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Abstract The purpose of this paper is twofold: (1)
showing equivalence between continuum and discrete
formulations in sensitivity analysis when a linear ve-
locity field is used and (2) presenting shape sensitivity
formulations for design-dependent loadings. The equa-
tions for structural analysis are often composed of the
stiffness part and the applied loading part. The shape
sensitivity formulations for the stiffness part were well-
developed in the literature, but not for the loading part,
especially for body forces and surface tractions. The
applied loads are often assumed to be conservative or
design-independent. In shape design problems, how-
ever, the applied loads are often functions of design
variables. In this paper, shape sensitivity formulations
are presented when the body forces and surface trac-
tions depend on shape design variables. Especially,
the continuum–discrete (C–D) and discrete–discrete
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(D–D) approaches are compared in detail. It is shown
that the two methods are theoretically and numerically
equivalent when the same discretization, numerical in-
tegration, and linear design velocity fields are used. The
accuracy of sensitivity calculation is demonstrated using
a cantilevered beam under uniform pressure and an
arch dam crown cantilever under gravity and hydro-
static loading at the upstream face of the structure. It
is shown that the sensitivity results are consistent with
finite difference results, but different from the analyti-
cal sensitivity due to discretization and approximation
errors of numerical analysis.
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Design-dependent loading

1 Introduction

In structural sensitivity analysis, there are currently
four broad categories of methods in common use for
obtaining the derivatives of performance measures with
respect to design variables (van Keulen et al. 2005):
(a) global finite differences, (b) discrete derivatives,
(c) continuum derivatives, and (d) computational or
automatic differentiation. The choice between the dif-
ferent options for calculating derivatives is influenced
by three criteria: accuracy, computational cost and im-
plementation effort. Since the global finite difference
and computational differentiation are a black-box type
approach, they do not require much knowledge on
structural analysis. However, the discrete and contin-
uum derivatives require understanding the structural
analysis procedure and differentiating the system of
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equations. The difference between these two approaches
is when the structural equations are differentiated with
respect to the design variables. The discrete method
(Haftka and Adelman 1989; Kwak 1994) differentiates
the system of equations after discretization, while the
continuum method (Arora 1993; Arora et al. 1992; Choi
and Kim 2004) differentiates the continuum equation
first followed by discretization. The difference between
these two methods is particularly important for shape
design problems, because the shape design variables
change the discretization, i.e., mesh or grid. The dis-
cussion for selecting appropriate sensitivity calculation
method can be found in the literature, including pos-
sibility of using different numerical methods (Haftka
and Grandhi 1986; Mota Soares et al. 1984; Santos and
Choi 1989) and possibility of implementing outside of
finite element analysis programs using postprocessing
data (Arora et al. 1992; Mota Soares et al. 1984; Santos
and Choi 1989).

Several comparisons between the continuum and
discrete methods have been conducted in the literature
(Haftka and Adelman 1989; Yang and Botkin 1986;
Choi and Twu 1988). Especially, Choi and Twu (1988)
showed that both methods are equivalent when they
have (1) same discretization (shape function), (2) exact
integration (not numerical integration), (3) analytical
(not numerical) finite element solutions, and (4) lin-
ear velocity field and consistent mesh perturbation. It
was shown that the sensitivity results of both methods
are different when quadratic and cubic design veloc-
ity fields are used. In the practical point of view, the
requirements in (1) and (4) are reasonable, but the
requirements in (2) and (3) can be significant. Most sen-
sitivity calculations use the same finite element model
with linear velocity field. Although nonlinear mesh
perturbation can sometimes reduce mesh distortion (es-
pecially when it is integrated with solid models (Hardee
et al. 1999)), a consistent mesh perturbation with design
velocity field is popular due to its simplicity. However,
most finite element programs use numerical integration
and calculate numerical solutions. The reason for these
two requirements is that Choi and Twu (1988) tried
to remove any numerical errors in their comparison.
The objective of this paper is to show that these two
requirements are unnecessary, and the two formula-
tions are equivalent in the discrete level. In fact, this
paper is the first one that shows the equivalence of
the two methods in the discrete level. Thus, as long
as the same numerical integration method and matrix
equation solver are used, the same sensitivity results are
expected. However, it is noted that the results of the
two methods are still different when nonlinear velocity
fields are used.

