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a b s t r a c t

Wear prediction on the components of a mechanical system without considering the system as a whole
will, in most cases, lead to inaccurate predictions. This is because the wear is directly affected by the
system dynamics which evolves simultaneously with the wear. In addition, the contact condition (regions
of contact for the wearing bodies) also depends on the system dynamics and can only be determined in
a multibody dynamics framework.

In this work, a procedure to analyze planar multibody systems in which wear is present at one or more
revolute joints is presented. The analysis involves modeling multibody systems with revolute joints that
consist of clearance. Wear can then be incorporated into the system dynamic analysis by allowing the
size and shape of the clearance to evolve as dictated by wear. An iterative wear prediction procedure
based on Archard’s wear model is used to compute the wear as a function of the evolving dynamics and
tribological data. The procedure is then validated by comparing the wear prediction with wear on an
experimental slider-crank mechanism.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The presence of clearances in the joints of mechanical systems
has been noted to retard system performance. Often, vibration,
noise, and joint reaction forces characterized by large instanta-
neous values are experienced as a consequence of joint clearance.
The problem is further compounded when the clearance size is
increased and its shape altered by wear. This has generated inter-
est over the past three decades to develop ways to account for
the effect of joint clearance. Early studies in this area focused on
simple models to obtain insight into the behavior of systems with
joint clearances. Dubowsky et al. [1,2] developed a contact impact
pair model to study the elastic joint with clearance. In their model,
joint elasticity and damping were modeled via springs and a viscous
coefficient. Dubowsky and Gardner [3] later extended this work to
include flexible mechanism as well as multiple clearance connec-
tions. Earles and Wu [4] proposed to model joint clearance using
a massless rigid link whose length was equal to the clearance size.
The components of the joint were thus assumed to be in contact at
all times. Wu and Earles [5] later used the model to predict contact
loss between the joint components for a planar mechanism. The
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concept of a massless link was also used by Furuhashi et al. [6–9] to
study the dynamics of a four-bar linkage with clearance. Once again,
the joint components were assumed to be in contact at all times.

More complex models have also been developed to study the
effect of clearance on system dynamics. Considering the joint to
consist of two components, Farahanchi and Shaw [10] modeled
joint clearance by considering three configurations of the joint com-
ponents: (1) free-flight motion, when the components are not in
contact; (2) the impact condition, when the components establish
contact; and (3) the sliding condition, when the components are in
contact and in relative motion. In their model, the reaction force
at the joint (when the joint components are in contact) was deter-
mined by assuming that no clearance was present. They used a
slider-crank mechanism to demonstrate the procedure and studied
the effect of clearance size, friction, crank speed and impact param-
eters. Rhee and Akay [11] also used the three modes of motion to
model the joint clearance. They used an approach similar to that
of Farahanchi and Shaw [10] to determine the reaction force dur-
ing the sliding motion. They studied the response of a four-bar
mechanism with clearance in a revolute joint.

The three-mode approach was also used by Khulief and Sha-
bana [12] to model the clearance at a joint. In their approach,
termed as the discontinuous method, the analysis (integration of
the equations of motion) is divided into two parts, namely, pre-
and post-collision, where a momentum balance is performed to
determine the post-collision velocities. Velocities in the analysis
are then updated and the analysis is resumed.

Ravn [13] also implemented the three-mode approach to model
the joint clearance. However, in his approach, the reaction force
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Nomenclature

A contact area
AE extrapolation factor
ı penetration
er coefficient of restitution
E Young’s modulus
FN normal force in the contact interface
h wear depth
k dimensioned wear coefficient
K elastic constant
� vector of Lagrange multipliers
M mass matrix
p contact pressure
q vector of generalized coordinates
QA vector of applied loads
s sliding distance
t time
� Poisson’s ratio
� constraint vector
�q Jacobian matrix
ω Crank velocity

during the impact and sliding mode is computed using a contact
force model. This analysis has been termed the continuous method
since integration of the equations of motion is not halted as in the
case of the discontinuous method. A number of researchers [14–18]
have since used this technique to model and study the effect of
clearance in the joints of multibody systems.

