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ABSTRACT 

The paper presents a study on the prediction of wear for 
systems in which progressive wear affects the operating 
conditions responsible for the wear. A simple slider-
crank mechanism with wear occurring at one of the 
joints is used to facilitate the study. For the mentioned 
mechanism, the joint reaction force responsible for the 
wear is, itself, affected by the progression of wear. It is 
postulated that the system dynamics and the wear are 
coupled and evolved simultaneously. 

The study involves integrating a dynamic model of the 
slider-crank mechanism (with an imperfect joint) into a 
wear prediction procedure. The prediction procedure 
builds upon a widely used iterative wear scheme. The 
accuracy of the predictions is validated using results 
from an actual slider-crank mechanism. 

INTRODUCTION 

Clearances at the joints of multibody systems (usually 
due to manufacturing tolerance) have been noted to 
affect the performance and service life of mechanical 
systems. This may be attributed to the increased 
vibration, excessive wear and dynamic force 
amplification as discussed by Dubowsky [1]. Due to the 
significance of the problem, numerous studies have 
been conducted with the goal of understanding the 
dynamic response of these systems in the presence of 
joint clearances [1-16]. These studies have evolve from 
the analysis of less complex planar multibody systems 
[1-3, 5-11, 13,14,16] to more complex spatial systems 
[4, 15] as well as from rigid multibody analysis [1,2,5-
10,12-16] to flexible multibody analysis [3,4,11]. The 
studies have demonstrated that the presence of 
clearances alter the response of the system appreciably.  

Although these studies will go a long way into allowing 
designers to take into account joint clearance, the 
findings may be limited to the idealized case in which 
wear is assumed to be nonexistent. This is contrary to a 
realistic scenario in which wear is expected to increase 
the clearance size and thus further alter the system 
response. This research seeks to address this issue by 
allowing the joint clearance to vary as dictated by the 
wear. As a result, the system dynamics will evolves with 

the wear and this evolution is captured by an integrated 
model presented in the article.  The effect of the wear 
on the system dynamics and conversely the effect of the 
evolving dynamics on the wear can then be studied.  

In the first part of the paper a wear prediction procedure 
is presented. The procedure presented is based on a 
widely used finite-element-based iterative wear 
prediction procedure.  In the next part, modeling of a 
perfect and imperfect joint is discussed. Two different 
kinds of imperfect joints are discussed. The first being a 
general imperfect joint model in which the two 
components of the joint are allowed to move relative to 
each other depending on the dynamic behavior of the 
system. The second model is a simplified and more 
specific case to the study (slider-crank mechanism), in 
which the two components of the joint are in continuous 
contact. Next, the wear prediction procedure is 
integrated with the model that describes the imperfect 
joint. Only the simplified joint case is considered for the 
integration. In the final part of the report, the 
experimental validation of the integrated model is 
discussed. 

WEAR PREDICTION 

In the case of a revolute joint of a mechanical system, 
wear would occur when the components of the joint are 
in contact and in relative motion. The amount of wear at 
such a joint is affected by the type of material the 
components are made of, the relative sliding distance 
and the operating conditions. Here, the operating 
conditions refers to the amount of reaction force 
developed at the joint and the condition of the joint 
which could be dry, lubricated, or contaminated with 
impurities. 

A lot of effort has been placed in developing models to 
predict wear occurring in components similar to those of 
the revolute joint. Majority of these models are based on 
the Archard’s wear law, first published by Holm [17] in 
1946. One form of the equation is express 
mathematically as follows: 

 N
hA kF
s
 , (1) 



where s  is the sliding distance, k  is a wear coefficient, 
h  is the wear depth, A  is the contact area and NF  the 
applied normal force. Equation (1) can further be 
simplified by noting that the contact pressure may be 
expressed with the relation Np F A  so that the wear 
model is expressed as  

 h kp
s
 . (2) 

The wear process is generally considered to be a 
dynamic process (rate of change of the wear depth with 
respect to the sliding distance) so that the differential 
form of Eq. (2) can be expressed as 

 ( )dh kp s
ds

 , (3) 

where the sliding distance is considered as a time in the 
dynamic process. A numerical solution for the wear 
depth may be obtained by estimating the differential 
form in Eq. (3)with a finite divide difference to yield the 
following updating formula for the wear depth: 

 1i i i ih h kp s   . (4) 

In Eq.(4), ih  refers to the wear depth at the thi  cycle 
while 1ih   represents the wear depth at the previous 
cycle. The last term in Eq. (4) is the incremental wear 
depth which is a function of the contact pressure ( )ip  
and the incremental sliding distance ( )is  at the 
corresponding cycle. Thus if the wear coefficient, the 
contact pressure and the incremental sliding distance 
are available at every cycle, the overall wear can be 
estimated. To that end, the value of the wear coefficient 
can be obtained through experiments as discussed in 
the literature,[22, 24-26] where as the contact pressure 
can be calculated using Finite element analysis (FEA) or 
the Winkler Surface model [22]. Since the Finite 
element method is more superior than the FEA, with 
regard to accuracy, only the FEA method is adopted in 
this reserach. The incremental sliding distance can be 
obtained as a result of the FEA or may be specified 
explicitly. In this work the commercial finite element 
program ANSYS has been employed in conjunction with 
the corresponding design language, Ansys Parametric 
Design language (APDL). 

