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Die shape design optimization of sheet metal stamping
process using meshfree method
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SUMMARY

A die shape design sensitivity analysis (DSA) and optimization for a sheet metal stamping process is
proposed based on a Lagrangian formulation. A hyperelasticity-based elastoplastic material model is
used for the constitutive relation that includes a large deformation e:ect. The contact condition between
a workpiece and a rigid die is imposed through the penalty method with a modi<ed Coulomb friction
model. The domain of the workpiece is discretized by a meshfree method. A continuum-based DSA
with respect to the rigid die shape parameter is formulated using a design velocity concept. The die
shape perturbation has an e:ect on structural performance through the contact variational form. The
e:ect of the deformation-dependent pressure load to the design sensitivity is discussed. It is shown
that the design sensitivity equation uses the same tangent sti:ness matrix as the response analysis. The
linear design sensitivity equation is solved at each converged load step without the need of iteration,
which is quite e?cient in computation. The accuracy of sensitivity information is compared to that of
the <nite di:erence method with an excellent agreement. A die shape design optimization problem is
solved to obtain the desired shape of the workpiece to minimize spring-back e:ect and to show the
feasibility of the proposed method. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The theory of shape design sensitivity analysis (DSA) through the perturbation of a continuum
[1] is well established where the structural domain is concerned as a design. However, in the

∗Correspondence to: K. K. Choi, Center for Computer-Aided Design and Department of Mechanical Engineering,
College of Engineering, University of Iowa, 208 Engineering Research Facility, Iowa City, IA 52242-1000,
U.S.A.

†Postdoctoral Associate
‡E-mail: nkim@ccad.uiowa.edu
§Director and Professor
¶E-mail: kkchoi@ccad.uiowa.edu
‖Associate Professor
∗∗E-mail: jschen@icaen.uiowa.edu

Contract=grant sponsor: NSF=DARPA OPAAL; contract=grant number: DMS98-74015
Contract=grant sponsor: Ford University Research Program; contract=grant number: URP 97-723R

Received 21 October 1999
Copyright ? 2001 John Wiley & Sons, Ltd. Revised 1 June 2000



1386 N. H. KIM, K. K. CHOI AND J. S. CHEN

sheet metal stamping process, the shape of the workpiece is usually not a design and the
quality of the product depends on the die shape design. In this paper, the dependence of the
structural performance on the shape of the rigid die is investigated to improve the quality of
the product through design optimization. Since the geometry of the workpiece is <xed, this
problem is classi<ed as a sizing DSA compared to the shape DSA where the geometry of
structure is a design parameter. However, the design velocity concept of the shape DSA is
adopted here to describe the perturbation of the die shape.
The response analysis of the manufacturing process can be carried out using the Jow for-

mulation or Lagrangian formulation. The Jow formulation ignores the elastic deformation
and follows the process similar to non-Newtonian Juid analysis [2]. However, lack of ability
in computing the residual stress and the spring-back phenomenon at the end of the process
is a major disadvantage in spite of the simplicity of the formulation. Several research re-
sults are reported for DSA using the rigid plastic material model. Maniatty and Chen [3]
developed a design sensitivity formulation for the steady-state metal-forming process using
a semi-analytical adjoint variable method. Antunez and Kleiber [4] proposed a shape DSA
for a steady-state forming process using a control volume method. Zhao et al. [5] solved
an unconstrained optimization problem to minimize the di:erence between the shape of the
stamped workpiece and the desired shape. Their sensitivity equation requires an additional
tangent sti:ness matrix that is di:erent from the one in response analysis. Chung and Hwang
[6] proposed a method for transient forming process optimization. Since a semi-analytical
method is used to compute sensitivity coe?cient, the accuracy depends on the size of design
perturbation. Balagangadhar and Tortorelli [7] discussed design optimization of steady-state
manufacturing processes using a reference frame approach. The shape DSA procedure for
steady-state is similar to that of linear elasticity and the adjoint variable method is applicable.
For shape DSA of large deformation problems, since the shape design parameters are de<ned
at the undeformed geometry and the analysis con<guration is updated at each time step for
the transient forming process, an appropriate transformation to the undeformed con<guration
or design velocity updating procedure has to be considered. No research result has been pre-
sented to address this issue, and many shape sensitivity results for a transient forming process
are not quite accurate.
The Lagrangian formulation is a computationally demanding procedure compared to the

Jow formulation. However, accurate computations of the spring-back phenomena and the
residual stress at the end of the process are advantages o:ered by the Lagrangian formulation.
The matured development of the elastoplasticity theory for large deformation signi<cantly
enhances solution accuracy in the simulation of the sheet metal stamping process. The multi-
plicative decomposition of the deformation gradient into elastic and plastic parts is proposed
by Lee [8] through de<ning a stress-free intermediate con<guration and using a hyperelastic
constitutive relation for elastic deformation. This constitutive model is preferred for numerical
solution of large deformation in isotropic material. This model is well suited for the single-
crystal metal plasticity. A computational framework of this theory is developed by Simo [9],
which preserves the conventional return mapping algorithm in the principal stress space. For a
detailed discussion of <nite deformation elastoplasticity with multiplicative decomposition, re-
fer to References [9–13].
A Lagrangian formulation of DSA for the multiplicative elastoplasticity is developed by