This prior research has focused on modeling multibody sys-
tems with joint clearance that remains constant. However, in some
mechanical systems, especially close-loop dynamic systems, wear
in the joints significantly affects system dynamics, and the change
in system dynamics greatly affects the wear progress. In such a
case, it is essential to predict the joint wear in the multibody
framework. The work described here seeks to complement these
previous studies by integrating wear into the dynamic analysis of
multibody systems. In doing so, the effect of the evolving system
kinematics (due to wear) can be modeled. The first part of the
paper presents a discussion on the dynamic analysis of a planar
multibody system with joint clearance (i.e., a non-ideal joint). A
prediction procedure to estimate wear on simple geometries, such
as a revolute joint, is then presented. Next, analysis of multibody
systems with revolute joint wear, which involves integrating wear
prediction into the dynamic analysis, is discussed. The analysis pro-
cedure is then validated by modeling a slider-crank mechanism
with single joint wearing and comparing the predictions with wear
on an experimentally equivalent mechanism. Finally, an example
that demonstrates the necessity for using a multibody dynamics
framework for wear prediction is presented.

2. Analysis of multibody systems with non-ideal joints

The analysis of a multibody systems requires the assembly and
solution of a set of Differential Algebraic Equations (DAE) of motion
that describe the motion of the system. This is true for systems
with ideal joints (no clearance) as well as systems with non-ideal
joints (including clearance). The only difference in analyzing sys-
tems with non-ideal joints, as opposed to those with ideal joints,
is in the description of the joint. Thus, in this section, a brief dis-
cussion of the equations of motion will be presented followed by a
discussion on modeling a non-ideal joint.

2.1. Equations of motion for multibody systems

A multibody system is defined as consisting of a set of intercon-
nected rigid bodies that undergo large displacements and rotations.
Tracking the motion of body i in a global coordinate system (x–y)
is achieved by fixing a reference frame (x′

i
–y′

i
) on each body. Body

i in the system can then be located by specifying the origin of the
corresponding body-fixed coordinates expressed as

qi = [x, y, �]T
i . (1)

In Eq. (1), � denotes the relative angle between the body’s reference
frame and the global coordinate system (i.e., orientation). Thus, for
a multibody system a set of generalized coordinates, as shown in
Eq. (2), uniquely define the position and orientation of all bodies in
the system.

q = [[x, y, �]T
1, [x, y, �]T

2, . . . , [x, y, �]T
i ]

T
. (2)

The bodies in a multibody system are interconnected by joints
which impose conditions on their relative motion. Consequently,
the generalized coordinates are usually not independent. When
these conditions are expressed as algebraic equations in terms of
the generalized coordinates and time, t, they are referred to as
holonomic kinematic constraints [20] and are expressed as

�(q, t) = 0. (3)

Assuming that the multibody system of interest is properly
constrained and the number of constraints equal the general-
ized coordinates, Eq. (3) can simultaneously be solved to uniquely
determine the position, q, of the system components at any time.
Furthermore, the velocities and acceleration of all components can
be determined using Eqs. (4) and (5):

�qq̇ = −�t , (4)

�qq̈ = −(�qq̇)qq̇ − 2�qt q̇ − �tt ≡ �. (5)

These equations are obtained by differentiating Eq. (3) with respect
to time.

The solution of the constraint, velocity, and acceleration equa-
tions to determine the motion of the system is referred to as
kinematic analysis. In order to determine the system response due
to externally applied loads, it is necessary to perform a dynamic
analysis. As discussed previously, this requires the assembly and
solution of the differential algebraic equations of motion. The
equations of motion for a constrained rigid multibody system are
stated here without derivation due to the length and complexity
of their derivations. The interested reader is referred to the work
of Haug [20] for a detailed derivation of these equations using the
Lagrangian approach. The equation can be expressed as

Mq̈ + �T
q� = QA (6)

where M is the mass matrix consisting of masses and moments of
inertia for the system components, q̈ and �T

q are the acceleration
vector and Jacobian of the constraints, respectively, � is a vector
of Lagrange multipliers, and QA is a vector of externally applied
loads. In this work the body-fixed coordinate system is selected
to be at the center of mass (COM) of the corresponding body. This
significantly simplifies the general form of the equations of motion.
The product of the Jacobian and the vector of Lagrange multipliers
(�T

q�) is in fact the vector of reaction forces. This is the second term
on the left hand side of Eq. (6). For an unconstrained system, the
vector of Lagrange multipliers is zero and this term disappears.