A number of papers [18-24] which demonstrate the 
implementation of Eq. (4) in estimating wear have been 
published. Although the details of the various 
procedures differ, three main steps are common to all of 
them. These include the following: 

 Computation of the contact pressure resulting from 
the contact of bodies. 

 Calculation of the incremental wear amount based 
on the wear model. 

 Geometry update by moving the contact boundary to 
reflect the wear and to provide the new geometry for 
the next cycle (this allows for a more accurate and 
realistic prediction of the wear process). 

The wear prediction procedure employed in this 
research incorporates the three steps mentioned. It 
should, however, be mentioned that the wear simulation 
procedure is a computationally expensive process. This 
is due to the number of cycles that need to be simulated 
(usually greater than 10,000 cycles) each of which 
requiring some type of analysis to determine the contact 
pressure and sliding distance. In order to mitigate the 
computational costs, an extrapolation procedure was 
used. This involves calculating the incremental wear 
depth for a representative cycle and then extrapolating 
this wear depth over N fixed cycles. The use of an 
extrapolation results in a modification of the updating 
formula (4). The new equation is expressed as:  

 1i i E i ih h kA p s   , (5) 

where EA is the extrapolation factor. The choice of the 
extrapolation is critical to the efficiency and stability of 
the simulation. The use of large extrapolations will 
cause the simulation to be unstable and compromise the 
accuracy of the simulation. On the other hand using 
small extrapolation sizes will result in a less than 
optimum use of resources. A complete study on 
extrapolations, its effect on stability of wear prediction 
and optimizing its selection can be found in our previous 
work [24]. 

A flowchart summarizing the simulation procedure is 
shown in Fig.1. The procedure will later be integrated 
with the dynamic model for the imperfect slider-crank 
mechanism, which is discussed in the next section. 

MODELING IMPERFECT REVOLUTE JOINTS 

Revolute joints in mechanical systems are generally 
imperfect. This means that the joints have some amount 
of clearances usually due to constraints and 
requirements in manufacturing. In addition, throughout 
the service life of the system the clearances increase in 
size due to wear. As was mentioned earlier, the 
clearance affects the dynamics of system. In this section 
two imperfect joint models that have the capability of 
accounting for changes in system dynamics due to 
clearances size changes are discussed.  

To facilitate the study, a slider-crank mechanism has 
been used, due to its simplicity. A diagram of the slider-
crank mechanism to be used in the study is shown in 
Fig. 2. The study is simplified by eliminating friction and 
wear from all connection points in the mechanisms 
except for one joint, shown as the joint of interest in Fig. 
2. This joint essentially consists of a pin that is attached 



to the crank (drive-link Fig. 2.) and a bushing attached 
to the connecting rod (driven-link). The pin is made of 
hardened steel and is assumed to be hard enough so 
that no appreciable wear occurs on its surface. The 
bushing on the other hand is made of poly-tetra-fluoro-
ethene (PTFE) which is soft and will experience 
considerable wear. A spring is attached to the slider 
which serves as a means to increase the joint reaction 
force and hence accelerated the wear occurring at the 
joint. 

 

Figure 1: Wear simulation flow chart. 

In order to successfully study the dynamic response of 
the mechanism under joint wear, it is necessary to 
develop a formulation for the slider-crank system that 
estimates the changes to the system dynamics when the 
joint clearance is changed. In what follows, a 
formulation for the dynamic and kinematic analysis of 
the slider-crank mechanism with perfect joints is 
presented. Based on this formulation, the model for the 
slider-crank mechanism with an imperfect joint will be 
developed.  

Figure 2: Slider-crank mechanisms to be used in the wear study. 

DYNAMICS OF A SLIDER-CRANK MECHANISM WITH 
PERFECT JOINTS - In a slider-crank mechanism with 
perfect joint, the pin is assumed to fit perfectly in the 
bushing. Consequently the pin and bushing centers 

coincide at all times. The slider-crank system is 
assumed to consist of three rigid bodies with planar 
motion as depicted in Fig. 3. The three disassembled 
components of the mechanism (link-1, link-2 and a 
slider) are shown in the global axis. Each component 
can translate and rotate in the plane. 