Badrinarayanan and Zabaras [14] for die shape and process design. They pointed out that the
tangent sti:ness matrix of the response analysis is di:erent from that of the design sensitivity
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equation. The tangent sti:ness matrix is computed again for DSA, and this procedure reduces
computational e?ciency. It should be noted that if the linearization is consistently developed,
then the sensitivity equation has to contain the same tangent sti:ness matrix as response
analysis. Recently, Wiechmann and Barthold [15] derived sensitivity formulation using the
same tangent sti:ness matrix as response analysis through consistent linearization. In this
paper, a Lagrangian formulation of sizing DSA is developed, and the same tangent sti:ness
as response analysis is used in DSA without iteration.
Mathematically, a contact problem can be formulated as a variational inequality where the

solution in the Hilbert space is projected onto the constraint set. This constrained optimiza-
tion problem can be approximated using the Lagrange multiplier method or penalty method.
A frictional contact condition can be formulated using the penalty method and a modi<ed
Coulomb friction law. In literature, the directional di:erentiability of the projected solution
onto the constraint set was proven for linear problems [16]. The design sensitivity of the
solution of the contact problem, which is the solution of another variational inequality, can
be approximated by taking a design derivative of the approximated minimization problem.
It can be shown that the approximate design sensitivity of the solution of the contact prob-
lem converges to the solution of the variational inequality for linear problems. With a lack
of mathematical proof of the existence of the design sensitivity for non-linear problems, the
design derivative of the approximated penalty method is taken for the <nite deformation fric-
tional contact problem [17; 18]. It was shown that path dependency comes from the frictional
e:ects, whereas the normal contact condition is path independent. The shape change of the
rigid die is considered for DSA in this paper. The structural response depends on the shape
change of the rigid surface through the contact variational form.
A pressure-dependent boundary condition is of particular interest in a <nite deforma-

tion problem. As the structure experiences deformation, the direction of the surface traction
changes. The integration of the surface traction through the boundary is transformed to a
parametric space. The residual force is computed based on the current con<guration and the
tangent sti:ness becomes non-symmetric. Detailed formulations of the boundary pressure load
within the context of the <nite element method are discussed by Hibbitt [19]; Schweizerhof
and Ramm [20]; and by Simo et al. [21] for axi-symmetric problems. The design sensitiv-
ity formulation of the boundary pressure load can be described in the context of parametric
representation. Since the perturbation of the design does not a:ect the parametric space, the
design di:erentiation can operate directly on the parametric integration without complication.
It turns out that the <ctitious load term corresponding to the boundary pressure load explicitly
depends only on design at the undeformed con<guration, which means that the sensitivity
equation is path independent even if the load is non-conservative.
In general, the sheet metal experiences large deformation during the stamping process. An

e:ective numerical method that can handle mesh distortion problems in the conventional <-
nite element method is highly desirable in analysing <nite deformation problems. Recently,
researchers have focused on numerical methods that discretize a domain without using meshes
to alleviate these di?culties. A number of meshfree methods that do not require explicit
meshes in domain discretization have been proposed. Belytschko et al. [22; 23] proposed
the element-free Galerkin (EFG) method that solves structural problem accurately and uses
the Lagrange multiplier method to impose the essential boundary conditions. Liu et al. [24]
developed the reproducing kernel particle method (RKPM) by introducing a modi<ed kernel
function that is constructed by enforcing the reproducing conditions so that the kernel estimate
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of the displacement exactly reproduces polynomials up to a certain degree. The RKPM was
further extended to highly non-linear hyperelastic, elastoplastic, and contact problems by
Chen et al. [25; 26] The meshfree method is an ideal choice for the metal stamping pro-
cess since, unlike the conventional <nite element method, the solution is not sensitive to
mesh distortion. The RKPM is utilized in this paper for response analysis of the metal stamp-
ing process and, thus, DSA. However, the design sensitivity formulation presented in this
paper is based on a continuum approach, and therefore all the equations are applicable to
other methods, such as the <nite element method, if appropriate discretization is used.
The outline of the paper is as follows. After introduction and the literature review in

Section 1, sizing DSA for a structural problem including a large deformation elastoplasticity
is introduced in Section 2 with the multiplicative decomposition formulation. In Section 3, a
die shape DSA is formulated by taking the derivative of the contact constraint with respect
to the die shape and this is then combined with a structural equation derived in Section 2
to establish the sensitivity equation. For the application to the pressurized stamping process,
the contributions of the pressure load to the response analysis and DSA are investigated in
Section 4. To demonstrate the accuracy and e?ciency of the proposed approach, die shape
design optimization of the sheet metal stamping process is shown in Section 5.

2. DESIGN SENSITIVITY FORMULATION FOR ELASTOPLASTICITY
IN FINITE DEFORMATION

Consider a structure experiencing a <nite deformation. Let X be the material point in the
undeformed con<guration and x be the material point in the current con<guration with relation
of x=X + z. The boundary P of domain Q is decomposed of traction boundary PT and the
essential boundary Pg such that P=PT ∪Pg and PT ∩Pg = ∅. The weak formulation of the
structural problem is: for given fB; fS, and z, <nd the displacement function z(x; u)∈V such
that

au(z; Rz)= ‘u( Rz); ∀ Rz∈Z (1)

where Z = { Rz(x)∈H 1(Q) | Rz(x)= 0;x∈Pg} is the space of the kinematically admissible dis-
placement, V = {z(x; u)∈H 1(Q) | z(x; u)= V(x; u);x∈Pg} is the solution space, fB is the body
force, fS is the surface traction force, V is the prescribed displacement vector, Rz is the displace-
ment variation, and u denotes the design vector that is <xed in response analysis. Here H 1(Q)
denotes the Sobolev space of order one. The subscript u denotes dependence of the variational
form on the design vector u. The variational equation (1) satis<es for any con<guration during
process. In this paper, the updated Lagrangian formulation is used. In Equation (1),

au(z; Rz)≡
∫
QX
� : RU dQ (2)

‘u( Rz) =
∫
QX
RzTfB dQ +

∫
PT
RzTfS dP (3)

are the structural energy form and external load form, and QX is the undeformed domain.
au(z; Rz) represents an elastoplastic constitutive relation with Kirchho: stress �= � det(F) in
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which � is the Cauchy stress, and the variation of engineering strain RU=sym(∇n Rz) where
sym(·) denotes a symmetric part of the tensor and ∇n= @=@x is a spatial gradient operator
at the current time tn. Accordingly, ∇0 = @=@X represents a material gradient operator at the
undeformed con<guration. It is assumed for the moment that the external load is deformation
independent, i.e., energy conservative. The formulation for the deformation-dependent load is
given in Section 4.
For the structural energy form, a hyperelasticity-based elastoplastic constitutive relation with

multiplicative decomposition of the deformation gradient F=FeFp proposed by Simo [9] is
used where Fe and Fp are elastic and plastic deformation gradients, respectively. From the
isotropic material assumption, the Kirchho: stress and left Cauchy–Green deformation tensor
have the same principal direction:

