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In the inspection of aircraft structures, the probability of detection has typically been determined based on the size

of damage alone. However, the inspection process involves randomness due to variability in inspection conditions,

including inspector competence, difficulties associated with the location, and type of damage. To account for these

other factors, we develop a simple inspectionmodel from the assumption that for each combination of crack location

and inspector there is a threshold crack size, such that larger cracks will be detected and smaller ones will bemissed.

The proposed model fits the threshold crack sizes to 2603 detection events reported for 43 panels inspected by

62 inspectors from a U.S. Air Force study. The threshold values are obtained by maximizing the matching detection

events between the model and the inspection data. First, when 62 inspector thresholds are used, the model matches

78% of detection events. It is further increased to 81% when both inspector and location thresholds are employed.

For comparison, the matching percentage using crack size alone is only 55%. Cross-validation of the fitting process

indicates that part of the improvement represents fitting noise in the data, and that only about 72% matching is

repeatable. The proposed model is further extended by including randomness to represent inconsistent behavior of

inspectors. Replicating the observed inconsistency for the same inspector reduces the matching to about the same

72%.Confidence intervals of the proposedmodel are presented. The proposedmodelmay be used to assess the effect

of better training for inspectors, and this is illustrated with a study that shows that, if the poorer half of inspectors is

replaced by the top half, the crack size identified with 50% probability can be reduced by half.

Nomenclature

a = normalized crack size, a0=a0m
acorr = normalized corrected crack size
a0 = crack size, inches
a0m = crack size detected with 50% probability, mm
a0trs = detection threshold, in.
atrs = normalized threshold, mm
d = detection event
de = experimental detection event
ds = simulated detection event
mij = detection margin
Ndet
j = number of inspectors having detected the jth crack

Pd = probability of detection
Pje = experimental probability of detection for panel
xij = agreement margin
� = detection parameter in Palmberg equation
�ah = inspector competence increment

(negative for high competence)
�al = location difficulty increment

(positive for high difficulty)
� = penalty function

I. Introduction

M OST aircraft structural components are designed based on a
damage-tolerance philosophy that uses inspection and

maintenance to detect degradation before it can cause structural

failure. In general, the inspection can be performed either manually
or by using onboard equipment. In this paper, the former is referred to
as manual inspection, and the latter as structural health monitoring
(SHM). Formanual inspections, different techniques have been used,
such as radiographic inspection (Lawson and Parker [1]). Usually,
SHM uses actuator-sensor technique (Giurgiutiu and Cuc [2]) to
detect damages, such as ultrasonic and eddy current techniques
(Pohl et al. [3]), comparative vacuum monitoring (Stehmeier and
Speckmann [4]), or elastic wave propagation and electromechanical
impedance (Giurgiutiu et al. [5]).

The effectiveness of various inspection techniques is typically
characterized by probability of detection (POD) curves that relate the
size of damage to POD (Zheng andEllingwood [6]). The information
on POD can be used for various purposes, including structural
diagnosis and prognosis (Zheng and Ellingwood [6]). For example,
Kale and Haftka [7] used POD curves to optimize the inspection
schedule that can maintain a certain level of structural reliability.
Although the POD curve is traditionally given in terms of damage
size, in reality, POD depends not only on damage size but also on
other variables. For example, damage in some locations is more
difficult to detect than in other locations. The competence of in-
spector or inspection method can also be an important factor for
determining POD curves.

Developing an accurate damage detection model that can take into
account the effects of the location of damage and the competence of
inspector is important, but it is not available in the literature. The
objective of the paper is to demonstrate the development of a more
complete characterization of POD curves based on the results of a
large number of inspections. As a first step toward developing such a
model, we propose a simple model based on a damage detection
threshold size that is affected by both the damage location and the
inspector competence. We further simplify the model by assuming
that the damage detection process is deterministic, not probabilistic.
The proposed model assigns a competence score to each inspector
and location difficulty score to each panel. Then, the equivalent
damage threshold size for a specific panel and inspector is obtained
using the scores.

Although the proposed model can take into account location
difficulty and human factors, it is still a deterministic model, which
means that the detection event is completely determined with the
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threshold crack size. However, there exists uncertainty in detecting a
crack even if the same inspector inspects the same crack again. To
model this randomness, we further improve the model using a
traditional POD curve-based inspection process.