 
Figure 3: Components of the slide crank mechanisms. 

The kinematics of the system is determined by imposing 
constraints on the motion of the components. The 
constraints corresponding to the slider-crank mechanism 
shown in Fig. 3. consist of nine nonlinear simultaneous 
equations expressed as: 
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Φ  (6) 

The first two constraints in Eq. (6) confine point P1 on 
link-1 to the origin.  The next two constraints ensure that 
points P2 on link-1 and P3 link-2 coincide at all times. 
This condition is synonymous to a perfect joint and later 
will be relaxed when modeling the imperfect joint. The 
fifth and sixth constrains in Eq. (6) represent the perfect 
revolute joint between Link-2 and the slider. The next 
two constraints ensures that the slider remain on the x-
axis without rotation. The final constraint, known as the 
driving constraint, is an external input such as a servo 
motor that specifies the motion of one of the links. For 
the current case a constant angular velocity   is 
imposed in link-1. 

It can be seen from the set of simultaneous equations 
above, that the number of equations exactly equals the 
number of unknowns. The unknowns are the DOFs of 
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the components at the center of masses. This is 
denoted by vector q, as 

  1 1 1 2 2 2 3 3 3, , , , , , , , Tx y x y x y  q . (7) 

The set of simultaneous nonlinear equations (Eq. (6)) 
can be solved simultaneously to determine the slider-
crank mechanism component positions at any instant. 
The velocities and accelerations may also be 
determined using the following relations: 

  t
  1
qq Φ Φ  (8) 

   2 t tt
   1
q q qq

q Φ Φ q q Φ q Φ     (9) 

Once the accelerations have been computed, the 
reaction forces can be obtained through the process of 
reverse dynamics. However, if we desire to obtain the 
response of the system due to externally applied forces, 
such as a spring force (see Fig. 2.) or a torque applied 
instead of the drive constraint, then a dynamic analysis 
is required. This involves assembling and solving the 
differential-algebraic equations of motion (DAE). This 
equation is expressed as follows; 

 
    

    
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T
Aq

qq

QM Φ q
Φ qΦ 0 λ


 , (10) 

where M is a diagonal mass matrix, qΦ is the Jacobian 
of the constraint vector, q  is the acceleration vector, λ  
is a vector of Lagrange multipliers and AQ is the vector 
of externally applied forces. The solution procedure for 
this equation, to obtain the dynamics of a system, is well 
documented in the literature [14, 28,29]. An summary of 
the solution procedure is shown in Fig. 4. 

DYNAMICS OF A SLIDER-CRANK MECHANISM WITH 
AN IMPERFECT JOINT - Two kinds of the imperfect 
joints for the slider-crank mechanism, a general 
imperfect joint and a simplified imperfect joint are 
discussed. The first imperfect joint can be found in the 
literature [13,14,16] and is only briefly discussed. It is 
used as a reference for comparison with the simplified 
imperfect joint. 

Modeling a General Imperfect Joint - The general 
imperfect joint consists of two components (pin and 
bushing) that are allowed to move relative to each other 
depending on the dynamics of the system. A slider-
crank mechanism with an imperfect joint is illustrated in 
Fig. 5.  

For this joint, the condition previously used in the 
perfect joint formulation that required the pin and 
bushing centers to coincide ceases to be valid. The 
slider-crank mechanism in this case is thus modeled by 
eliminating the two constraints so that the new kinematic 

constrain in Eq. (6) reduces to the expression shown in 
Eq. (11). The imperfect joint can then be realized by 
ensuring that the motion of the pin is confined within the 
inner perimeter of the bushing. This can be achieved by 
imposing a force constraint on both components 
whenever they establish contact as discussed by Flores 
[15]. 

 

Figure 4: Solution procedure for the Differential 
Algebraic Equation. 

 

Figure 5: Disassembled slider-crank mechanisms with 
an imperfect joint. 
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Φ . (11) 

The force constraint is essentially the reaction force 
developed upon contact. It is assumed that the region 
where the contact is established is deformable so that 
the reaction force can be estimated by a contact force 
law. A contact force model with hysteresis damping, 
discussed by Hamid [30], can be employed. The model 
is expressed as follows: 
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where NF is the reaction force,  is the penetration 
between the pin and bushing, re is the coefficient of 

restitution,   is the penetration velocity,     is the 
initial penetration velocity upon impact and K  is a 
constant that is dependent on the material properties of 
the components and their geometry. The constant is 
expresses as follows, 
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where nR is the radius of the pin and bushing, n  is the 
Poisson ratio of the components and nE  is the elastic 
modulus of the components. 