In many complex problems, it is impractical to solve
the sensitivity equations analytically. Numerical meth-
ods, such as finite element analysis, are employed to
solve the sensitivity equations. Thus, it is appropriate
that the comparison between sensitivity methods is
performed in the discrete level. When both discrete
and continuum methods calculate sensitivity using
numerical methods, the former will be called a discrete–
discrete (D–D) method, while the latter a continuum–
discrete (C–D) method (Choi and Twu 1988).

Most comparisons in the previous studies were fo-
cused on the stiffness part. The applied loads are often
assumed to be conservative or design-independent. In
this paper, shape sensitivity formulations are presented
when body forces and surface tractions depend on
the shape design variables. We showed that the final
sensitivity expressions for both methods are identical
if the same circumstances are applied. First, the same
discretization must be used for finite element analysis.
Second, the same numerical integration method must
be carried out for all terms such as stiffness and loading
parts in two approaches. The last condition is that
movement of finite element grid points for shape design
change in discrete method must be consistent with the
parameterization method used for the linear design
velocity field of continuum method.

2 Structural equations for linear elasticity

In this section, the structural equation for three-
dimensional linear elasticity is introduced followed
by discretization using the finite element method
and numerical integration using Gauss quadrature.
This section is necessary for the following sensitivity
derivations.

Let z be the displacement variation and Z the space
of kinematically admissible displacements that satisfy
homogeneous, essential boundary conditions (Hughes
1987). For given body force b and surface traction t, the
weak form of the structural equation in the continuum
domain � is to find displacement field z that satisfies:

a�

(
z, z

) ≡
∫∫∫

�

ε
(
z
)TCε (z) d� =

∫∫∫

�

zTb d�

+
∫∫

�s

zT td� ≡ ��

(
z
)
, ∀ z ∈ Z (1)

where ε(z) is the engineering strain vector, C is the
elasticity matrix, and �s is the traction boundary. In
this paper, the superposed “–” denotes the variation
of a quantity. For notational convenience, the forms
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Fig. 1 Isoparametric,
eight-node hexahedron
element

(a) Finite Element (b) Reference Element
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a� (z, z) and �� (z) are used for structural energy and
external load, respectively.

In order to solve the structural equation (1) in gen-
eral, it is first discretized by finite elements and then
integrated using numerical integration. We will briefly
illustrate the numerical integration of a single element.
For more detailed explanation, the readers are referred
to Hughes (1987). Consider an isoparametric, eight-
node hexahedral element in Fig. 1 in the physical and
reference domains. In the finite element, the displace-
ment is approximated using nodal displacements and
shape functions as

z (r, s, t) = N (r, s, t) · d (2)

where N(r, s, t) is the matrix of shape functions and d
is the vector of nodal displacements. In the Galerkin
approximation, the displacement variation, z, is approx-
imated using the same shape function with displace-
ment; i.e., z = N · d with d being the nodal displacement
variation. In addition, the vector of strains in (1) can
also be obtained by differentiating the displacement
with respect to spatial coordinates as

ε (z) = B · d (3)

where B is the strain–displacement matrix. Note that
the shape function in (2) is independent of shape design
because it is defined in the reference domain, while
the strain-displacement matrix depends on the shape
design because it contains the derivative with respect
to the spatial coordinates.

In this paper, we only consider numerical integration
using Gauss quadrature. For a single element, the dis-
cretized structural energy form becomes

a�

(
z, z

) ∼= d
T

⎡

⎣
Nquad∑

i=1

wi
(
BTCB

)
(i)

∣∣J(i)
∣∣

⎤

⎦ d = d
T

Kd (4)

where Nquad is the number of integration points, wi is
the integration weight, J = [

∂x
/
∂r

]
is the Jacobian rela-

tion between the physical and reference element, and K

is the element stiffness matrix. The subscribed (i) is the
value of the function at the particular integration point.
The discretization of the load form will be discussed in
Sections 5.2 and 5.3.

3 Shape design parameterization and design
velocity field

In shape design, the shape of the domain that a struc-
tural component occupies is treated as a design vari-
able. Suppose that the initial structural domain � with
boundary � is changed into the perturbed domain �τ

with boundary �τ in which the parameter τ controls the
amount of shape perturbation (see Fig. 2). By defining
the design changing direction to be V(x), the material
point at the perturbed design can be denoted as xτ =
x + τV (x). Since the shape changing process is similar
to the dynamic process with τ being time, the design
changing direction, V(x), is called a design velocity.
Since every shape design variable changes domain, it
must be represented by a design velocity field. In the
following derivations, we will consider a single shape
design variable.