Eqs. (5) and (6) can be combined to result in a mixed system
of Differential Algebraic Equations (DAE) of motion. The equations
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Fig. 1. Integration procedure for the Differential Algebraic Equation.

are expressed as[
M �T

q
�q 0

][
q̈
�

]
=

[
QA

�

]
, (7)

where � = �qq̈ = −(�qq̇)qq̇ − 2�qt q̇ − �tt . For a meaningful sys-
tem, the coefficient matrix of Eq. (7) must be nonsingular. This is
guaranteed if the mass matrix M is positive definite and the Jacobian
matrix �q is full row rank (or constraints equations are indepen-
dent). The solution procedure for this equation, which determines
the dynamics of a system, is well documented in the literature
[14,19,20] and is only summarized in the form of a flow chart in
Fig. 1.

2.2. Modeling a non-ideal revolute joint

In the previous section, the dynamic analysis of a multibody sys-
tem was presented. The procedure may be applied for systems with
either ideal or non-ideal revolute joints as long as the constraints
are correctly formulated. The procedure for modeling a non-ideal
revolute joint is presented next. It closely follows the work of Ravn
[13] and Flores [17].

It is assumed that a revolute joint consists of two components, a
pin and a bushing, that are rigidly attached to bodies i and j as shown
in Fig. 2. Furthermore, the joint components are assumed to be com-
pliant even though the bulk of the bodies i and j are assumed to be
rigid. For an ideal revolute joint, the centers of the pin and the bush-
ing coincide and therefore allow only a relative rotation between
the two bodies. With the aid of Fig. 3 the kinematic constraint for
the ideal joint can be expressed as

�r(i,j) = (ri + Aisi) − (rj + Ajsj) = 0, (8)

Fig. 2. A revolute joint with clearance.

where ri and rj are the position vectors in the global coordinate
system (x–y) that describe the location of the body-fixed coordi-
nates (xi–yi and xj–yj), the vectors si and sj are position vectors in
the body-fixed coordinate systems that locate the center of the rev-
olute joint, and Ai and Aj are the matrices that transform vectors
in the body-fixed coordinates systems into vectors in the global
system.

In the case of a non-ideal revolute joint, a clearance is present
in the joint so that the centers of the joint components (pin and
bushing) no longer coincide. Instead, the pin and the bushing may
have three different configurations during motion. The three con-
figurations are: freefall, when the components are not in contact;
impact; and following motion, which together describe the dura-
tion when the joint components establish and maintain contact.
The non-ideal joint model can be realized by ensuring that the
motion of the pin is confined within the inner perimeter of the
bushing. This is achieved by imposing a force constraint on both
components whenever they establish contact as discussed by Flo-
res and Ambrósio [16]. It is assumed that the region where the
contact is established is deformable so that the reaction force can
be estimated by a contact force law. A contact force model with
hysteresis damping, discussed by Hamid and Parviz [21], can be
employed. The model is expressed as

FN = Kı1.5

(
1 + 3(1 − e2

r )
4

ı̇

ı̇(−)

)
, (9)

where FN is the reaction force, ı is the penetration between the pin
and bushing, er is the coefficient of restitution, ı is the penetration

Fig. 3. Revolute joint between bodies i and j. The joint imposes a constraint on the
relative translation between the bodies.
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Fig. 4. Geometric description of a non-ideal revolute joint with eccentric vector e.

velocity, ı̇(−) is the initial penetration velocity upon impact and K
is a constant that is dependent on the material properties of the
components and their geometry. The constant is expressed as

K = 4
3(hi + hj)

(
RiRj

Ri + Rj

)1/2

, hn = 1 − �2
n

En
, n = 1, 2, (10)

where Ri and Rj are the radii of the pin and bushing, respectively, �n

is Poisson’s ratio of the components and En is the elastic modulus
of the components. The radii of the pin and bushing are calculated
based on wear depths at the particular contact location. In addition
to the reaction forces, a friction force can be included to enhance
the model. In this work, Coulomb friction is applied. The friction
force is

Ff = �FN, (11)

where � is the coefficient of friction which can be determined
through experiments as discussed by Schmitz et al. [22] and FN is
the normal force.