In addition to the reaction forces, the friction force can 
be determined by using the Coulomb friction model 
shown in the following equation: 

 f NF F , (14) 

where  is the coefficient of friction and NF  is the 
normal force as previously described. 

For the general imperfect joint a kinematic analysis 
cannot be performed since the jacobian of the constraint 
vector (Eq. (11)) is not square. A dynamic analysis is 
necessary. The differential-algebraic equation of motion 
can be assembled as described in the previous section 
(Eq. (10)). Both the contact and friction forces are 
included in the applied force vector AQ of Eq. (10). The 

dynamics of the system can then be obtained by solving 
the assembled DAE.  

The general imperfect joint model that has been 
discussed allows the system dynamics of the slider-
crank mechanisms with an imperfect joint to be 
determined. This is done by specifying the radius of the 
pin and bushing to reflect the joint clearance. As an 
example, the dynamics of the system with parameters 
shown in Table 1 and Table 2 is determined. A value of 
0.8 was used for the coefficient of restitution where as 
no friction was considered. Figure 6a. illustrates the 
effect of different clearance sizes on the joint reaction 
force for this system as a function of the crank position 
(in radians). In the figure, the second crank cycle is 
plotted. As was expected, dynamics of the system is 
altered when the joint clearance size is varied. When 
the pin and bushing radius are approximately equal the 
imperfect and the perfect joint models should yield 
identical results. Figure 6b shows the comparison of the 
reaction force from the perfect and imperfect joint 
models when the clearance is approximately zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: a) Reaction force plot for various clearance 
sizes. b) Reaction force for the perfect and general 
imperfect joint models (zero clearance).   
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Table 1: Dimension and mass properties of the slide-
crank mechanism. 

 Length (m) Mass (kg) Inertia x10-6 

(kg.m2) 

Link 1 0.0381 0.4045         204.0 
Link 2 0.1016 0.8175       5500.0 
Slider - 5.5487            - 

 
Table 2: Properties of the pin and bushing 
 Pin Bushing 
Initial radius 9.525 mm 9.535 mm 
Poisson ratio  0.29 0.38 
Young’s Modulus 206.8 MPa 0.139 MPa 

 

Modeling a Simplified Imperfect Joint - In the previous 
section a general imperfect joint model was presented. 
In this section a simplified joint model is presented. The 
simplified model does not assume local deformation at 
the location of contact consequently no contact force 
model is required. As a result it is computationally 
cheaper than the previous model. The model is, 
however, specific to this application (as will be outlined 
in the assumption) but can be modified to suit other 
applications. 

The diagram of a slider-crank mechanism with an 
imperfect joint was shown in Fig. 5. This mechanism is 
identical to the slider-crank mechanism with perfect joint 
except for the imperfect joint. As a result the constraints 
equations for both slider-crank mechanisms are similar 
except for the imperfect joint. This was also true for the 
case of the general imperfect joint. We shall therefore 
focus our attention on formulating the imperfect joint as 
we did in the previous case. 

In modeling the simplified imperfect joint three 
assumptions are made. These assumptions are as 
follows: 

1. It is assumed that the pin will be in contact with the 
bushing at all the times. 

2. It is also assumed that the region on the bushing 
where the pin first establishes contact with the 
bushing does not change. The center point of this 
region is shown as point C in Fig 7.   

3. Final it is assumed that the pin center, the bushing 
center, and the contact point C will remain collinear 
at all times. 

With these assumptions in place, the constraint 
equations relating to the imperfect joint can be derived 
with the aid of Fig.7. It is noted that an additional 
variable (α), not encountered in the previous 
formulations, is required in deriving the imperfect joint 
constraint. The addition variable (α) describes the angle 
between the local x-axes of the two links. It also allows 
for the determination of the center point of contact 
region of the pin at any instant of the motion. This 

information will be required when determining the 
relative sliding distance between the pin and the 
bushing. 

The imperfect joint constraints are formulated by 
imposing two conditions. These are described as below: 

1. Since the pin and bushing are assumed to be in 
contact at all times, a loop starting from the origin to 
the center point of contact (point C) and back to the 
origin should be closed. In Fig. 7., this loop is 
described by vectors that follow the path O-A-B-C-
D-E-O. This loop can be represented 
mathematically as follows: 

      1 1 1 11 1 2 2 2 2 2r A s A a A s A a r 0  (15) 

where A1, A11 and A2 are transformation matrices 
that transform the local vector s1, a1 and s2, and a2 
into global vectors, respectively. This yields two 
constraint equations that can be written as follows: 
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 (16) 

where R1 and R2 are the radius of the pin and 
bushing respectively. 

 

Figure 7: Variable defining the simplified imperfect joint. 

