accurate and
approximate optima were due to the errors in
probability of failure estimations, which led to er-
rors in the derivatives of probabilities of failure
with respect to design variables required for risk
allocation.

2. ECARD significantly reduced the expensive reli-
ability calculations. In the cantilever beam prob-
lem, it required only four reliability assessments
compared to 61 for full probabilistic optimization.
Similarly, in the ten-bar truss problem we needed
only five reliability assessments, which is almost
two-orders of improvement from 728.

3. Large differences between the Ditlevsen bound
and the system probability of failure for the 10-bar
truss suggest the desirability of applying ECARD
with system probability constraints using the sep-
arable MCS (Smarslok et al. 2006) instead of the
more restrictive conditional MCS.
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Appendix: calculation of member forces of ten-bar
truss

Analytical solution to ten-bar truss problem is given
in Elishakoff et al. (1994). The member forces satisfy
the following equilibrium and compatibility equations.

Note: Values with “*” are incorrect in the reference.
The correct expressions are:

N1 = P2 − 1√
2

N8, N2 = − 1√
2

N10,

N3 = −P1 − 2P2 − 1√
2

N8, N4 = −P2 − 1√
2

N10,

N5 = −P2 − 1√
2

N8 − 1√
2

N10,

N6 = − 1√
2

N10, N7 = √
2 (P1 + P2) + N8,

N∗
8 = b 1a22 − a12b 2

a11a22 − a12a21
, N9 = √

2P2 + N10,

N∗
10 = a11b 2 − a21b 1

a11a22 − a12a21

where

a∗
11 =

(
1

A1
+ 1

A3
+ 1

A5
+ 2

√
2

A7
+ 2

√
2

A8

)

,

a∗
12 = a∗

21 = 1

A5
,

a∗
22 =

(
1

A2
+ 1

A4
+ 1

A5
+ 1

A6
+ 2

√
2

A9
+ 2

√
2

A10

)

,

b ∗
1 = √

2

(
P2

A1
− P1 + 2P2

A3
− P2

A5
− 2

√
2 (P1 + P2)

A7

)

,

b ∗
2 =

(
−√

2P2

A4
−

√
2P2

A5
− 4P2

A9

)
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