The contact model shown in Eq. (9) is valid for colliding spheres
whose contact area is circular. While several expressions have
been proposed to model the colliding cylinders [2,43], this model
has been used in multibody dynamic analysis by a number of
researchers [13,16] to estimate the contact force between collid-
ing cylinders. The justification for using the expression in Eq. (9)
is that the proposed models for cylindrical contact are nonlinear
implicit expressions of the contact force FN whose results do not
differ substantially from the expression in Eq. (9) when Ri and Rj
are replaced with the cylinder radii. A more detailed discussion
of the justification is presented in the literature [13,16,17]. In this
work the model in Eq. (9) is used to estimate the contact force at the
revolute joint. It will be shown that the model yield similar results
to experiments when used in multibody analysis.

In order to apply the constraint force, it is necessary to deter-
mine the location of contact between the joint components, the
direction in which the contact force is acting and the penetration.
To determine this information, Fig. 4 is employed. The figure shows
two bodies constrained by a non-ideal revolute joint. Body coordi-
nates xi–yi and xj–yj are fixed to the center of masses of the bodies
i and j, respectively. The coordinates are oriented at angles �i and
�j relative to the global x-axis. The point of contact C is defined as
the center of the contact region between the pin and the bushing.
This point can be located using the eccentric vector e which is a
vector connecting the bushing center D and the pin center B. At the
time of contact the eccentric vector will point in the direction of
the contact. This vector is expressed as

e = (ri + Aisi) − (rj + Ajsj), (12)

where ri and rj are the vectors linking the global origin and the
center or masses of the bodies, si and sj are vectors in the local coor-

Fig. 5. Penetration during contact between the pin and the bushing.

dinate system that link the center of masses to the pin and bushing
centers, respectively, and Ai and Aj are matrices that transform a
vector from the local coordinate system to the global system. In this
case, they transform vectors si and sj into their global equivalent.
The location of contact point C with respect to the pin and bushing
can then be expressed as

rC
m = rm + Amsm + Rmn, m = i, j. (13)

In Eq. (13) Rm are the radii of the pin and bushing after wear and n
is a unit vector in the direction of e, which is written as

n = e
e

.

e = ||e||
(14)

The penetration between the pin and bushing during contact is
computed as the difference between the eccentricity and clearance:

ı = e − c. (15)

The clearance is defined as the difference between the bushing
and pin radii, c = Rj − Ri. When the pin is not in contact with the
bushing, the eccentricity is smaller than the clearance and the pen-
etration has a negative value. When the penetration has a value
equal or greater than zero, contact is established. Thus, when ı is
greater than zero, a contact force is applied between the bodies. The
contact force vanishes when ı is equal to or less than zero. These
configurations are depicted in Fig. 5.

To determine the contact force (see Eq. (9)), the relative pene-
tration velocity is also required. This is the difference between the
velocities of the contact point. The two velocities are

ṙC
m = ṙm + Am,�m �̇msm + Rmṅ, m = i, j. (16)

The relative velocities in the normal and tangential direction can
then be computed as

vn = (ṙC
i − ṙC

j ) · n

vt = (ṙC
i − ṙC

j ) · n⊥ , (17)

where n⊥ is the unit tangent vector defined as n⊥ = k̂ × n and k̂
is the unit vector in the global z-coordinate. In Eq. (17), the nor-
mal velocity vn is identical to the relative penetration velocity ı̇; it
is positive during the penetration period and negative during the
rebound period.