2. The second constraint requires that the vector along 
the line B-C and the vector along D-C, to be 
parallel. The vector along line B-C, expressed as g1 
= A11a1, is the vector that runs from the center of the 
pin to the point of contact. It is noted that this 
vector, in both local and global coordinated 
systems, changes its orientation according to the 
variable α when the mechanism is in motion.  On 
the other hand, the vector along line D-C, expressed 
as g2 = A2a2, does not change its orientation in the 
local coordinate system of link-2. This is consistent 
with the third assumption that was earlier 
mentioned. The second requirement can be stated 
mathematically as follows: 
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This reduces to the following expression: 
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The two requirements mentioned above yield three 
constraint equations that describe the imperfect joint. 
The constraint equations for the slider-crank mechanism 
with the simplified imperfect joint can be summarized as 
follows:  
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Dynamic analysis can once again be done to 
determined the dynamic response of the system. Figure 
8a. shows the reaction force for various joint clearances. 
As in the case of the general imperfect joint, the 
dynamics of the system is affected as the clearance size 
is changed. Also in Fig. 8b., the reaction forces for the 
simplified imperfect joint with zero clearance is plotted 
together with that of the perfect joints. The plots overlay 
each other confirming our expectations. Both plots were 
generated for the slider-crank mechanism with the 
parameters shown in Table 1.  

Our interest in modeling the simplified imperfect joint 
was to incorporate the effect of wear into the dynamic 
analysis. Thus far we have developed an imperfect joint 
model for the slider-crank mechanism that can account 
for the changes in the system dynamics due to changes 
in the joint clearance. By invoking an earlier 
assumption, that the pin will contact the bushing at only 
one location, it can be shown that wear on the bushing is 
synonymous to increasing the clearance size. Figure 9. 
shows a diagram of the pin in contact with the bushing.  
As the pin rotates, during the motion of the mechanism, 
the bushing is worn out. According to the assumption, 
only the location where the pin first contacts the bushing 
is worn out. The center point of this location is shown in 
Fig. 9. as point C. It is clear from the diagram that the 
wear has the same effect as increasing the radius of the 

bushing at the center point of the contact location. Thus 
the wear can be simulated by simply increasing the 
bushing radius R2 by an amount equivalent to the wear. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: a) Reaction force for various clearance sizes 
(simplified joint). b) Comparison of reaction forces for 
the perfect and simplified joint models (zero clearance).   

 

 

 

 

 

 

 

 

Figure 9: Wear on bushing due to the pin contact. 

With both the wear prediction procedure and dynamic 
analysis of the slider-crank system developed, an 
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integrated model between the system dynamics and the 
wear can be created. In the following section integration 
of the wear analysis into the system dynamics will be 
discussed. 

INTERGRATED MODEL: SYSTEM DYNAMICS 
AND WEAR PREDICTION 

In order to predict the wear at the joint and also to study 
how the wear affects the system dynamic and vice 
versa, it is necessary to integrate the wear prediction 
procedure into the system dynamics. The integration is 
composed of two parts namely; dynamic analysis and 
wear analysis. The integration process is discussed in 
the following subsections. 

DYNAMIC ANALYSIS - In the first part of the 
integration process a dynamic analysis is performed to 
determine the joint reaction force and the incremental 
sliding distance. These are the two quantities form the 
dynamic analysis are required to perform the wear 
analysis. The analysis is done for a complete cycle and 
the reaction force is obtained at each increment of the 
discretized range. The incremental sliding distance is 
also obtained at each increment as described by Eq. 
(20). 

  2 1i i is R      . (20) 

In Eq. (20) i  is the angle difference (in radians) 
between the local x- axes of the two links (see Fig. 7) at 
a current and 1i   is the difference for a previous time. 

2R  is the bushing radius. Figure 10 shows a plot of 
incremental sliding distance from a dynamic analysis for 
a slider-crank mechanism with parameters shown in 
Table 1. A value of 19.05mm was used for the diameter 
of the pin and bushing. 

 

 

 

 

 

 

 

 

 

Figure 10: Incremental sliding distance. 

WEAR ANALYSIS - The second part of the integration 
process involves a wear analysis. The amount of wear is 
determined at each increment based on the reaction 
force and sliding distance from the previous analysis 
and is summed (according to Eq. (5)) up to obtain the 
total wear for the cycle. Since the wear is equivalent to 
increasing the clearance, the wear amount is added to 
the initial joint clearance to determine the total 
clearance. The dynamic analysis is then repeated for 
the new clearance and the process is iterated up to the 
desired number of cycles. Figure 11 shows the flow 
chart for the integration process. 

 
 
Figure 11: Integration of wear analysis into system 
dynamics analysis. 