It is important to understand the relation between
the shape design variable and the design velocity field.
In addition, as the sensitivity equation is going to

x 
xτ

τ

τ

Ω

Γ Γ

ΩT 

Initial Domain 
Perturbed Domain

Fig. 2 Variation of domain according to shape change
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Fig. 3 Shape design variable
and the corresponding design
velocity vector at discrete
domain
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be solved numerically in the discrete domain, it is
necessary to obtain the discrete design velocity from
the above continuous design velocity field, V(x). As
an illustration, consider a two-dimensional domain in
Fig. 3 whose boundary is parameterized using paramet-
ric curves. A shape design variable is defined such that
control point p1 moves in the horizontal direction. As
the domain is changed according to the shape design
variable, the locations of nodes will also be changed.
The direction of coordinate change of each node is
defined as a discrete design velocity vector. For the pur-
pose of comparison, this paper assumes that both the
continuum and discrete methods use the same linear,
discrete design velocity vector.

4 Shape design sensitivity equation—
continuum derivatives

4.1 Material derivative formulas

In the continuum theory of design sensitivity analysis,
the solution zτ (xτ ) of structural problems at the per-
turbed shape is assumed to be a differentiable function
with respect to the shape design variable. Then, the
total change in the solution is composed of the change
at the fixed location (partial derivative) and the change
caused by movement of the material point. Since this
is similar to the material derivative concept in contin-
uum mechanics, the terms material derivative has been
adopted for shape sensitivity (Choi and Haug 1983).
The material derivative of zτ (xτ ) at x ∈ � is defined as

ż = lim
τ→0

zτ (x + τV (x)) − z (x)

τ
(5)

which is the rate of change in displacement as the shape
of the domain is perturbed in the direction of V(x).

Note that in a strict sense the material derivative in (5)
is the variation of function zτ (xτ ) in the direction of
V(x) (Choi and Kim 2004). If the variation of a function
is continuous and linear with respect to V(x), then the
function is differentiable. For rigorous discussion of
differentiability, refer to Haug et al. (1985).

Useful formulas for deriving sensitivity expressions
are presented first. The Jacobian relation between the
initial and perturbed design can be written as

T = ∂xτ

∂x
= I + τ

∂V
∂x

= I + τ∇V (6)

Note that the above Jacobian T should not be confused
with the Jacobian J between the physical and reference
domains in finite element discretization. The material
derivative of the Jacobian and that of the determinant
can be obtained as (Choi and Kim 2004)

d
dτ

(T)

∣
∣∣
∣
τ=0

= ∇V (7)

d
dτ

|T|
∣
∣
∣∣
τ=0

= divV (8)

The design sensitivity equation is obtained by differen-
tiating the structural equation (1). The derivative of the
energy form then becomes

d
dτ

a�τ

(
zτ , zτ

)
∣
∣∣
∣
τ=0

= a�

(
ż, z

) + a′
V

(
z, z

)
(9)

The first term on the right-hand side represents impli-
cit dependence on the design through the field variable,
z, while the second term, the structural fictitious load,
denotes explicit dependence on the design velocity
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V(x). In a similar way, the derivative of the load form
becomes

d
dτ

��τ

(
zτ

)
∣
∣
∣∣
τ=0

= �′
V

(
z
)

(10)

Note that there is no implicitly dependent term in the
derivative of the load form because all applied loads are
explicitly dependent on the design variable. Detailed
expressions of a′

V (z, z) and �′
V (z) will be presented in

the following subsections.
Using (9) and (10), the design sensitivity equation is

obtained as

a�

(
ż, z

) = �′
V

(
z
) − a′

V

(
z, z

)
, ∀ z ∈ Z (11)

Note that by substituting ż into z, the left-hand side of
the design sensitivity equation (11) takes the same form
as that of the structural analysis in (1). Thus, the same
stiffness matrix can be used for sensitivity analysis and
structural analysis, with different right-hand sides.