To demonstrate the performance of the proposedmodel,we use the
U.S.Air Force study from the 1970s inwhich 43 panelswith different
crack sizes are inspected by 62 inspectors (2603 detection events)
(Lewis et al. [8]). The eddy current inspectionmethod is used for a C-
130 center wing box section with surface fatigue cracks radiating
from fastener sites undergone in service. The intact section is first
stripped of paint for visual crack detection and measurement during
test, a surface finish was then reapplied for the nondestructive
inspection testing. We use two optimization techniques to find the
location factors associated with 43 panels and the human factors
associated with 62 inspectors. The first one uses the matching events
as a discrete objective function, which can lead to numerous local
optima, whereas the second one uses a regularized objective
function, which is continuous and more stable. The robustness of the
proposed models is demonstrated using cross-validation, in which
the modeling process is repeated by using 90% of data chosen
randomly.

The goal of the proposed model is not to replace the traditional
POD curve. Rather, it improves the understanding of inspection
process by modeling the effect of various parameters, such as
inspector capability and location difficulty, on the quality of inspec-
tion. The method can be used as a tool to simulate the effect of
changing inspection parameters, such as inspector training on the
POD.

The remainder of the paper is organized as follows. Section II
presents the proposed inspector-location-size (ILS) model based on
deterministic thresholds. Two different optimization formulations
are discussed in Sec. III. First, the optimization problem is solved for
individual parameters in Sec. IV, followed by the automated
optimization results in Sec. V. Section VI extends the proposed
model to include the randomness of the process along with cross-
validation. The confidence intervals and a parameter study of the
proposedmodel are presented in Sec.VII, followed by conclusions in
Sec. VIII.

II. Inspector-Location-Size Inspection Model

The detection process is conventionally modeled using a
probability of detection curve, which describes the probability of
detecting a crackwith a specific size.A commonly used PODcurve is
the Palmberg equation (Palmberg et al. [9]). It specifies the
probability of detecting a crack of size a0 as

Pd�a0� �
�a0=a0m��

1� �a0=a0m��
(1)

where a0m is the crack size that corresponds to 50% probability of
detection (hence, it measures the quality of the inspection process).
As the exponent � increases, the detection process approaches a
deterministic one; that is, all cracks larger than a0m will be detected
and smaller ones be missed. When �� 4, for example, the
probability of detecting a crack size of a0 � 2a0m is 94%. It is noted
that the POD curve in Eq. (1) only accounts for crack size.

Although the Palmberg model has been widely used in manual
inspections, it overlooks important aspects of the inspection process.
For example, when damage exists in a location difficult to detect, the
POD is relatively low even if the size of damage is large. Thus, the
actual inspection results are often scattered around the POD curve
and sometimes show inconsistent behavior in that a small crack may
be detected while a larger one missed. The scatter in inspection
results can be explained by differences in the competence of
inspectors and differences in damage location. The former includes
inspector’s skill, inspection method, and inspection environment
(such as fatigue and distractions).

In this paper, we seek a model that includes the aforementioned
two effects, in addition to the traditional crack size effect.We assume
that, when a panel is subjected to periodic inspections, the failure to

detect a crack of size a0 � a0m is due to the following two variables.
The first variable, denoted by h, characterizes the circumstances of
the inspection, such as the competence of the inspector and
difficulties in the inspection process. The other variable, denoted by l,
characterizes the difficulty associated with the location of the
damage. These two variables are random by nature. For example, an
inspector who missed a crack with size a0 may detect the crack in the
second trial. As a first step, we use a quasi-deterministic model that
assumes that with sufficient knowledge there is no randomness in the
detection process. We assume that, for given inspector and location,
there is a threshold crack size so that every crack larger than this
threshold will be detected and every crack below it will be missed.
This model interprets the randomness as being entirely epistemic
(lack of knowledge). That is, if we knew everything about the loca-
tion of the damage and the inspection condition, then the randomness
would disappear. Denoting the threshold value by a0trs, the detection
event d for a crack of size a0 can be defined as

d�
�
0 if a0 � a0trs < 0

1 if a0 � a0trs � 0
(2)

In the preceding equation, d� 0 means that the crack has been
missed, whereas d� 1 means that the crack has been detected. We
simplify the following derivations by normalizing all crack sizes
using the mean value a0m of the threshold crack size over all locations
and inspectors:

atrs �
a0trs
a0m

(3)