�=
3∑
i=1
pim

i (4)

be = FeFe
T
=

3∑
i=1
�2im

i (5)

e=



e1

e2

e3


=



log(�1)

log(�2)

log(�3)


 (6)

where pi is the principal Kirchho: stress, �i is the square root of the principal value of
be; mi= ni ⊗ ni, and ni is the principal direction of be and �. For a given displacement incre-
ment, the Kirchho: stress is computed by the return mapping algorithm in the principal stress
space with the current con<guration. This algorithm is the same as in<nitesimal elastoplasticity
[27] by using the principal stress and logarithmic strain.
The exact tangent sti:ness tensor of Equation (2) was obtained in the literature [9] in the

updated Lagrangian formulation as

c=
3∑
i=1

3∑
j=1
calgij m

i ⊗m j + 2
3∑
i=1
pi c

i
trial (7)

where ⊗ is the tensor product notation, calgij is the consistent tangent sti:ness tensor in the
principal stress space, and citrial is the same form from the <nite elasticity [9]. Only c

alg
ij depends

on the elastoplastic evolution.
The non-linear variational equation (1) is solved using the Newton–Raphson method. The

consistent linearization [9] of the non-linear structural energy form becomes

a∗u(z;Sz; Rz)=
∫
QX
[RU : c : U(Sz) + � : W(Sz; Rz)] dQ (8)

where U(Sz)= sym(∇nSz) is the engineering strain tensor and W(Sz; Rz)= sym(∇n RzT∇nSz) is
the non-linear strain tensor. The solution procedure is to compute the incremental displacement
such that the unbalanced residual of Equation (1) is vanished. Let the current time be denoted
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by left superscript n and the current iteration counter be right superscript k + 1; then the
following linear incremental system of equation is solved:

a∗u
(nzk ;Szk+1; Rz)= ‘u(Rz)− au(nzk ; Rz); ∀Rz∈Z (9)

and nzk+1 = nzk+Szk+1. Equation (9) is solved iteratively until the residual force on the right
side is vanished. After convergence, the internal plastic evolution variables and the stress-free
intermediate con<guration are updated. The same analysis procedures are performed until the
<nal con<guration is reached. For a detailed procedure of analysis, refer to References [9–13].
The DSA for the die shape parameter is di:erent from the conventional shape DSA where

the shape of the structural domain is the design. The integration domain is <xed from a
design standpoint and the e:ect of the design change comes from the contact variational form
described in the next section. Thus, the die shape DSA is a sizing design problem in a strict
sense. Since no mathematical proof is available for the regularity of the solution of the non-
linear variational equation, it is assumed that the solution of the variational equation (1) is
di:erentiable with respect to design, and

z′= z′(x; u; �u)≡ d
d�
z(x; u+ ��u)

∣∣∣∣
�=0

(10)

is the <rst variation of the solution of Equation (1) at design u and along the direction �u
of the design change. Note that z′ is a function of the independent variable x and the design
variable u at which the variation is evaluated along the direction �u of the design change.
An important property of the design variation is that it commutes with the material gradient
operator and domain integration as [1]

(∇0z)′ = ∇0z′(∫
QX
g dQ

)′
=

∫
QX
g′ dQ

(11)

It is also assumed that the structural energy form in Equation (2) is di:erentiable with respect
to the design as

a′�u(z; Rz)≡
d
d�
au+��u(z̃; Rz)

∣∣∣∣
�=0

(12)

where z̃ denotes the state z with dependence on � suppressed and Rz is independent of �.
Equation (12) is the <rst variation with respect to explicit dependence of au(z; Rz) on the
design u, which is continuous and linear in �u. As proven in Haug et al. [1], the load linear
form is also di:erentiable with respect to the design. More speci<cally,

‘′�u(Rz)≡
d
d�
‘u+��u(Rz)

∣∣∣∣
�=0

(13)

For the case of the die shape design, Equation (13) vanishes for the conservative load and
a′�u(z; Rz) contains the path dependent terms only.
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Using the chain rule of di:erentiation and the de<nitions of Equations (10) and (12), the
<rst variation of the structural energy form is

d
d�
au+��u(z(x; u+ ��u); Rz)

∣∣∣∣
�=0
= a∗u(z; z

′; Rz) + a′�u(z; Rz) (14)

where a∗u(z; z′; Rz) is the same form as Equation (8) by substituting z′ into Sz, and contains
implicitly dependent terms on design. Since obtaining a′�u(z; Rz) requires a quite amount of
mathematical derivations, a brief procedure is explained in the following.
The hyperelasticity-based constitutive relation is established from the relation of � : RU=

Se : REe in which Se and REe are the second Piola–Kirchho: stress and Lagrangian strain in
the intermediate con<guration. Thus, for DSA purpose, the structural energy form in Equa-
tion (2) is transformed into the intermediate con<guration (pull-back), and then di:erentiated
with respect to design. To recover the updated Lagrangian formulation, the di:erentiated struc-
tural energy form is re-transformed in the current con<guration (push-forward). The design
derivative of the elastic trial Lagrangian strain tensor Ee = 1

2 [F
eTFe − I] in the intermediate

con<guration is

Ee
′
=sym

(
Fe

T
Fe

′)
(15)

and the transformation of Equation (15) into the current con<guration leads to

Fe
−T
Ee

′
Fe

−1
= sym

(
Fe

′
Fe

−1)
(16)