4.2 Energy form

The explicitly dependent term in (9) is a linear function
of design velocity, given in (Kim et al. 2003)

a′
V

(
z, z

) =
∫∫

�

[
εV

(
z
)TCε (z) + ε

(
z
)TCεV (z)

+ ε
(
z
)TCε (z) divV

]
d� (12)

where εV (z) is the explicitly dependent term of ε(z)
on design velocity V(x). In (12), divV = ∂Vi

/
∂xi is the

divergence of the design velocity, and ∇V = [
∂Vi

/
∂x j

]

is the gradient matrix of the design velocity.
The structural fictitious load in (12) can be approxi-

mated using the same finite element discretization with
the structural equation. First, the design velocity field,
V(x), should be discretized. Let us assume that the
discrete design velocity vector is available at each node.
Then, the divergence of the design velocity can be
obtained using the derivative of shape functions as

divV =
3∑

i=1

Vi,i =
8∑

k=1

(
Nk,1Vk

1 + Nk,2Vk
2 + +Nk,3Vk

3

)

(13)

where Nk,i = ∂ Nk
/
∂xi is the spatial derivative of the

shape function and Vk
i is the i-th component of design

velocity at k-th node. Note that we use linear design
velocity field; i.e., the design velocity varies linearly

within the element. The gradient matrix of the design
velocity can be obtained using a similar way, as

[∇V
] =

⎡

⎢⎢
⎢
⎢⎢
⎢
⎣

∂V1

∂x1

∂V1

∂x2

∂V1

∂x3

∂V2

∂x1

∂V2

∂x2

∂V2

∂x3

∂V3

∂x1

∂V3

∂x2

∂V3

∂x3

⎤

⎥⎥
⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢
⎢⎢
⎣

∂V1

∂r
∂V1

∂s
∂V1

∂t
∂V2

∂r
∂V2

∂s
∂V2

∂t
∂V3

∂r
∂V3

∂s
∂V3

∂t

⎤

⎥
⎥⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎢
⎢⎢
⎣

∂r
∂x1

∂r
∂x2

∂r
∂x3

∂s
∂x1

∂s
∂x2

∂s
∂x3

∂t
∂x1

∂t
∂x2

∂t
∂x3

⎤

⎥
⎥⎥
⎥
⎥⎥
⎦

= J̇J
−1

(14)

Since the design velocity vector, V(x), has the same in-
terpolation with the displacement, J̇ term in the above
equation can be easily calculated.

The explicitly dependent term of strain, εV (z), in
(12) can be obtained from

εV (z) = −S�Gd (15)

where

S =

⎡

⎢
⎢
⎢⎢
⎢⎢
⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0

⎤

⎥
⎥
⎥⎥
⎥⎥
⎦

(16)

� =
⎡

⎣
∇V 0 0

0 ∇V 0
0 0 ∇V

⎤

⎦

9×9

(17)

G=

⎡

⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

N1,1 0 0 N2,1 0 0
N1,2 0 0 N2,2 0 0
N1,3 0 0 N2,3 0 0

0 N1,1 0 0 N2,1 0
0 N1,2 0 0 N2,2 0
0 N1,3 0 0 N2,3 0
0 0 N1,1 0 0 N2,1

0 0 N1,2 0 0 N2,2

0 0 N1,3 0 0 N2,3

· · ·

N8,1 0 0
N8,2 0 0
N8,3 0 0

0 N8,1 0
0 N8,2 0
0 N8,3 0
0 0 N8,1

0 0 N8,2

0 0 N8,3

⎤

⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

(18)

The constant S matrix maps the second-order tensor
to the vector, and G is the second kind of strain-
displacement matrix.
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Using Gauss quadrature and (3) and (15), the explic-
itly dependent term in (12) can be approximated as

a′
V

(
z, z

) ∼= −d
T

⎡

⎣
Nquad∑

i=1

wi
(
GT�TSTCBd + BTCS�Gd

− BTCBddivV
)
(i) |J|(i)

⎤

⎦ (19)

Equation (12) is the structural fictitious load in the
continuum domain, while (19) is its counterpart in the
discrete domain.

4.3 Body forces

In the perturbed design, the load form for the body
force can be written as

��τ
=

∫∫∫

�τ

zT
τ bτ d�τ (20)

An important idea of the continuum approach is to
transform first the perturbed domain into the original
domain using transformation relation: d�τ = |T| d�.
The material derivative of the load form in (20) then
becomes

�′
V

(
z
) =

∫∫∫

�

[
zT (∇b · V) + zTbdivV

]
d� (21)

where ∇b = ∂b
/
∂x is the gradient matrix of the body

force and divV = ∇ · V. Here we assume that that the
body force does not change in the fixed spatial location.
If the same discretization and numerical integration are
used with the discrete structural equation, the above
sensitivity expression for the body force can be dis-
cretized by