The same normalization is applied to a0 such that a� a0=a0m.
The objective is to develop a model of atrs that can accurately

represent the contributions from both location and inspection con-
dition. In view of the deterministic model, if the damage is located in
the neutral position and if the inspection conditions are the same,
every crack larger thana0m will be detected and those smaller than that
will be missed. The proposed model adjusts the threshold based on
the contribution from the location �al and that from the inspection
competency �ah as

atrs � 1��al ��ah (4)

A positive �al means that the crack is in a more difficult location
than average such that its detection threshold is larger than a0m. A
positive �ah means the inspection circumstances are more difficult
than average. Thus, a value of atrs greater than one means that the
crack is more difficult to detect than average because either its loca-
tion is difficult tofind or the inspector is not competent. The detection
event can be determined using the normalized version of Eq. (2). We
call this model the ILSdet (inspector-location-size) model.

The performance of this model will be tested by applying it to a
matrix of tests where a series of 43 panels with cracks were inspected
by 62 inspectors [8]. Part of thematrix (13 inspectors, 32 locations) is
shown in Table 1.

To generate the traditional Palmberg equation from the
experiments, we start by calculating the probability of detection for

each panel:Pje � Njdet=62, j� 1; . . . ; 43, whereNjdet is the number of
inspectors that detect the jth crack. Note that the jth panel has a crack
of size a0j. We then fit the two Palmberg parameters to the 43

probabilities by minimizing the discrepancy defined in Eq. (5):

min
a0m;�

X43
j�1
jPd�a0j� � P

j
ej (5)

After minimization, we obtain a0m � 0:48 cm and �� 1:308.
Figure 1 shows the POD curve as function of crack sizea0, alongwith
the 43 probability data Pje, used to fit it. It can be observed that the
curve fits most of the points, but on the bottom right we can see that
the largest crack has a very low probability of detection, which
indicates that this crack might be located in a place where it is very
difficult to detect. Figure 1 also shows two typical ILSdet curveswhen
a0trs � 0:5 and a0trs � 1:2 (two vertical lines).
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III. Optimization Formulations

To test if the proposed ILSdet model describes well the results of
the inspections, we seek 43�ali corresponding to the 43 panels and
62�ahj corresponding to the 62 inspectors that fit best the observed
inspection events. The threshold increments�ahj associated with the
inspectors are easy to estimate because for each inspector we have
inspection results for 43 different crack sizes. On the other hand, for
each location, we have only a single crack size, and therefore the
estimate of the location difficulty must rely on the scores of the
inspectors. If a crack in a panel is not found even by the most
competent inspectors (lowest threshold values), then we can deduce
that it is in a difficult location.

The inspection results from the U.S. Air Force study [8] are used,
in which 2603 detections events out of 62 � 43� 2666 possible

events are reported. The objective is to find 105 values for the
inspectors�ahi and the panels�a

l
j that will predict the largemajority

of the inspection results. An optimization problem is formulated such
that the differences between the inspection results from the tests and
that from the model in Eqs. (2) and (4) are minimized.

We consider two ways of quantifying the differences between the
prediction and the inspection results: discrete and continuous
formulations. The former represents detection and nondetection as
binary events, that is, 0 or 1.Wedenote byde the detected events from
actual inspections and by ds the detected events from the model. We
define the detection marginmij and the detection event dsij resulting

from the model for the crack in the ith panel and jth inspector as
follows:

mij � ai � �1��ahj ��ali�

dsij �
�
0 if mij < 0 �nondetection�
1 if mij � 0 �detection�

(6)

The objective function of the discrete formulation is then
defined as

min
�al;�ah

X43
i�1

X62
j�1
jdsij � deij j (7)

The objective function in Eq. (7) is obviously discontinuous as
infinitesimal changes in the threshold values can switch a detected
event to a nondetected event and vice versa. It is noted that the
preceding optimization formulation is different from the conven-
tional discrete optimization in which the variables are discontinuous
but the objective function is usually continuous. In the preceding
optimization formulation, the variables�ahi and�a

l
j are continuous,

while the objective function is discrete.
The continuous formulation takes into account the size of the

margin mij in each detection event. When the detection events from

Table 1 Partial matrix of crack detection events (1� detection, 0� nondetection) from [8]

Inspector ID

Flaw ID Flaw length, in 0201 0202 0204 0207 0208 03E1 03E2 03E3 03E4 03E5 03E7 03E9 03E10