After the relative penetration and velocity have been deter-
mined, the contact and friction forces can be computed and
included in the DAE as externally applied loads. Then, the system
dynamics can be determined. It is noted, however, that since the
body-fixed coordinates were fixed at the center of masses of bod-
ies i and j, the forces must also be applied at these locations rather
than at the points of contact. Thus, the transfer of the loads to the
mass centers will result in an addition moment in each body. The
force acting at the center of mass for body i and the corresponding
moment equations are expressed as

F i = −(FN + F�)
mi = (F i) × (rC

i
− ri)

, (18)
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Fig. 6. Slider-crank mechanisms with joint clearance.

Table 1
Dimensions and mass parameters for slider-crank mechanism.

Length (m) Mass (kg) Moment of inertia (kg m2)

Crank 1.00 25.00 45.00
Follower 1.75 35.00 35.00
Slider – 25.00 –

where

FN = FNn
F� = �kFNn⊥.

(19)

The corresponding loads for body j are

F j = FN + F�

mj = (F j) × (rC
j

− rj).
(20)

Once the forces (contact and friction forces) for the non-ideal
revolute joint are known, the description of the joint is complete. It
should be noted that no kinematic constraint was introduced while
describing the non-ideal joint. Instead, force constraints were used
in the description. As a result, a multibody system with this type
of non-ideal revolute joint has two additional degrees-of-freedom
that are treated using the force constraints.

2.3. Example: slider-crank mechanism with a non-ideal revolute
joint

The use of the non-ideal revolute joint model will be demon-
strated by modeling and performing a dynamic analysis on a
slider-crank mechanism that has a non-ideal joint. Fig. 6 shows
a diagram of the slider-crank mechanism which consists of four
components (ground, crank, follower, and slider). The components
are connected to each other by three revolute joints and a transla-
tional joint. For this example, the revolute joint between the crank
and the follower is modeled as a non-ideal joint. The dimension
and mass properties for the mechanism are shown in Table 1. Also,
the radii and material properties for the joint components (the pin
and bushing) are shown in Table 2. In this case a steel pin and a
steel bushing are used. For the contact force model, a value of 0.15
and 0.8 were used for the friction coefficient and the coefficient of
restitution, respectively. It is assumed in this analysis that the pin
and the bushing are rigidly attached to the crank and the follower,
respectively. The crank is assumed to rotate at a constant angular
velocity of 30 rpm (� rad/s).

The kinematic constraint equations for this mechanism can be
obtained through procedures described by Nikravesh [19] and Haug

Table 2
Material properties for the joint components.

Pin Bushing

Young’s modulus 206.8 GPa 206.8 GPa
Poison’s ratio 0.29 0.29
Radius 20 mm {20.0005, 25}mm

Fig. 7. Comparison of reaction forces between the ideal and the non-ideal joints for
various sizes of clearance.

[20]. For this mechanism the constraint equations are as follows:

˚ =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 − l1 cos �1
y1 − l1 sin �1

x2 − x3 + l2 cos �2
y2 − y3 − l2 sin �2

y3
�3

�1 − ωt

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (21)

In Eq. (21), the first two expressions model the revolute joint
between the crank and the ground, while the third and fourth model
the revolute joint between the follower and the slider. The fifth and
sixth expressions model the translational motion of the slider. The
final expression is the driving constraint that specifies the constant
angular velocity of the crank.

It is noted that no constraint for the joint with clearance appears
in Eq. (21). Instead a force constraint as previously described is used
to restrict the motions of the crank relative to the follower. The Dif-
ferential Algebraic Equations of motion in Eq. (7) can be assembled
and solved to determine the dynamics of the system. Fig. 7 shows
representative results from the dynamic analysis of the mechanism.
In the figure a comparison of the joint reaction forces between the
ideal and the non-ideal joints is shown for two different sizes of
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the joint clearance. In the first diagram the clearance size is 0.5 �m.
For this case the reaction forces from the ideal and non-ideal joint
models are almost identical; this is since the clearance is effectively
zero. As the clearance is increased to 5 mm, the change in the system
dynamics becomes evident.