�′
V

(
z
) ∼= d

T

⎡

⎣
Nquad∑

i=1

wiNT
(i) (∇b · V + bdivV)(i)

∣
∣J(i)

∣
∣

⎤

⎦ (22)

4.4 Surface traction–pressure load

For simplicity of comparison, we only consider the
pressure load that applies to the normal direction to the
surface; i.e., t = pn. In the perturbed design, the load
linear form for the surface traction can be written as

��τ

(
z
) =

∫∫

�sτ

zT
τ

(
pτ nτ

)
d�τ (23)

In the material derivative of the above load linear form,
we use the property that the pressure does not change
in the fixed spatial coordinate. However, the normal
direction and the area of the surface can be changed
according to the shape design variables. In order to

simplify the presentation, the material derivative of the
infinitesimal surface element is derived first. Consider
an infinitesimal surface element in the perturbed design
(see Fig. 4) as

nτ d�τ = |T| T−Tnd� (24)

where T is the Jacobian matrix between the initial and
perturbed design. Since only T depends on the design in
the above expression and T = I when τ = 0, the material
derivative of this surface element becomes (Choi and
Kim 2004)

d
dτ

[
nτ d�τ

]
∣∣
∣
∣
τ=0

= d
dτ

(|T|) nd� + d
dτ

(
T−T)

nd�

= (divV) nd� − ∇VTnd�

(25)

Using (25), the material derivative of (23) becomes

�′
V

(
z
) =

∫∫

�s

zT
[(∇ pTV

)
I + (pdivV) I − p∇VT

]
n d�

(26)

Before discretization of the above sensitivity expres-
sion, we need to introduce a transformation between
the physical surface and the surface in the reference
domain because the surface traction is applied in the
normal direction to the boundary of the domain (see
Fig. 4). An infinitesimal surface area with unit nor-
mal vector can be transformed into the reference
domain as

nd� = ∂x
∂r

dr × ∂x
∂s

ds = |J| J−T · kdrds (27)

where k = [0, 0, 1]T is a unit vector, and r and s are
two coordinate directions in the reference domain. By
substituting (27) into (26) and by applying numerical

dr

ds

k

Reference plane

Initial surface Perturbed surface

Fig. 4 Infinitesimal surface element in the initial and perturbed
domain
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integration, the above sensitivity expression for the
surface traction can be discretized by

�′
V

(
z
) ∼= d

T

⎡

⎣
Nquad∑

i=1

wiNT
(i)

{(∇ pTV
)
I + (pdivV) I

− p∇VT
}

(i)

( |J| J−T · k
)
(i)

⎤

⎦ (28)

5 Shape design sensitivity equations—discrete
derivatives

In the discrete approach, the design sensitivity equation
is obtained by taking the derivative of the discrete sys-
tem of equations. A key idea here is that the differenti-
ation takes place between discretization and numerical
integration. If the differentiation occurs after numerical
integration, it is called the semi-analytical method in
which finite different derivative is used to approximate
the derivatives of stiffness matrix and load vector.

5.1 Stiffness part

For the stiffness part, we differentiate (4) to obtain
(

d
T

Kd
)′ = d

T
Kḋ + d

T
K′d (29)

where the first term on the right-hand side is the implic-
itly dependent term through the nodal displacements,
while the second term is the explicitly dependent term
through the stiffness matrix, whose expression for a
single element can be obtained as

d
T

K′d = d
T

Nquad∑

i=1

wi

[(
Ḃ

T
CBd + BTCḂd

)

(i)

∣
∣J(i)

∣
∣

+ (
BTCBd

) ∣
∣J(i)

∣
∣•

]
(30)

Since the strain–displacement matrix is composed of
the derivative of the shape functions, which is indepen-
dent of shape design, and the inverse of the Jacobian
matrix, the core of the above expression is the material
derivative of the Jacobian matrix and its determinant.
Indeed from the material derivative formula in Choi
and Kim (2004), it has been shown that

d
dτ

|Jτ |
∣
∣∣
∣
τ=0

= divV |J| (31)

d
dτ

J−1
τ

∣∣
∣
∣
τ=0

= −J−1 · ∇V (32)

Using (32), it is possible to show that the derivative
of the strain–displacement matrix becomes Ḃ = −S�G.
Thus, by substituting this relation and (31) into (30), we
can obtain the explicitly dependent term in the discrete
approach as

d
T

K′d = −d
T

⎡

⎣
Nquad∑

i=1

wi
(
GT�TSTCBd + BTCS�Gd

− BTCBddivV
)
(i)

∣
∣J(i)

∣
∣

⎤

⎦ (33)

which is identical with the continuum form after dis-
cretization in (19). In the following subsection, we will
show that the same is true for the load forms.