 
EXPERIMENTS FOR MODEL VALIDATION  

In order to validate the integrated model an experiment 
was used. A diagram of the slider-crank mechanism, 
built for this purpose, is shown in Fig. 12. The slider-
crank mechanism is built so as to minimize friction and 
wear (to a negligible amount) at all joints except at the 
joint of interest. This is achieved by building the joint 
between link-2 (follower) and the slider with a thrust air 
bearing and using a dovetail air bearing slide. 

The dimensions and mass parameters for the 
experimental slider-crank are shown in Table 1 and 
Table 2. Other test parameters including the friction and 
wear coefficient, crank velocity, and spring constant are 
shown in  

Table 3.  
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Table 3: Properties of the pin and bushing 
Crank (link-1) velocity 0.5  RPM 
Spring constant 525.4 N/m 
Friction coefficient 0.15 
Wear coefficient [25] 5.05x10-4 mm3/Nm  

 

 

 

 

 

 

 

 

Figure 12: Experimental slider crank mechanism 

The validation involves comparing the wear on the 
bushing, after several thousand crank cycles, obtained 
from the experiment and simulation tests. It was 
mentioned earlier that the pin is made of hardened steel 
so that no appreciable wear occurs on its surface. It 
should however be mentioned that the procedure 
outlined can be used to estimate the wear on both the 
bushing and the pin. Two sets of tests, each consisting 
of an experimental and simulation wear test, were 
conducted. In the first test a total of 32,000 crank cycles 
were completed while in the second test 21,400 crank 
cycles were completed. The simulation is conducted 
using the simplified imperfect joint. 

Table 4 and Fig. 13 show the results from the first wear 
test. In Fig. 13a the initial joint reaction forces from the 
experiment and that from the simulation are compared. 
It can be seen that the simulation reaction force closely 
resembles that from the experiment. There is however, 
a discrepancy in forces at crank position of π when the 
slider changes direction. The discrepancy is attributed to 
the direction change when the slider briefly impacts the 
sliding rail and resulting in the higher order dynamics 
observed.   Also in Fig. 13b, the wear profile from the 
experiment is shown to be reasonably predicted by the 
simulation model. The worn mass and maximum wear 
depth on the bushing are tabulated in Table 4. For both 
cases, the simulation reasonably predicted the 
experimental results. 

Table 4: Wear results from test 1 (32,000 crank cycles) 
 Experiment

al wear test 
Simulation 
wear test 

Error 

Worn mass 0.2616 g 0.2336 g 10.7% 
Max wear depth 0.7850 mm 0.6575 mm 16.2% 

Time 17hrs  8hrs  

 

The results for the second set of tests are presented in 
Table 5 and Fig. 14. Similar to the first set of tests, the 
worn mass, maximum wear depth and wear profiles 
have been closely predicted with the simulation. It can 
also bee seen that the time required for the simulation is 
much less that would be required for the wear test, 
excluding the experimental set up time. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: Test 1 results: 32,000 crank cycles. a) Initial 
joint reaction force. b) Comparison of bushing wear 
profile between the experiment and simulation.  

Table 5: Wear results from test 2 (21,400 crank cycles) 

 
One of the goals of the research was to investigate how 
the wear affects the dynamics and how the dynamics 
affects the wear. It was postulated that the system 
dynamics and the wear at the joints are coupled and 
thus evolve simultaneously. This effectively means that 
predicting the wear based on the initial system dynamics 
would lead to incorrect results. This is because the 
dynamics of the system changes as the wear evolves. 
One way to assess the coupling would thus be to 

 Experimental 
wear test 

Simulation 
wear test 

Error 

Worn mass 0.1714 g 0.1589 g 7.2% 
Max wear depth 0.4850mm 0.4524 mm 6.7% 

Time 11hrs 5hrs  
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compare the wear results from the prediction based on 
only the initial dynamics and that based on evolving 
dynamics. For the current case this can be 
accomplished by performing a wear analysis using the 
slider-crank model with a perfect joint and the second 
model with an imperfect joint. The difference of the wear 
prediction will reveal the extent of the coupling. 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 14: Test 2 results: 21,400 crank cycles. a) Initial 
joint reaction force. b) Comparison of bushing wear 
profile between the experiment and simulation.  

Figure 15. shows a plot of the difference in wear 
prediction when only the initial dynamics is used and 
when evolution is system dynamics is considered. The 
simulation was conducted for about 95,000 crank cycles. 
From the plot it can be seen that as the number of 
cycles increases, the difference in prediction increases 
as well. Although the difference is small, for the current 
case, there is indeed some amount of coupling between 
the wear and the system dynamics. 