77a 0.09 0 0 1 0 0 0 0 0 1 0 0 0 0
122 0.09 1 0 0 0 0 0 0 1 1 0 0 0 0
132 0.10 1 0 0 0 0 0 0 0 0 0 0 1 0
121 0.10 1 0 1 0 0 1 0 1 1 0 0 0 1
75 0.10 1 0 1 0 0 0 0 0 0 0 1 0 0
76b 0.12 1 0 1 0 0 0 0 0 1 1 1 1 0
80 0.12 1 1 1 0 0 0 0 0 1 0 0 0 0
77b 0.13 1 1 1 0 0 0 0 0 1 1 1 0 1
79d 0.13 1 0 0 0 0 0 0 0 0 0 0 1 0
125 0.13 1 0 0 1 0 0 0 1 0 0 0 0 1
133 0.14 0 0 0 0 0 0 —— 0 0 0 0 0 0
12a 0.15 1 1 1 1 0 0 0 1 1 0 0 0 0
78 0.16 1 1 1 0 0 0 0 0 1 0 1 0 0
9b 0.16 1 1 1 1 0 0 0 1 0 1 0 1 1
131 0.16 1 1 1 0 0 0 0 1 1 0 1 0 0
7 0.16 1 0 1 1 0 0 —— 1 1 0 0 0 0
8a 0.17 0 0 1 0 0 0 —— 1 0 0 0 0 0
130 0.19 1 1 1 1 0 0 1 1 1 1 0 0 1
10d 0.19 1 1 1 1 0 1 1 0 0 1 1 0 1
101 0.20 0 0 1 1 1 0 —— 0 0 0 0 0 1
76a 0.21 1 0 1 0 1 0 1 0 1 1 0 0 1
81b 0.21 1 1 1 1 1 0 1 1 1 0 0 1 1
123 0.21 1 1 1 1 1 0 1 0 1 0 1 0 0
8c 0.21 1 0 1 0 0 0 0 1 0 1 1 0 1
9a 0.22 1 1 1 1 1 0 1 1 1 1 0 1 1
11b 0.22 1 1 1 1 0 0 1 1 1 1 0 1 1
79a 0.23 1 1 1 1 1 0 1 0 1 1 1 0 1
12b 0.23 1 1 1 1 1 0 1 1 1 1 0 1 1
8b 0.23 1 0 1 0 0 0 —— 1 0 1 0 0 1
10a 0.24 1 1 1 1 0 0 1 1 0 1 0 1 1
81a 0.25 1 1 1 1 1 0 1 1 1 1 1 1 1
11a 0.29 1 1 1 1 0 1 1 1 1 1 0 1 1
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Fig. 1 Probability of detection (a0
m
� 0:48 and �� 1:308) curves

including the traditional Palmberg equation and two typical ILS curves

corresponding to the data in [8].
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inspection and model are not consistent, we penalize the event based
on the size of the margin. On the other hand, when the detection
events from inspection and model are consistent, we provide a small
reward to the objective function that increases with the margin.

Using the margins in an objective function allows us to define a
continuous objective function that may be easier to optimize. In
addition, it will provide a more robust fit that is likely to be less
sensitive to small changes in the threshold. However, it is desirable to
define an objective function that will lead to an optimum that will not
result in substantial deterioration in thematching objective of Eq. (7).
The continuous optimization problem is defined as

8>>>>><
>>>>>:

min
�al;�ah

P
43
i�1
P

62
j�1 �ij

�ij �
� x2

ij

2
� xij if xij < 0

exp��xij� � 1 otherwise

xij � �2deij � 1�mij

(8)

where xij is the agreement margin, which is negativewhen the results
of themodel do not match the experimental events and positivewhen
they do. The penalty �ij is chosen such that it increases rapidly when
the model and experiment are not matched, whereas it decreases
slowlywhen the results arematched. In addition, the two expressions
of �ij have the same value and slope at xij � 0. The penalty function
for a single detection event is shown in Fig. 2. Although the
individual penalty function is monotonic, the objective function is
not unimodal in general because it is sum of all penalty functions.

IV. Initial Estimates of Thresholds

Because the optimization problem in Eq. (7) is not continuous and
that in Eq. (8) may not be unimodal, it is important to start the
optimization processwith a good initial estimate. To obtain the initial
estimate, the optimization problem is simplified by separating the
inspector contributions from the location contributions. We first
estimate the threshold�ahj of each inspector by solving the problem
column by column without associating any difficulty with the cracks
(i.e., all �ali are zero). The next step is to estimate �ali using these
�ahj . The first step is illustrated graphically in Fig. 3. The figure

shows the percentage of matches of 43 panels for inspector 14. For
this inspector, the best threshold increment is �ah14 ��0:5, associ-
atedwithwhich 38 of the 43 detection events arematched, or 88.37%
match. That is, for average location difficulty (�al � 0), this
inspector will detect every crack longer than 0.5 times a0m.