The derivative of the applied load, F′, will be pre-
sented in the following subsection. Then, the discrete
design sensitivity equation is obtained as

Kd = F′ − K′d (34)

5.2 Body forces

After discretization and numerical integration, the load
linear form corresponding to the body force can be
written as

��

(
z
) ∼= d

T
Fb (35)

where

Fb =
Nquad∑

i=1

wiNT
(i)b(i)

∣
∣J(i)

∣
∣ (36)

In the discrete sensitivity formulation, the discrete force
in (36) is differentiated with respect to the design.
Since the shape function is defined in the reference
element, it is independent of shape design. Thus, it is
only necessary to differentiate the body force and the
determinant of Jacobian. The derivative of the discrete
body force becomes

F′
b =

Nquad∑

i=1

wiNT
(i)

(∇b(i)V
∣
∣J(i)

∣
∣ + b(i)

∣
∣J(i)

∣
∣•) (37)

In the above equation, we use the property of b′ = 0
It is also possible to show that |J|• = divV |J|. Then, by
comparing (22) and (37), the sensitivity expressions of
the body force are identical for the continuum and dis-
crete methods if the same discretization and numerical
integration are used.
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5.3 Surface traction–pressure load

After discretization and numerical integration, the load
linear form corresponding to the surface traction can be
written as

��

(
z
) ∼= d

T
Fs (38)

where

Fs =
Nquad∑

i=1

wiNT
(i)

(
p |J| J−T · k

)
(i) (39)

The above pressure load can be differentiated to obtain
the following sensitivity expression:

F′
s =

Nquad∑

i=1

wiNT
(i)

( (∇ pTV
) |J| J−T · k + p |J|• J−T

· k + p |J| (J−T
)• · k

)

(i)
(40)

where we use the property of p′ = 0. Now we can use
the property of |J|• = |J| divV and

(
J−T

)• = ∇VT · J−T

to yield

F′
s =

Nquad∑

i=1

wiNT
(i)

[ (∇ pTV
)

I + (pdivV) I + p∇VT
]

(i)

× (|J| J−T · k
)
(i)

(41)

It is obvious that (41) is identical with the expression
in (28).

So far, we have shown that the discrete sensitivity
expressions from both continuum discrete approaches
are identical. However, this conclusion is based on the
fact that both approaches use the same discretization,
numerical integration, and the same discrete linear de-
sign velocity vector. This is somewhat different from
the observation by Choi and Twu (1988) in which
additional requirements are suggested, such as exact
integration and exact solution.

6 Numerical examples

In this section we present two numerical examples.
The purpose of the first example is to show that the
sensitivity results may be consistent with the numerical
solution, but it can be different from the analytical one
because the numerical solution has errors associated
with approximation. The second example demonstrates
the use of the sensitivity calculation with body force
and surface traction loading simultaneously in shape
optimization.

6.1 Cantilever beam under uniform pressure load

Consider a cantilevered beam under uniform pressure
as shown in Fig. 5. The following geometric and ma-
terial properties are used: L = 5 m, b = 0.25 m, h =
0.4 m, q = 10 kN/m2, E = 20 GPa, and v = 0.2. From
the classical beam theory, the displacement of the tip is
given as

wtip = − qL4

8EI
= − 3qL4

2Ebh3
(42)

The shape of the beam is related to the length and
height of the beam. By differentiating the above equa-
tion with respect to these two shape parameters, ana-
lytical sensitivities can be obtained as

∂wtip

∂L
= − 6qL3

Ebh3
(43)

∂wtip

∂h
= 9qL4

2Ebh4
(44)

For numerical solution, the beam structure is dis-
cretized using 240 eight-node hexahedral elements (see
Fig. 5). For structural analysis the EFEAPpv (Extended
Finite Element Analysis Program for Personal Ver-
sion) (Zienkiewicz and Taylor 2005) is used. Figure 6
shows the transverse displacement from analytical solu-
tion and finite element solution. Due to approximation
errors, the finite element solution is stiffer than the
analytical one.