3. Wear prediction

When the two components of a non-ideal joint are in contact
and in relative motion, the joint is expected to wear. An enor-
mous amount of effort has been placed into developing techniques
to predict wear. A general trend that has emerged is the use of
Archard’s wear model [23–34] in an iterative procedure. Archard’s
model is a linear wear model that estimates wear based on infor-
mation about the contact condition (contact pressure and sliding
distance) and tribological data that reflects information about the
materials in contact and the operating conditions. Thus, wear pro-
cedures typically involve an iterative process in which incremental
wear is estimated at each iteration (based on the wear model) and
accumulated up to the desired number of iterations.

In earlier prediction procedures, the linear extrapolation
method was employed to estimate the worn geometry based on
initial contact conditions. The procedures assumed that the geom-
etry and thus contact pressure did not evolve with wear. Thus only
a single iteration was required in which linear extrapolations were
applied to determine the final geometry, i.e., the geometry that
would result after many iterations. This procedure has been found
to produce erroneous results [23,24]. The primary reason for the
inaccuracy is that the evolution of the geometry was neglected.

In iterative procedures, wear predictions have been based on
evolving contact conditions. The procedures allow the contact
geometry to vary gradually and provide an iterative procedure in
which the contact pressure and the sliding distance are computed
at each iteration. The geometry is also updated at each iteration to
reflect the geometry evolution. Depending on the effectiveness of
the geometry update and the accuracy of the contact pressure cal-
culations, the iterative procedures have been found to yield useful
results [25–29]. The procedure has been used in wear prediction
of gears [30–32], cam-followers [33–35], knee joints [36], and hip
joints [37,38]. The iterative scheme has also been adopted here.

Archard’s wear model has been expressed in various forms
depending on the intended application. For the present work, a
useful form of the model is

h

s
= kp, (22)

where h is the wear depth, s is the relative sliding distance between
the two bodies in contact, k is a wear coefficient, and p is the con-
tact pressure resulting from the contact of the concerned bodies.
When two contacting bodies are composed of different materials,
different wear coefficients for each body must be used in Eq. (22).
The wear process may be expressed as a dynamic process (rate of
change of the wear depth with respect to the sliding distance) so
that the differential form of Eq. (22) can be written as

dh

ds
= kp(s). (23)

In Eq. (23), the wear depth may be estimated using a finite dif-
ference approach. Using a temporal discretization of the relative
motion of the bodies in contact (the sliding distance is considered
as time in the dynamic analysis) yields the updating formula:

hi = hi−1 + kpi �si. (24)

where �si is the incremental siding distance, pi and hi are the con-
tact pressure and wear depth at the ith cycle, and hi−1 is the wear
depth at the previous cycle. Once the wear coefficient, the con-

Fig. 8. Incremental wear simulation flow chart.

tact pressure, and the incremental sliding distance are available,
the overall wear depth can be estimated. The wear coefficient is
generally determined through experiments [25,39,40], while the
contact pressure may be calculated using finite element analysis
(FEA) or simplified methods such as the Winkler surface model [27].
The FEA method is used here because it can accurately (relatively)
represent the complicated contact surface which may be observed
during geometry evolution. The incremental sliding distance can
also be obtained from FEA or may be specified explicitly. In this
work it is determined from the dynamic analysis as discussed later.

Proper wear predictions require that the geometry is updated
to reflect the evolving contact conditions. This may be achieved by
moving the contact surface in the direction of the surface normal
by an amount equal to the incremental wear depth (the last term
in Eq. (24)). Furthermore, since numerous cycles (the incremen-
tal wear depth during one cycle of motion is usually microscopic)
may have to be simulated, it is necessary to reduce computational
costs in repeated wear calculations. A popular technique in miti-
gating costs is the use of extrapolation. This involves calculating
the incremental wear depth for a representative cycle and then
extrapolating this wear depth over a preselected number of cycles.
In order to incorporate extrapolation in Eq. (24), it is written as

hi = hi−1 + kAEpi �si, (25)

where AE is the extrapolation factor. In selecting a value for the
extrapolation it is important to note that a large value may com-
promise the accuracy of the simulation since the geometry is not
allowed to gradually evolve. On the other hand, using an overly
conservative (small) value will result in a less than optimum use of
resources. A more comprehensive study on the use of extrapolation
is available in the literature [41].