Note that the push-forward transformation is from the intermediate con<guration to the current
con<guration. By using Fe

′
=F′Fp

−1 − FeFp′Fp−1 and by de<ning a path dependent tensor
G=FeFp

′
F−1, Equation (16) can be rearranged as

Fe
−T
Ee

′
Fe

−1
= sym(F′F−1)− sym(G)
≡ U(z′) + Up(z) (17)

where U(z′)= sym(F′F−1) is the implicitly dependent term on design and Up(z)= − sym(G)
is the contribution from the elastic trial intermediate con<guration where the path dependency
comes from. The trial elastic deformation gradient Fe must be extracted from response analysis
and the derivative of Fp must be stored from the previous sensitivity procedure. An interesting
observation can be made from the comparison of the rate form and multiplicative plasticity:
(1) in additive rate-form plasticity, the path dependency is resulting from the design derivative
of the stress tensor at the previous time step and, (2) in multiplicative plasticity, the path
dependency is due to the transformation between the intermediate and current con<gurations.
The same procedure must be applied to the variation of the Lagrangian strain tensor

REe= 1
2[ RF

eTFe + Fe
T RFe] in the intermediate con<guration as

Fe
−T REe

′
Fe

−1 ≡ W(ż; Rz) + WP(z; Rz) (18)

where WP(z; Rz)=−sym(∇n RzG+∇n RzTG) is obtained using a similar procedure as UP(z).
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With Equations (17) and (18) in hand, the design derivative of the Kirchho: stress in
Equation (4) becomes

�′=
3∑
i=1

(
p

′
i m

i + pim
i′) (19)

The design derivative of the principal stress is a function of the principal logarithmic strain.
The following relation can be obtained by the chain rule of di:erentiation and the push-forward
operation:

p
′
i =

3∑
j=1
calgij m

j : [U(z′) + UP(z)] +
@pi
@ep

ep
′
n +

@pi
@Q Q

′
n (20)

Since mi is only related to the elastic trial state, it is independent of the plastic evolution and
its material derivative can be obtained from the derivative of the elastic trial strain, as

mi′ =2citrial : [U(z′) + UP(z)] (21)

Thus, the design derivative of the Kirchho: stress tensor can be expressed in terms of z′,
con<guration of response analysis, and sensitivity results of the previous time step, as

�′ =
3∑
i=1

[
p

′
i m

i + pim
i′]

=
3∑
i=1

3∑
j=1

(
calgij m

i⊗mj + 2pi c
i
trial

)
: (U(z′) + UP(z)) + ��c

= c : (�(z′) + �P(z)) + ��c (22)

In Equation (22), the e:ect of internal plastic variables including back-stress Q and e:ective
plastic strain ep is denoted by

��c=
3∑
i=1

[
@pi
@Q Q

′
n +

@pi
@ep

ep
′
n

]
mi (23)

By combining Equations (18) and (22), the path dependent term on design, called the
structural <ctitious load form in Equation (14), is obtained as

a′�u(z; Rz)=
∫
QX
( RU : c : UP(z) + � : WP(z; Rz) + RU : ��c) dQ (24)

For any <xed virtual displacement Rz∈Z , the <rst variation of Equation (1) is taken to
obtain the design sensitivity equation

a∗u(z; z
′; Rz)= ‘′�u(Rz)− a′�u(z; Rz); ∀Rz∈Z (25)

Presuming that the state z is known as the solution of Equation (1), using the updated
Lagrangian formulation, Equation (25) is the variational equation for the design sensitivity z′.
Thus, if a direction �u of design change has been selected, Equation (25) is solved to obtain
z′. Since a′�u(z; Rz) depends on the sensitivity results at the previous time step, Equation (25) is
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solved at each converged con<guration of the response analysis. Note that the linear sensitivity
equation (25) uses the same tangent sti:ness matrix as response analysis at the converged
con<guration.
After solving z′, the <rst variations of the path dependent variables are updated for the

sensitivity computation at the next time step. The <rst variations of the internal plastic
variables are

Q′n+1 = Q′n +
(
H� +

√
2
3@H��

)
�′N+H��N′ (26)

ep
′
n+1 = e

p′
n +

√
2
3�

′ (27)

where H� and @H� are the plastic hardening modulus and its derivative with respect to e
p
n.

The plastic consistency parameter � is obtained from the return-mapping algorithm and N is
the outward unit normal vector of the elastic domain in the principal Kirchho: stress space.
The design variation of � and N can be obtained by taking derivative of the return mapping
procedure. This procedure is the same as the classical elastoplasticity and these design varia-
tions are presented in Reference [27]. In addition to the plastic variables, the variation of the
intermediate con<guration is updated by using

(Fpn+1)
′=(Fe

−1
n+1)

′Fn+1 + Fe
−1
n+1F

′
n+1 (28)

where F′
n+1 =∇n+1z′ and (Fe−1n+1)

′=−Fe−1n+1F
e′
n+1F

e−1
n+1. From the relation Fen+1 = f

pFn+1F
p−1
n ; the

following relation can be obtained:

Fe
′
n+1 = f

p′Fn+1Fp
−1
n + fpF′

n+1F
p−1
n + fpFn+1(Fp

−1
n )′ (29)

where F′
n+1 is available by solving design sensitivity equation (25) and (F

p−1
n )′ is stored from

DSA of the previous time step. The design derivative of the incremental plastic deformation
gradient fp can be obtained from the relation of

fp =
3∑
i=1
exp(−�Ni)mi

fp
′
=

3∑
i=1
exp(−�Ni)

[
mi′ − (�′Ni + �N ′

i )m
i]

(30)

where �′ and N′ are obtained in the same procedure as the classical elastoplasticity, presented
in Reference [27].