For the purpose of comparison, sensitivity results are
presented using three methods: sensitivity from global

Fig. 5 Cantilevered beam
under uniform pressure load

L 

h
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Fig. 6 Transverse displacements; solid line analytical solution,
dashed line finite element solution

finite difference, sensitivity of discrete solution, and
the sensitivity of continuous solution from (43) and
(44). After a series of trial-and-errors, a perturbation
size of 0.001 is selected for the global finite difference.
Since both the continuum and discrete approaches are
identical, only one method is presented in the name
of sensitivity of discrete solution. Tables 1 and 2 show
the transverse displacement sensitivity with respect to
beam length and height, respectively. It is noted that
the sensitivity results from global finite difference and
continuum approach are almost identical. This agree-
ment will depends on perturbation size in finite dif-
ference calculation. Nonlinear effect will cause error
for large perturbation size, whereas numerical noise
will be dominated for too small perturbation size. This
has been a major bottleneck of finite difference-based
sensitivity calculation.

It is also noted that both sensitivity results are dif-
ferent from the sensitivity of continuous solution ob-
tained from (43) and (44). The errors in sensitivity

Table 1 Transverse displacement sensitivity with respect to
beam length

L (m) Finite difference Sensitivity of Sensitivity of
sensitivity discrete solution continuous solution

0.00 0.000E+00 0.000E+00 0.000E+00
0.50 −7.506E−07 −7.506E−07 −5.859E−06
1.00 −4.960E−05 −4.960E−05 −4.688E−05
1.50 −1.603E−04 −1.603E−04 −1.582E−04
2.00 −3.721E−04 −3.721E−04 −3.750E−04
2.50 −7.152E−04 −7.153E−04 −7.324E−04
3.00 −1.218E−03 −1.218E−03 −1.266E−03
3.50 −1.904E−03 −1.904E−03 −2.010E−03
4.00 −2.794E−03 −2.795E−03 −3.000E−03
4.50 −3.909E−03 −3.910E−03 −4.271E−03
5.00 −5.257E−03 −5.258E−03 −5.859E−03

Table 2 Transverse displacement sensitivity with respect to
beam height

h (m) Finite difference Sensitivity of Sensitivity of
sensitivity discrete solution continuous solution

0.150 1.402E+00 1.402E+00 2.778E+00
0.200 5.733E−01 5.734E−01 8.789E−01
0.250 2.694E−01 2.695E−01 3.600E−01
0.300 1.409E−01 1.409E−01 1.736E−01
0.350 8.040E−02 8.043E−02 9.371E−02
0.400 4.858E−02 4.860E−02 5.493E−02

results are caused by discretization. Finite difference
and discrete–discrete sensitivities are obtained by dif-
ferentiating this erroneous discrete equation. On the
other hand, the continuum–discrete sensitivity also has
an error because the analytical sensitivity equation is
solved through discretization. If the continuum sensi-
tivity equation is analytically solved, then the sensitivity
results will be identical to the exact one (last column)
of the two Table. This leads to the conclusion that the
continuum–discrete and discrete–discrete sensitivity re-
sults are consistent with the numerical solution, but
that does not mean that the obtained sensitivity results
are exact. They are obtained with the inherent errors
in the numerical solution. The effect of these errors is
magnified when the thickness of the beam is small.

6.2 Shape optimization of an arch dam

Consider a crown cantilever of an arch dam as shown
in Fig. 7. For the crown cantilever of a double-curvature

Fig. 7 The profile of crown cantilever and the finite element
mesh at the initial design
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arch dam, as shown in Fig. 7, a polynomial of mth-order
(usually m = 2 or 3) is used to determine the curve
of the upstream face and another polynomial is used
to determine the thickness. In this paper, the crown
shape is defined using Hermit splines (Ahmadi and Pahl
2003). For the fixed four vertical locations in Fig. 7, the
horizontal locations of four reference points of up- and
down-stream are as follows

Yu1 = −Pb Tb Yd1 = (1 − Pb ) Tb

Yu2 = − (1 + Pm) Tm Yd2 = −PmTm

Yu3 = − (1 + Pu) Tu Yd3 = −PuTu

Yu4 = 0 Yd4 = Tc

(45)

where Yui, Ydi are upstream and downstream interpo-
lation node coordinates, respectively. Thickness of the
crown cantilever at desired level Z is obtained from the
following equation:

T (z) = Yd − Yu

= Spline (Ydi, Hi, Z ) − Spline (Yui, Hi, Z ) (46)

For this shape, design variables are the crown thick-
nesses (Tb , Tm, Tu, Tc) and the overhang parameters
(pb , pm, pu) at the interpolation stations (see Fig. 7).
For design sensitivity analysis, the values of the initial
design variables are summarized in Table 3.