The wear prediction procedure is summarized in the flowchart
shown in Fig. 8. The procedure is later integrated into the dynamic
analysis of mechanism with wear at the revolute joints.
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Fig. 9. Integration of wear analysis into system dynamics analysis.

4. Integration of wear model into dynamic analysis

In Section 2, a procedure to analyze multibody systems with
joint clearance was presented. The procedure accounts for the
changes in the system dynamics when the joint clearance is varied.
It also allows for the contact location, between the joint com-
ponents, to be determined at any time during the motion of the
system. A wear prediction procedure to estimate the wear occur-
ring between two bodies in contact and relative motion (such as
a revolute joint) was also presented in Section 3. This procedure
can be integrated into the dynamic analysis of a multibody system
in order to gain insight into the overall performance of a system
when wear is present at one or more of its revolute joints. The inte-
grated model is composed of two parts: dynamic analysis and wear
analysis. The model is discussed in the following subsections.

4.1. Dynamic analysis with non-ideal joints

In the first part of the integration process a dynamic analysis is
performed to determine the joint reaction force (magnitude as well
as direction) and the incremental sliding distance. These are the two
quantities required (from the dynamic analysis) to perform a wear
analysis. The analysis is performed for a complete cycle and the
reaction force as well as the incremental sliding distance is obtained
at each time increment of the discretized range. The reaction force
at the non-ideal joint is determined by the contact force model.
Thus for a non-ideal joint b the contact and friction force at time
increment ti is expressed as

Fb
N,ti

= FN,ti
n,ti

Fb
�,ti

= �kFN,ti
n⊥

,ti

, (26)

where FN is the contact force and n is a unit normal vector point-
ing in the direction of contact. FN and n are describe in Eqs. (9)
and (14), respectively. The values of FN and n are computed during
the integration of the equations of motion. The incremental sliding
distance is also obtained at each increment:

�sti
= Rj · (˛ti

− ˛ti−1 ), (27)

where Rj is the bushing radius, ˛ti
is the angle difference (in radi-

ans) between the local x-axis of the two bodies i and j that share a
revolute joint (see Fig. 4) at a current time, and ˛ti−1 corresponds to
the difference at a previous time. The value of ˛t is obtained from

˛t = � i− �j.

4.2. Wear analysis

Wear analysis is the second part of the integration process. The
amount of wear is determined at each increment based on the reac-
tion force and sliding distance from the previous dynamic analysis.
The reaction force at each time increment is used to determine the
contact pressure (through a finite element analysis) between the
joint components (pin and bushing). Incremental wear can then be
computed and the geometry updated.

The wear prescribed by geometry update increases the clear-
ance. The inner perimeter of the bushing is altered from its circular
shape to one dictated by the wear. This implies that the value of c
in Eq. (15) is no longer a constant value and instead depends on the
location of contact C (as defined in Fig. 4 and Eq. (13)). Thus, the
value of c must also to be updated during the dynamic analysis:

c = ||rB − rD||, (28)

where rB and rD are the position vectors of the centers of pin and
bushing, respectively.

After the pin and bushing geometry is updated and the clear-
ance size adjusted to reflect the wear, another dynamic analysis is
performed. The wear depth is then computed based on the result of
the new dynamic analysis. The geometry and the clearance size are
once again updated. This process is iterated over the desired num-
ber of cycles. The process is summarized in the flowchart shown in
Fig. 9.

5. Demonstration of the integration process and
experiments for model validation

The integrated model is used here to predict the wear occurring
at the crank-follower joint of a slider-crank mechanism (Fig. 10).
Simulation results are compared to experimental data. This serves
as both a demonstration of the integration model as well as a vali-
dation of the process.

The goal of the experimental test is to determine the wear that
occurs at the joint between the crank and follower after several
thousand revolutions of the crank. This joint consists of a pin that
is attached to the crank and a bushing attached to the follower (the
driven-link or follower). The pin is made of hardened steel and is
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Fig. 10. Experimental apparatus for slider-crank mechanism.