3. DIE DESIGN SENSITIVITY FORMULATION FOR A FRICTIONAL
CONTACT PROBLEM

Shape design sensitivity formulation for a continuum-based frictional contact problem is pre-
sented in References [17; 18]. A die shape design sensitivity formulation is developed in this
paper. Figure 1 shows a general contact condition with a rigid wall in R2. A co-ordinate �
represents the natural co-ordinate of the rigid surface. The co-ordinate of the contact point xc

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:1385–1405



1394 N. H. KIM, K. K. CHOI AND J. S. CHEN

Figure 1. Contact condition using penalty method and friction model.

can be represented using the natural co-ordinate at the contact point �c by xc =xc(�c). The
normal contact condition can be imposed on the structure by measuring the distance between
a part of the structural boundary Pc at the current con<guration and the surface of the rigid
wall, whereas the tangential slip condition can be established by measuring the relative slip
distance between two consecutive time steps. A contact condition can be de<ned using the
normal gap function gn and tangential slip function gt as

gn ≡ (x − xc(�c))Ten(�c)¿0; x∈Pc (31)

gt ≡ ‖t0‖(�c − �0c) (32)

where en and et are the unit outward normal and tangential vectors of the rigid wall at the
contact point, respectively, ‖t0‖ is the norm of the tangential vector, and �0c is the natural
co-ordinate of the previous converged time step. For notational convenience, de<ne several
scalar symbols as

d ≡ eTnxc; ��; �≡ eTt xc; ��; �≡ eTnxc; ���
c ≡ ‖t‖2 − gn�; �≡‖t‖‖t0‖=c

(33)

The frictional force is bounded above by −�!ngn in the Coulomb friction law. But for the
case of small slip (micro-displacement), the traction force is proportional to the tangential
slip. The penalty parameter !t is a constant for this case. Figure 1 shows a friction curve
used in this paper. A stick condition occurs when the frictional traction force is less than the
normal force multiplied by the frictional coe?cient as |!tgt |6|�!ngn|. Otherwise, it becomes
a slip condition. Thus, the contact variational form can be classi<ed as either a stick or slip
condition. By taking the <rst variation of the standard penalty function, the contact variational
form can be obtained as

bu(z; Rz) =!n
∫
PC
gn RzTen dP



+!t

∫
PC
�gt RzTet dP if |!tgt |6|�!ngn|

−�!nsgn(gt)
∫
PC
�gn RzTet dP otherwise

≡ bN (z; Rz) + bT (z; Rz) (34)
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where bN (z; Rz) is the normal contact variational form and bT (z; Rz) is the tangential stick=slip
variational form. The contact variational form in Equation (34) is non-linear with respect to
the displacement. The linearization of the contact variational form in Equation (34) leads to
the contact bilinear form de<ned as [17]

b∗u(z;Sz; Rz)= b
∗
N (z;Sz; Rz) + b

∗
T (z;Sz; Rz) (35)

where

b∗N (z;Sz; Rz) =!n
∫
PC
RzTeneTnSz dP−!n

∫
PC
(dgn=c)RzTeteTt Sz dP (36)

b∗T (z;Sz; Rz) =!t
∫
PC
�2 RzTeteTt Sz dP

+!t
∫
PC
(d� gt=c)RzT

(
eneTt + ete

T
n

)
Sz dP

+!t
∫
PC

(
�gt=c2

)[
(� ‖t‖ − 2d�)gn − �‖t‖2

]
RzTeteTt Sz dP if |!tgt |6|�!ngn|

(37)

b∗T (z;Sz; Rz) =!t
∫
PC
�RzTeteTnSz dP

+!t
∫
PC
(d� gn=c)RzT

(
eneTt + ete

T
n

)
Sz dP

+!t
∫
PC

(
�gn=c2

)[
(�‖t‖ − 2d�)gn − �‖t‖2

]
RzTeteTt Sz dP if |!tgt |¿|�!ngn|

(38)

where for the case of the slip contact condition, the tangential penalty parameter !t is related to
the normal penalty parameter !n by !t = −�!n sgn(gt). For the case of the stick condition, the
contact bilinear form equation (35) is symmetric with respect to the incremental displacement
and the variation of the displacement. This is expected since the contact phenomena for a
stick condition are energy conservative. For the case of the slip condition, the contact bilinear
form equation (35) is not symmetric. The system is no longer conservative if it starts to slip
along the master surface. To obtain the total linearized system of equations including contact,
Equation (35) is combined with structural equation (9) as

a∗u
(nzk ;Szk+1; Rz)+ b∗u(nzk ;Szk+1; Rz) = ‘u(Rz)− au(nzk ; Rz)− bu(nzk ; Rz); ∀Rz ∈ Z (39)

The design sensitivity formulation for a contact problem uses the same linearization method
as the structural energy form. The die shape change can be treated easily using the concept
of the shape perturbation and design velocity. Let the geometry of the rigid surface be per-
turbed in the direction of Vc(�) (design velocity) which corresponds to the design change
�u. The contact variational form in Equation (34) is di:erentiated with respect to the design
perturbation at the original geometry to construct a design sensitivity equation.
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The variations of the normal contact and tangential slip variational forms become

(bN (z; Rz))′ ≡ b∗N (z; z′; Rz) + b′N (z; Rz) (40)

(bT (z; Rz))′ = b∗T (z; z
′; Rz) + b′T (z; Rz) (41)

where

b′N (z; Rz) =−b∗N (z;Vc; Rz)−!n
∫
PC
(gn‖t‖=c)RzTeteTnVc;� dP (42)

b′T (z; Rz) =−b∗T (z;Vc; Rz) +!t
∫
PC
(2gt‖t‖=c) RzTete0Tt Vc;� dP

+!t
∫
PC
�(2�0gt − ‖t0‖2) RzTete0Tt (ż0 −Vc) dP

+!t
∫
PC
(�0gngt(‖t0‖+ ‖t‖)=cc0) RzTete0Tn Vc;� dP

−!t
∫
PC
(gn‖t‖‖t0‖2=cc0) RzTete0Tn Vc;� dP if |!tgt |6 |�!ngn| (43)

b′T (z; Rz) =−b∗T (z;Vc; Rz)