Two loadings are considered in the process of
shape sensitivity analysis: (1) body force due to gravity
and (2) surface traction due to the hydrostatic pressure
(with full reservoir). The pressure load has triangular
distribution along the height of the cantilever. For de-
sign sensitivity analysis and optimization purpose, hy-
drostatic and gravity loads are simultaneously applied
to the finite element model. The following material
properties of the arch dam are used: Young’s modu-
lus E = 21 GPa, Poisson’s ratio v = 0.25, and specific
weight γc = 24,000 N/m3.

Design sensitivities of displacements and principal
stresses are plotted in Figs. 8 and 9. In Fig. 8, both
the vertical and lateral displacement sensitivities are
matched well with those from the finite difference
method. Sensitivity results are presented along the
height of the cantilever at the middle layer. A perturba-
tion size of 	x = 0.005 is used for the finite difference
sensitivity.

Table 3 Initial values of shape design variables

Hc(m) Tc(m) Tu(m) Tm(m) Tb (m) Pu Pm Pb

80 10 20 34 50 .05 0.10 0.7

-2.0E-03

-1.5E-03

-1.0E-03

-5.0E-04

0.0E+00

5.0E-04

1.0E-03

0 10 20 30 40 50 60 70 80
Height

U y(FDM) U z(FDM) U y(Continuum) U z(Continuum)

Pressure 

Body force

Fig. 8 Displacements sensitivity of body force and pressure load
w.r.t Tu

The nonlinear constrained optimization problem
for the arch dam structure for a existing dam with above
material properties and Hc = 100 (m) can be written
with seven design variables, x = {Tc, Tu, Tm, Tb , Pu ,
Pm, Pb }, as

Minimize Area = f (x)

Subject to θCU ≤ 16.5◦

θBD ≤ 25◦

Undercut (x) ≤ 6.0
(47)

y′′
u ≥ 0

Tc (x) ≥ 6.0

σt (x) ≤ 10.0 MPa

σc (x) ≤ 100.0 MPa

where

f (x) = 1

4
Hdam (.5Tc + 1.2Tu + 1.5Tm + .8Tb ) (48)

Sc =
− 175

1,342
Yu1 + 8,625

9,394
Yu2 − 26,688

4,697
Yu3 + 3,284

671
Yu4

Hdam

(49)

Sb = Hdam

−4, 315

1,342
Yd1 + 40,125

9,394
Yd2 + 6,528

4, 697
Yd3 + 224

671
Yd4

(50)

Undercut = Yu1 − Yzero (51)
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Fig. 9 Principles stress
sensitivity of body force and
pressure load w.r.t Tu
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with Yzero being a point at the upstream face in which
the slope is zero and y′′

u is the curvature of upstream
face at z = 0.75H.

A sequential quadratic programming (SQP) algo-
rithm is used to solve the optimization problem in (47).
Except for stress constraints, the objective function

Fig. 10 Initial and optimum
shape of arch dam cantilever
and history of cost function
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and other constraints are explicit function of design
variables. Thus, it is trivial to calculate analytical sensi-
tivity. The sensitivity of stress constraints are calculated
using the displacement sensitivity and the chain rule of
differentiation.

The optimization problem is converged after six it-
erations. Since the initial design is conservative, most
design variables are reduced. The optimum design re-
duces the area of the structure by 35%. However,
this reduction depends on how the initial design was
selected. Figure 10 shows the shape of the arch dam
cantilever at the initial and optimum designs and his-
tory of objective function.

7 Conclusions and discussions

In this paper, we presented shape sensitivity formula-
tions for structures under design-dependent loadings,
such as body forces and surface tractions. It is shown
that the discrete and continuum approaches are iden-
tical in the discrete level when the same discretization,
numerical integration, and linear design velocity fields
are used. These requirements are more flexible than the
previous observation by Choi and Twu (1988) in which
the exact integration and exact analytical solutions are
required. It is also shown that the numerically calcu-
lated sensitivity results may be consistent with the finite
difference sensitivity results, but they can be different
from the analytical sensitivities because of approxima-
tion error.
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