DISCUSSION AND CONCLUDING REMARKS 

In this work, an integrated procedure to predict the wear 
at a joint of a slider-crank mechanism was presented. 
The procedure allows for the coupling between the 
dynamics of the mechanism and the wear at the joint to 
be studied. The two main components of the procedure 
are the wear prediction procedure and the model of the 

system with imperfect joints. The wear prediction 
procedure discussed is an iterative procedure based on 
the Archard’s wear law. Three models of the slider-crank 
mechanisms with an imperfect joint was presented. The 
first model represented an ideal system where no wear 
is experienced at the joints.  The second and third 
slider-crank models attempted to simulate a system with 
an imperfect joint. In the second model, a general 
imperfect joint is developed where the components of 
the joint move relative to each other based on the 
dynamics of the system. Finally in the third model, a 
simplified imperfect joint in which the two components 
of the joint are in continuous contact, was developed. 
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Figure 15: Difference in wear estimation between slider-
crank model with perfect joints and an imperfect joint.  

The integrated procedure was completed by integrating 
the wear prediction procedure into the dynamic analysis 
model. In doing so, the coupled nature of the wear at the 
joint and the system dynamics was studied. To validate 
the model, experimental wear tests were conducted.  
The integrated procedure was found to predict the 
maximum wear depth with a maximum error of 
approximately 16%. While this may seem large, it 
should be noted that there are several possible sources 
of error that contributed to the discrepancy. One source 
is in the wear prediction model which is dependent on 
an experimentally obtained wear coefficient and an 
approximation of the contact pressure (FEA). Another 
source of error is in the dynamic model of the slider-
crank mechanism with imperfect joint. In the 
development of this model some assumptions were 
made that introduce additional errors. Nevertheless, the 
wear estimates are reasonably for preliminary designs. 

In addition to the estimation of wear at the joint, the 
coupling between the wear and the dynamics of the 
mechanism was examined. For the mechanism, it was 
found that a subtle coupling exists and becomes more 
significant as the wear increases. The subtleness of the 
coupling is attributed to the simplification of the study. If 
further complexities were considered such as wear at 
other joints, flexibilities of the bodies or impact at the 
joints, then stronger coupling would be observed.  

0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

160

180

crank position (rad)

jo
in

t r
ea

ct
io

n 
fo

rc
e 

(N
)

Initial Joint Reaction Force

Fmag Expt.

Fmag Sim.

a 

-10 -5 0 5 10

-10

-5

0

5

10

Bushing X Coordinates (mm)

B
us

hi
ng

 Y
 C

oo
rd

in
at

es
 (

m
m

)

before wear expt
after wear expt
after wear sim

b 



ACKNOWLEDGMENTS 

This research was supported by National Science 
Foundation (DMI-0600375) and Deere & Company. 
Their supports are gratefully acknowledged. 

REFERENCES 

[1]. Dubowsky, S., 1974, “On Predicting the Dynamic 
Effects of Clearances in Planar Mechanisms,” 
ASME, Journal of Eng. for Industry, pp. 317-323. 

[2]. Dubowsky, S., Freudenstein, F., 1971, “Dynamic 
Analysis of Mechanical Systems with Clearances 
Part1: Formulation of Dynamic model,” ASME, 
Journal of Engineering for Industry, pp. 305-309. 

[3]. Dubowsky, S., Gardner, T.N., 1977, “Design and 
Analysis of Multilink Flexible Mechanisms with 
Multiple Clearance Connection,” ASME, Journal of 
Engineering, pp. 88-96. 

[4]. Kakizaki, T., Deck, J.F., 1993, “Modeling the 
Spatial Dynamics of Robotic Manipulators with 
Fixable Links and Joint Clearances,” ASME, 
Journal of Mechanical Design, 115, pp. 839-847. 

[5]. Farahanchi, F., Shaw, S. W., 1994, “Chaotic and 
Periodic Dynamics of a Slider-Crank Mechanism 
with Slider Clearance,” Journal of Sound and 
Vibration, 177(3), pp. 307-324. 

[6]. Rhee, J., Akay A., 1996, “Dynamic Response of a 
Revolute Joint with Clearance”, Mechanisms 
Machine Theory, 31(1), pp. 121-134. 

[7]. Ravn, P., 1998, “A Continuous Analysis Method for 
Planar Multibody Systems with Joint Clearance,” 
Multibody Systems Dynamics, Kluwer Academic 
Publishers, 2, pp. 1-24. 

[8]. Ravn, P., Shivaswamy, S., Alshaer, B. J., 
Lankarani, H. M., 2000, “Joint Clearances With 
Lub. Long Bearings in Multibody Mech. Systems, 
Journal of Mech. Design, 122, pp. 484-488. 