+!t
∫
PC
(gn‖t‖=c) RzTete0Tt Vc;� dP

+!t
∫
PC
(��0gn=c) RzTete0

T

t (ż
0 −Vc) dP

+!t
∫
PC
(�0gng0n‖t0‖=cc0) RzTete0

T

n Vc;� dP if !tgt |¿ |�!ngn| (44)

The design derivatives of the contact variational form can be obtained from Equations (40)
through (44) as

d
d�
bu+��u(z(x; u+ ��u); Rz)

∣∣∣∣
�=0
= b∗u(z; z

′; Rz) + b′�u(z; Rz) (45)

b∗u(z; z
′; Rz) = b∗N (z; z

′; Rz) + b∗T (z; z
′; Rz) (46)

b′�u(z; Rz) = b
′
N (z; Rz) + b

′
T (z; Rz) (47)

where b∗u(z; z′; Rz) has same expression as Equation (35) by substituting Sz into z′ and b′�u(z; Rz)
is contact <ctitious load that represents explicit=path dependent terms on design.
By combining the variation of the contact variational form in Equation (45) with that of

structure in Equations (25), the following design sensitivity equation is obtained:

a∗u(z; z
′; Rz) + b∗u(z; z

′; Rz) = ‘′�u(Rz)− a′�u(z; Rz)− b′�u(z; Rz); ∀Rz ∈ Z (48)
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Figure 2. Pressure boundary load condition.

The linearized design sensitivity equation (48) is solved at each converged con<guration
without iteration. Since the left-hand side is the same as that of Equation (39), the decomposed
tangent sti:ness matrix of response analysis is used for sensitivity computation very e?ciently.

4. DESIGN SENSITIVITY ANALYSIS OF BOUNDARY PRESSURE LOAD

The pressure load is frequently used in the metal forming process. It can be used as an
active loading method in the hydro-forming process or used as a supporting pressure to
improve quality of product in the deepdrawing process. In this section, a brief derivation of
the linearization of the boundary pressure load in R2 is presented. By introducing a parametric
representation, the transformation to the undeformed con<guration is avoided. Moreover, a
very simple DSA formulation can be obtained because the design derivative commutes with
the parameter integration. Let the current pressure boundary be Px and the constant pressure
be p. The external load form for this case is

‘u(z; Rz) =
∫
Px
p RzTen dPx (49)

where en is a unit inward normal of the current pressure boundary. The notation ‘u(z; Rz) is
used instead of the usual notation ‘u(Rz) since the pressure load direction depends on the
displacement z implicitly. As a usual procedure, this spatial formulation can be transformed
to the undeformed con<guration using the Nanson’s formula,

en dPx = JF−TEn dPX (50)

where J = |F|; F is the deformation gradient, and En is a unit inward normal at the undeformed
con<guration. The linearization of this formula requires computation of the curvature on the
boundary, which is not a trivial procedure. Instead of using Equation (50), the parametric
representation method is proposed below.
As shown in Figure 2, let the pressure boundary be parameterized by �. The tangent vector

and inward normal vector can be de<ned by the derivative of the boundary point x∈Px with
respect to the parameter � as

t = x; �

n = −e3× t=Rx; �
(51)
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where R is an orthogonal rotation matrix. It can be shown that en dPx = n d�. Thus, the
external load form in Equation (49) can be expressed using Equation (51) in the parametric
space by

‘u(z; Rz) =
∫
�
p RzTRx; � d� (52)

The linearization of ‘u(z; Rz) depends only on x; �, and by using S(x; �)=Sz; �,

‘∗u (Sz; Rz)=
∫
�
p RzTRSz; � d� (53)

which is the linearized boundary pressure load or load correction form. Let the current time be
tn and the current iteration count be k+1; the linearized variational equation for the structure
with the pressure boundary load can be written as

a∗u(
nzk ;Szk+1; Rz) + b∗u(

nzk ;Szk+1; Rz)− ‘∗u (Szk+1; Rz)
= ‘u(nzk ; Rz)− au(nzk ; Rz)− bu(nzk ; Rz); ∀Rz∈Z (54)

A good feature of the parametric representation is that the parameter is independent of the
deformation and design perturbation. The design variation can be brought inside the parameter
integration. The design variation of the load linear form in Equation (52) becomes

d
d�
‘u+��u(z(x; u+ ��u); Rz)

∣∣∣∣
�=0
= ‘∗u (z

′; Rz) + ‘′�u(z; Rz) (55)

where

‘′�u(z; Rz)=
∫
�
RzTn �p d� (56)

is the <ctitious load form due to the pressure load when the pressure is a design parameter.
The e:ect of ‘′�u(z; Rz) vanishes for the die shape design. However, ‘

∗
u (z′; Rz) is required to

compute the sensitivity equation. The design sensitivity equation is obtained from Equations
(48) and (55) as

a∗u(z; z
′; Rz) + b∗u(z; z

′; Rz)− ‘∗u (z′; Rz) = ‘′�u(z; Rz)− a′�u(z; Rz)− b′�u(z; Rz); ∀Rz∈Z (57)

5. NUMERICAL EXAMPLE: DIE SHAPE OPTIMIZATION
OF SHEET METAL STAMPING PROCESS

The meshfree methods were developed recently to remove or reduce the mesh dependence of
the conventional <nite element method. In the meshfree method, the shape function is not a
function of the referential co-ordinate but a function of the spatial co-ordinate, and the or-
der of completeness in the approximation can be customized easily. Insensitivity to the mesh
distortion is a very important feature in non-linear analysis and shape design optimization, in
addition to the high accuracy in the meshfree method. Higher accuracy can be achieved by
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Figure 3. Design parameterization of sheet metal stamping problem.