Figure 4 shows the continuous objective function �i14 for the same
inspector. Comparison of Figs. 3 and 4 shows a good agreement
between the two optima.

By solving the optimization problem individually for each
inspector, we find 62 �ahj , which represent the competence of

inspectors. Overall, these 62 �ahj match 78.30% of the detection

events. Using the optimal�ahj as initial estimates, and varying�ali,
we obtain a matching percentage of 80.61%, a small improvement.
The value of continuous objective function at these estimates
is �458:97.

To evaluate the quality of the optimization results, we compare the
matching percentage result with the traditional model in which POD
is determined based entirely on the crack size. Let us consider that the
ith panel has a crack with size a0i. Using the two-parameter Palmberg
equation in Eq. (1), the PODof the crack can be calculated (Palmberg
et al. [9]). By performing a Monte Carlo simulation using the
Palmberg equation to calculate the POD of the crack sizes used in [8]
for 62 inspectors, we obtain a matching percentage between those
simulated data and the experimental ones of 55.5% (with a standard
deviation of 0.96%) which is much lower than 81% in the proposed
model. Thus, the proposed simple model accounts much better for
the actual inspection results than a model that takes only the crack
length.

V. Optimization Results

The estimation results are used as the initial point for both opti-
mization problems discussed previously (continuous and discrete).
Both optimization formulations are unconstrained optimization with
105 variables.

First, the continuous optimization, Eq. (8), is solved using the
Matlab function fminunc, which uses the Broyden–Fletcher–
Goldfarb–Shanno [10–13] quasi-Newton method with a mixed
quadratic and cubic line search procedure. The optimization problem
using the evaluated�as discussed in Sec. IV converges to a solution
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that yields 77.79% matches and the penalty function value of
�733:19. Note that because fminunc is a local optimizer, we first
estimate the �as to have a result which is presumably close to the
global optimum. It can be observed that the matching percentage is
slightly lower than that from the sequential optimization for both�ali
and �ahj , but having a much lower penalty function means that the

continuous optimum is more stable than the sequential one. The
slight increase of the objective function can be explained by the fact
that the continuous objective function (penalty function) is different
from the discrete one (matching percentage).

The discrete optimization problem in Eq. (7) cannot be solved
using gradient-based optimization algorithms because the objective
function is discontinuous. Indeed, the discrete objective function is a
piecewise step function in 105 dimensional space. It is different from
conventional discrete optimization problems, in which the objective
function is continuous while the design variables are discrete. The
discrete optimization problem is solved using Particle Swarm
Optimization (PSO) algorithm (Schutte et al. [14]). This algorithm
suits well our purpose because it does not require the gradient of
objective function, and the design variables are continuous. The
discrete optimization problem converges to a percentage of 82.79%
matches, which is slightly better than the initial estimate. It turns out
that there are many design points that yield the same value of
optimum objective function, even if different initial stating points are
used. We did find that PSO converges to the global optimum better
than the gradient-based method. To show how the objective function
varies between two optimum points, two optimum points are chosen.
By connecting these two points in 105-dimensional space and by
evaluating objective functions along the line, Fig. 5 plots variation of
the objective function. PSO1 and PSO2 represent two optima, and
the values of objective function at these two points are minimal. The
discrete objective function (nonmatching percentage) changes
rapidly near the optima, which indicates that the two optimum points
are unstable. Having many optimum points means that different
combinations of �ahj and �a

l
i can yield the same level of matching

percentage with the experiments.
A summary of the different optimization results, matching percen-

tage, and continuous objective function can be found in Table 2.
To study the stability further for continuous and discrete

optimizations, two optimumpoints from the discrete formulation and
one optimum point from the continuous formulation are chosen. By
locating them in the three corners in a plane, we can project 105-
dimensional space into 2-dimensional space. Then, the values of
objective function are plotted on the plane as a contour. Figure 6a
plots the contour of the continuous objective function, whereas

Fig. 6b plots that of the discrete objective function. It can be observed
that the continuous objective function is smooth and converges to a
single optimum,whereas the discrete one has numerous local optima.
This illustrates clearlywhy the continuous objective function yields a
single and more stable optimal model. Note that Fig. 5 is the value of
the discrete objective function along the hypotenuse.