[9]. Ting, K.L., Zhu, J., and Watkins, D., 2000, “The 
Effect of Joint Clearance on Position and 
Orientation Deviation of Linkages and 
Manipulators,” Mechanism and Machine Theory, 
35, pp. 391-401. 

[10]. Schwab, A. L., Meijaard, J.P., Meijers, P., 2002, “A 
Comparison of Revolute Joint Clearance Models in 
the Dynamic Analysis of Rigid and Elastic 
Mechanical Systems,” Mechanisms and Machine 
Theory, 37, pp. 895-913. 

[11]. Bauchau, O. A., Rodriguez, J., 2002, “Modeling of 
Joints with Clearance in Flexible Multibody 
Systems,” Journal of Solids & Struct., 39, pp 41-63. 

[12]. Tsai, M.J., Lai, T.H., 2004 “Kinematic Sensitivity 
Analysis of Linkage with Joint Clearance Based on 
Transmission Quality,” Mechanism and Machine 
Theory, 39, pp. 1189-1206, 

[13]. Flores, P., Ambro�sio, J., 2004, “Revolute Joints 
with Clearance in Multibody Systems,” Computers 
and Structures, 82, pp. 1359-1369. 

[14]. Flores P., 2004, “Dynamic Analysis of Mechanical 
Systems with Imperfect Kinematic Joints,” Ph.D. 
Thesis, Minho University (Portugal), Guimarães 

[15]. Garcia Orden, J. C., 2005, “Analysis of Joint 
Clearances in Multibody Systems,” Multibody 
System Dynamics, 13, pp. 401-420. 

[16]. Flores, P., Ambrósio, J., Claro, J. C. P., Lankarani, 
H. M.Koshy, C. S., 2006, “A Study on Dynamics of 
Mechanical Systems Including Joints with 
Clearance and Lubrication,” Mechanism and 
Machine Theory, 41, pp. 247-261. 

[17]. Holm, R., 1946, Electric Contacts, H. Geber, 
Stockholm. 

[18]. Podra, P. and Andersson, S., 1999, “Simulating 
sliding wear with finite element method,” Tribology 
International, 32: pp. 71-81. 

[19]. Oqvist, M., 2001, “Numerical simulations of mild 
wear using updated geometry with different step 
size approaches,” Wear, 249: pp. 6-11. 

[20]. McColl, I.R., Ding, J., and Leen, S.B., 2004, “Finite 
element simulation and experimental validation of 
fretting wear,” Wear, 256, pp. 1114-1127. 

[21]. Hegadekatte, V., Huber, N., and Kraft, O., 2005, 
“Finite element based simulation of dry sliding 
wear,” IOP Publishing, 13, pp, 57-75. 

[22]. Kim, N. H., Won, D., Buris, D., Holtkamp, B., 
Gessel, G. R., Swanson, P., Sawyer, W. G., 2005, 
“Finite Element Analysis and Validation of 
Metal/Metal Wear in Oscillatory Contacts,” Wear, 
258, pp. 1787-1793. 

[23]. Sfantos, G.K. and Aliabadi, M.H., 2006, “Wear 
simulation using an incremental sliding boundary 
element method,” Wear, 260, pp. 1119-1128. 

[24]. Mukras, S., Kim, N. H., Sawyer, W. G., Jackson, 
D. B., and Swanson P., 2007, “Design Theory and 
Computational Modeling Tools for Systems with 
Wear”, paper No. 2007-01-0892, SAE World 
Congress, Detroit, MI. 

[25]. Schmitz L., Action, J. E., Burris, D. L., Ziegert, J. 
C., and Sawyer, W. G., 2004, “Wear-Rate 
Uncertainty Analysis”, ASME, Journal of Tribology, 
126, pp.802–808. 

[26]. Yang L.J., 2005, “A test methodology for 
determination of wear coefficient”, Wear, 259, pp. 
1453–1461. 

[27]. Podra, P., and Andersson, S., 1997, “Wear 
Simulation with the Winkler Surface Model,” Wear, 
207: pp. 79-85. 

[28]. Nikravesh, P.E., 1988, Computer-Aided Analysis of 
Mechanical System, Prentice-Hall, Englewood 
Cliffs, NJ, pp. 313-338, Chap. 13. 

[29]. Haug, E. R., 1989, Computer-Aided Kinematics 
and Dynamics of Mechanical Systems, Allyn and 
Bacon, Needham Heights, US-MA, pp. 248-259. 

[30]. Hamid, M.L., Parviz, E.N., 1994, “Continuous 
Contact Force Model for Impact Analysis in 
Multibody Systems”, Nonlinear Dynamics, Kluwer 
Academic Publishers, 5, pp. 193-207.

 