simply adding more nodes to the structure without re-modelling the total structure. However,
the di?culty in imposing the essential boundary condition and relatively high cost of anal-
ysis are weaknesses in spite of the aforementioned advantages. The domain partitioning for
domain integration is independent of the nodal locations, and nodes are not interconnected by
elements. The response variables like displacements are de<ned at the nodes and are indepen-
dent of the integration zones. In this paper the reproducing kernel particle method (RKPM)
developed by Liu et al. [24] is used as the analysis tool. For detailed explanations of the
domain partitioning and construction of meshfree shape function, refer to References [24–26].
A concept of Lagrangian kernel [25; 26] is important in obtaining stable solutions in large
deformation problems. Imposition of the boundary condition has been improved by a mixed
transformation method and a boundary singular kernel method [27; 28]. For other applications
of the meshfree method DSA, refer to Reference [27].
A pressurized metal stamping process has been proven to be e:ective in the manufacturing

process. The applied pressure is always normal to the workpiece to give an even distribution
of the normal stress, whereas a conventional stamping process using two rigid dies applies
force only to the direction of die movement. This feature reduces the local concentration of the
plastic Jow and, thus, prevents the necking phenomena. The example in this paper simulates
the manufacturing process of the sheet metal stamping based on a quasi-static assumption
and DSA of the <nal shape of the workpiece with respect to the die shape parameters. The
desirable shape of the workpiece after spring-back can be obtained by changing the shape of
the rigid die. The geometry of the workpiece is represented by 183RKPM particles as shown
in Figure 3. In the thickness direction, three particles are used. The rigid die is modelled
with 65 piecewise linear master segments and the frictional contact condition is established
between the slave nodes on the bottom surface of the workpiece and the master segments. A
symmetric boundary condition is applied at the left end of the workpiece. A constant pressure
of 70 MPa is applied at the top surface of the workpiece and then removed to observe the
spring-back amount.
It is assumed that the pressure is applied very slowly such that the quasi-static analy-

sis can be used. The frictional contact conditions are established between the rigid die and
the workpiece at the bottom surface using the contact penalty parameter !n=105 and the
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friction coe?cient �=0:4. Finite deformation elastoplasticity with multiplicative decompo-
sition of the deformation gradient is used as a constitutive model with Young’s modulus
E=206:9 GPa, Poisson’s ratio �=0:29, plastic hardening modulus H�=1:1 GPa, and initial
yield stress )y=0:5 GPa. Linear isotropic hardening is used, and therefore the plastic consis-
tency condition can be solved explicitly without iteration.
Non-linear response analysis is carried out using the standard Newton–Raphson method with

300 load steps. After the solution is converged at each load step, the decomposed tangent
sti:ness matrix is stored for DSA. The intermediate con<guration and internal plastic variables
are updated following DSA. Plate 1 shows the contour plot of the e:ective plastic strain at the
<nal converged con<guration after pressure is removed. The amount of spring-back is about
0:56 cm at the lower-left corner of the workpiece, and a relatively large spring-back occurred
around the concave regions.
The geometry of the rigid die is represented by cubic spline curves, and each point on the

boundary has a unique parametric representation. The locations of the control points of each
curve are chosen as design parameters. The design velocity vector corresponding to the particle
point can be computed using the parametric representation. Eighteen design parameters are
chosen as shown in Figure 3. After design parameters are selected, the design velocity <eld
is obtained by perturbing the geometric curve along the direction of each design parameters.
Using the design velocity information, DSA is carried out. Since the constitutive model is

based on the <nite deformation elastoplasticity with multiplicative decomposition of the defor-
mation gradient, the sensitivity formulation is path dependent and is solved at each converged
load step. The frictional contact also contributes to the path dependency of the design sensi-
tivity. After response analysis is converged at each load step, the decomposed tangent sti:ness
matrix is stored for the sensitivity procedure. Using the response analysis results, design ve-
locity, and design variation of the intermediate con<guration and internal state variables, the
structural <ctitious load form in Equation (24) is computed. In addition, the contribution of the
contact <ctitious load is computed using Equation (47). The linear system of Equation (57) is
solved using the decomposed tangent sti:ness matrix from response analysis and the <ctitious
load. No iteration is required to solve the design sensitivity equation (57), and this equation
is solved for the number of design parameters. Thus, the LU decomposition of the tangent
sti:ness matrix is important. This procedure is quite e?cient compared to iterative response
analysis. The design sensitivity equation solves for the design variation z′ of the displacement.
After computing z′, design variations of the intermediate con<guration and internal plastic

variables are updated using z′. The sensitivity coe?cients of the performance measures are
computed after solving the design sensitivity equation at the <nal converged load step. Perfor-
mance measures that can be considered in this approach are the displacement, stress tensor,
internal plastic variables, reaction force, contact force, and normal gap distance.
The response analysis is carried out in 2843 s of CPU time, whereas DSA requires 2350 s

for 18 design parameters, which is less than 5 per cent of the response analysis time per design
parameter. This e?ciency is because the sensitivity equation is solved without iteration and
it uses the decomposed tangent sti:ness matrix from the response analysis. Table I shows
the sensitivity coe?cients and comparison of the sensitivity results with the <nite di:erence
results. The third column SX denotes the <rst-order sensitivity results from the forward
<nite di:erence method with perturbation of �=10−6, and the fourth column represents the
sensitivity result by the proposed method. Very good agreement is observed between sensitivity
solutions and <nite di:erence results. ep in the <rst column of Table I represents the e:ective
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Table I. Comparison of DSA results with <nite di:erence methods.