VI. Probabilistic ILSrand Inspection Model

As we discussed in the earlier sections, the proposed ILSdet model
neglects the variability in inspection environment and human factors.
That is, the same inspector inspecting the same panel may detect the
damage at the first trial but miss it the second time. Thus, we cannot
expect a 100% match even if the margin mij is positive. In fact, it is
quite possible that the optimization process overfitted the variability
in the data. If the 2603 inspection events were repeated, the match
between the two repetitions would be less than 82.79%.

To check the overfitting case, the technique of cross-validation
[15] is used. The cross-validation can be done by leaving out 10% of
the data, fitting the model to the remaining 90%, and checking the fit
with the left out 10% events. This process is repeated 100 times. We
find that the matching percentage reduces to 72.6% (with standard
deviation of 2.7%) for the sequential approach and 75.6% (with
standard deviation of 2.4%) for the continuous approach. The 72.6%
match in sequential approach indicates that about 10% of the match
in the discrete optimization captures the instantaneous performance
of the inspectors rather than their average competence, and this
confirms the fact that the continuous optimum is more stable.

The results of the optimization provide additional insight into the
magnitude of this randomness in the form of inconsistency in the
performance of the inspectors. That is, even with the optimum
assignments of difficulty to the 43 panels, the experimental results
still show inspectors identifying a difficult crack while missing an
easier one. Thus, the present model can be improved bymodeling the
randomness responsible for this inconsistency.

To quantify the inconsistency in the inspector performance, we
first define a corrected crack size that accounts for the location
difficulty

acorr � a ��al (9)

The crack that is difficult to find is considered to be a smaller-sized
crack in the nominal location.

Next, we arrange the plates in increasing order of corrected crack
size and calculate the number of times the detection and nondetection
events alternate. For that purpose, we define inconsistency indicator
as

Ij �
X43
i�2
hdi�1;j � di;ji (10)

with hdi�1;j � di;ji �max�di�1;j � di;j; 0�. Because all 43 cracks are
ordered in increasing corrected size, the detection events should be
di�1;j � di;j if the inspector is consistent. Whenever the inspector
detects a smaller crack and misses a larger crack, the inconsistency
indicator in Eq. (10) increases by one.

A perfectly consistent inspector will have Ij � 0, with zeros for
small cracks and ones for large ones. The average value of Ij for the
62 inspectors is 5.24 with the values ranging from 1 to 10.
Surprisingly, the inconsistency levels did not appear to be related to
competence as seen in Fig. 7. Competent inspectors (�ah < 0) have
as large inconsistency indicator as incompetent inspectors�ah > 0.

To account for inconsistency, a new ILSrand model is proposed
where the threshold in the deterministic model is used as the crack
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Table 2 Optimization results (note that robust agreement leads to negative penalties as seen in Fig. 2)

Sequential optimum Discrete optimum Continuous optimum

Matching percentage 80.61 82.79 77.79
Penalty function �458:97 �164:41 �733:19
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size that has 50%probability of detection; that is,am in the traditional
POD curve. Thus, in the ILSrand model, the Palmberg equation is
rewritten as

Pi;jd �
�ai=ai;jtrs��

1� �ai=ai;jtrs��
(11)

A very large value of � in Eq. (11) would correspond to the
deterministic ILS model. In the ILSrand model, the exponent � is
selected such that the inconsistency from themodelmatcheswith that
of the experimental data. Tomatch the average inconsistency of 5.24,
we need�� 2:7. In addition, we obtain amatching percentage about
72% using Eq. (11). This means that we lose about 10% matching
percentage to reach the same level of inconsistency. This confirms the
results obtained in the cross-validation study. A summary of the
results is given in Table 3.

Unlike the ILSdet model, the ILSrand model will have different
results if the sameprocess is repeated. Thevalues in the parenthesis in
Table 3 show the standard deviation of the matching percentage and
average inconsistency. To estimate the effect of this randomness in

the model, we find that the percentage of matches between two
different trials is 67.4% (standard deviation of 0.9%).

VII. Using Model for Assessing Impact
of Parameter Changes

An important aspect of the proposed model is that it allows one to
quantify the effect of the parameters on the conventional POD
curves. For example, it is possible tomeasure the improvement of the
POD curve when the inspectors have better training. To perform a
parameter study, it is necessary to build a POD curve first. Both
methods presented earlier can be used to simulate inspection results
for a given set of inspectors and location thresholds. The idea is
similar to fitting the conventional POD, that is, Palmberg equation, to
inspection data as shown in Fig. 1. Figure 8 shows the Palmberg
equation fitted to the data simulated using both models. Note that,
due to the random nature of ILSrand, 1000 samples of simulated
inspection data are generated, and the Palmberg equation is fitted to
the mean of the probability of detection for each location. In the
previous section, ILSrand does not provide matching results as good
as ILSdet but, when it comes to the fitting conventional PODcurves, it
agrees better with the experimental results. This is due to ILSdet

ignoring the inconsistency in inspector performance, thus obtaining
more deterministic (steeper) dependence of POD on crack size.

Because the ILSrand model includes randomness in identifying the
POD curve, it is necessary to estimate the confidence bounds for the
POD curve associated to the model (MIL-HDBK-1823 [16]).
Figure 9 shows 5 and 95% confidence levels, along with the mean
POD curve. They are calculated the sameway as the mean presented
in Fig. 8. The 95% confidence level is close to the Palmberg equation
fitted to the actual inspection data but on the conservative side.

Once the POD curve is calculated, it is possible to find the effect of
model parameters on the POD. An important possible issue is the
effect of inspector competence on the POD. In practice, inspector
competence can be improved by training. This is simulated by
replacing the inspectors with scores in the bottom half by duplicating
the inspectors in the top half. Using the improved inspector com-
petencies, a new Palmberg equation is fitted to the mean probability
of detection values. Figure 10 shows significant improvement of
POD resulting from improvement of inspector competences. The
crack size that has 50% probability of detection is reduced by half.

Fig. 6 Contour plots of continuous and discrete objective functions on the projected plane of three optima (two discrete and one continuous).
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Fig. 7 Inspectors inconsistency versus their competence. Large

threshold increments correspond to incompetent inspectors.

Table 3 Matching percentage and average inconsistency for the three models presented

in this paper (values in parentheses are standard deviations)

Method Traditional Palmberg model ILSrand ILSdet

Matching percentage 55.5 (0.96) 72.07 (0.68) 82.79
Average inconsistency 10.1 (0.2) 5.2 (0.1) 0
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In a more complex model, other parameters could be added by
following the same idea as the one presented here.

VIII. Conclusions

We developed a simple model that accounts for inspector
competence and location difficulty to explain the randomness in
detecting cracks by manual inspection. By fitting 105 parameters to
2602 experiments, we were able to match about 77.8% of the

detection events using continuous optimization and 82.8% using
discrete optimization. This is a significant improvement from 55%
matching by the commonly used model based on crack size alone.
Through the cross-validation, we showed that the higher perfor-
mance of the discrete optimization is related to the fact that the
optimization fits randomness of the inspection process.

The deterministic model is simple but it is not robust because it fits
noise. The random model is closer to the traditional POD and is
actually a mix between the deterministic model and the traditional
POD. The random model does not match as well the experimental
results but it is more robust.

The experiments revealed inconsistency in the performance of
inspectors, andwe defined ameasure of inconsistency andmatched it
by adding randomness to our model. With this new model we found
that the matches reduced to about 72%, which was similar to the
matches between two realizations of the simulated inspections. This
indicates that our model captured well both the deterministic and
random components of the inspection process.

The procedure revealed that most of the randomness in the detec-
tion process is due to inspector competence rather than due to the
crack location. This implies that automated structural health
monitoring, which will eliminate most of the variability due to the
circumstance of the inspection, is likely to provide substantial
improvement in the probability of detection. Note that there will still
be somevariability in inspection that needs to bemodeled differently,
such as error in the model, initial location of the sensor, and various
reading errors related to the sensors.

To demonstrate the utility of the model, we showed that it can be
used to examine the benefits of training better inspectors. We found
that, if only the top 50% of inspectors were used, the size of the crack
that can be detected with 50% probability would be decreased by
half.

The proposed model is a first step toward a more advanced
inspection model that can include many other variables of inspection
process. When more information about damage is available, such
as crack morphology, it can be incorporated in a more advanced
model. However, this is out of the scope of this paper because the
U.S. Air Force report (Lewis et al. [8]) does not provide the required
information.
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