Performance (X) SX X′ (SX=X′)× 100%
u1
ep28 0.118906E+00 −0.194252E−08 −0.194252E−08 100.00

ep49 0.104386E+00 0.798968E−09 0.798972E−09 100.00

ep55 0.754636E−01 0.388700E−08 0.388699E−08 100.00

ep68 0.125680E+00 −0.193967E−08 −0.193967E−08 100.00

ep70 0.130504E+00 −0.253478E−09 −0.253473E−09 100.00
G 0.897186E+01 0.800142E−06 0.759230E−06 105.39
u3
ep28 0.118906E+00 −0.119749E−09 −0.119754E−09 100.00

ep49 0.104386E+00 0.163800E−08 0.163800E−08 100.00

ep55 0.754636E−01 −0.297925E−08 −0.297925E−08 100.00

ep68 0.125680E+00 −0.874930E−09 −0.874917E−09 100.00

ep70 0.130504E+00 −0.235636E−09 −0.235632E−09 100.00
G 0.897186E+01 −0.172934E−05 −0.155892E−05 110.93
u5
ep28 0.18906E+00 −0.100967E−10 −0.101010E−10 99.96

ep49 0.104386E+00 0.962387E−09 0.962387E−09 100.00

ep55 0.754636E−01 −0.161494E−08 −0.161495E−08 100.00

ep68 0.125680E+00 −0.445413E−09 −0.445412E−09 100.00

ep70 0.130504E+00 −0.174951E−10 −0.174948E−10 100.00
G 0.897186E+01 −0.483547E−06 −0.484111E−06 99.88
u7
ep28 0.118906E+00 0.815986E−09 0.815981E−09 100.00

Ep49 0.104386E+00 −0.309183E−08 −0.309183E−08 100.00

ep55 0.754636E−01 0.391398E−08 0.391397E−08 100.00

ep68 0.125680E+00 −0.156687E−07 −0.156687E−07 100.00

ep70 0.130504E+00 −0.132360E−07 −0.132360E−07 100.00
G 0.897186E+01 0.124364E−05 0.112289E−05 110.75
u9
ep28 0.118906E+00 0.618719E−09 0.618714E−09 100.00

ep49 0.104386E+00 0.369257E−08 0.369257E−08 100.00

ep55 0.754636E−01 −0.122360E−08 −0.122361E−08 100.00

ep68 0.125680E+00 0.249702E−07 0.249702E−07 100.00

ep70 0.130504E+00 0.109689E−07 0.109689E−07 100.00
G 0.897186E+01 0.271127E−05 0.272400E−05 99.53
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Figure 4. Design sensitivity chart for shape di:erence with respect to design parameters.

plastic strain at the integration zone and G denotes the square sum of the normal distance
between the desirable shape and the <nal geometry of the workpiece de<ned by

G=
NP∑
I
‖.(xI)− xI‖2 (58)

where .(xI) is the normal projection of xI onto the predetermined surface P and NP is the
number of particles in the bottom surface of the workpiece. This parameter G is used for
the minimization of spring-back in the subsequent design optimization. Figure 4 shows a
sensitivity chart of G in Equation (58) with respect to 18 design parameters. It is clear how
the performance measure is inJuenced by the change of design parameters.
The <nal deformed shape of the workpiece in Plate 1 is di:erent from the desired shape

because of the elastic spring-back e:ect. For the die design optimization, the initial shape of
the rigid die is selected as the desired <nal shape of the workpiece. The design objective is to
match the shape of the workpiece with the desired geometry after removing the pressure load.
The design optimization problem can be formulated such that the normal distance between
the <nal shape of the workpiece and the desired shape is minimized. Since the possibility of
the material failure and necking of the workpiece increases as the magnitude of the e:ective
plastic strain increases, the magnitude of the e:ective plastic strain is maintained through the
design constraints. Equation (59) shows the design formulation with eight constraints for the
e:ective plastic strain. The design parameters, which are the locations of the control points
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Figure 5. Optimization history of cost and constraints functions.

of the spline curves, are allowed to move between −2 and 2:
Min G

s:t: epi60:13; i=22; 28; 49; 55; 68; 70; 72; 74

−2:06uj62:0; j=1; : : : ; 18

(59)

Design optimization is carried out using the sequential quadratic programming method in
DOT [30]. The performance values are supplied to the DOT from non-linear response analysis
(RKPM), and the sensitivity coe?cients are provided by the proposed method. The initial
design is feasible and all constraints on e:ective plastic strain are satis<ed. An optimization
problem converges after eight iterations and all constraints are satis<ed. The cost function,
which is the square sum of the normal distances between the <nal shape of the workpiece
and the desired shape, is reduced up to 10 per cent of the original design. All the constraints
are maintained at the same levels as those in the initial design.
Figure 5 shows the optimization history of the cost and constraint functions. Straightforward

convergence is observed even though the response analysis displays many non-linearities. The
cost function is reduced greatly at the <rst four iterations and most of the constraints remain
constant. Figure 6 shows the optimized design of the rigid die. The optimization algorithm
increases the curvature of the rigid die around the concave region to obtain the desired shape
after the elastic spring-back of the workpiece. Plate 2 shows the results of the response
analysis at the optimum design. The <nal shape of the workpiece after spring-back is well
matched with the desired shape.

6. CONCLUSION AND FUTURE PLAN

A die shape design sensitivity analysis is proposed for design optimization of the manufac-
turing process. The sizing design sensitivity equation is obtained by taking the derivative of
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Figure 6. Optimized die shape for sheet metal stamping.

the non-linear continuum variational equation with respect to die shape design parameters.
The path dependency of the sensitivity equation is identi<ed and discussed. An accurate and
e?cient design sensitivity information is obtained with respect to die shape design parameters.
The design optimization problem is solved to minimize the di:erence between the shape of
the stamped workpiece after spring-back and the desired shape.
It is highly desired for design engineers to be able to simulate more complicated three-

dimensional geometry for new developments in manufacturing processes. The e:ort to prevent
wrinkling that appears frequently around the corner of the workpiece is a very important task
in the stamping process. The proposed method can be extended to reduce wrinkling through the
minimization of the di:erence between the stamped workpiece and the original desired shape.
A three-dimensional contact algorithm and design sensitivity formulation will be developed
in the near future for practical manufacturing problems.
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Plate 1. Contour plot of e:ective plastic strain.

Plate 2. Optimized results of the e:ective plastic strain.
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