Fig. 11. Bushing with debris grooves.

assumed to be hard enough so that no appreciable wear occurs
on its surface. The bushing, on the other hand, is made of polyte-
trafluoroethylene (PTFE) which is soft and is subject to considerable
wear. To enable the wear debris to escape the contact area and pre-
vent them from affecting the progression of wear, grooves were
machined into the bushing. A diagram of the bushing is shown in
Fig. 11.

In order to increase the joint reaction force and accelerate wear,
the setup included the capability to attach a spring to the slider.
The spring also ensured that the pin maintained contact with the
bushing at all times. The slider-crank mechanism was designed and
constructed to minimize friction and wear (to a negligible amount)
at all joints except at the joint of interest (joint between crank
and follower). This was achieved by using air bearing at the joints
between the follower and slider and between the slider and ground
[42]. The dimensions and mass parameters for the experimental
slider-crank are shown in Table 3. Other test parameters including
the friction and wear coefficient, crank velocity, and spring constant
are provided in Tables 4 and 5.

To validate the integrated model, experimental results are com-
pared to simulation results. In both cases, 21,400 crank cycles were
executed. In Fig. 12, the joint reaction force at the non-ideal joint is
compared. It is seen that the simulation closely predicts the reaction
force except for some peaks that occurs at half crank rotation. These
peaks are attributed to the direction change when the slider briefly

Table 3
Dimensions and mass properties of the slide-crank mechanism.

Length (m) Mass (kg) Inertia (×10−6 kg m2)

Crank 0.0381 0.4045 204.0
Follower 0.1016 0.8175 5500.0
Slider – 5.5487 –

Table 4
Properties of the pin and bushing.

Pin Bushing

Initial radius 9.525 mm 9.535 mm
Poisson’s ratio 0.29 0.38
Young’s modulus 206.8 GPa 0.139 GPa

Table 5
Test and simulation parameters.

Properties Value

Crank (link-1) velocity 30 rpm
Spring constant 525.4 N/m
Friction coefficient 0.15
Wear coefficient [39] 5.05 × 10−4 mm3/Nm

Fig. 12. Experimental and simulation results for initial joint reaction force.

Fig. 13. Comparison of the wear on the bushing (the numbers on the ordinate are
in micrometers).

impacts the sliding rail and resulting in the higher order dynamics.
However, these peaks do not appreciably affect wear calculation
because the sliding distance at this location is very small. Compar-
ison of the wear on the bushing and the worn profile is shown in
Fig. 13. In Table 6, the worn mass as well as the maximum wear
depth for both the experiment and the simulation is compared.
For both quantities the simulation provides a reasonably accurate
prediction.

Table 6
Wear results from simulation and experiment (21,400 crank cycles).

Experimental wear test Simulation wear test Error

Worn mass 0.1714 g 0.1589 g 7.2%
Max wear depth 0.4850 mm 0.4524 mm 6.7%
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Fig. 14. Location of contact point C as predicted by the integrated model.

It was mentioned earlier that wear prediction at a non-ideal
joint requires a multibody framework. This is because the location
of contact and thus the region of wear cannot be otherwise deter-
mined. In the validation tests the correct contact locations were
predicted. In Fig. 13, the maximum wear is seen to occur at about �
angle (in the bushing angular coordinate) for both the experiment
and the simulation. In terms of the dynamic analysis, this contact
location corresponds to point C (as defined in Fig. 4). The plot of the
contact point C, for a complete crank cycle, is shown in Fig. 14. This
plot further confirms that the region of maximum wear would be
on the left side of the bushing and thus correctly predicted.

It should be mentioned that the region of wear in the validation
tests were restricted to one side of the bushing. This occurrence is

Fig. 15. Location of contact point C as predicted by the integrated model for slider-
crank describe in Tables 1 and 2.

Fig. 16. Wear profile on the bushing for the slider-crank describe in Tables 1 and 2.

indeed specific to this system particularly because a pre-tensioned
spring was attached to the slider. For other systems the wear may
not be restricted to one location. In such a case the need for wear
prediction in a multibody dynamics framework becomes imme-
diately apparent (since the location of contact would have to be
determined through a dynamic analysis). An example of this is the
slider-crank with parameters shown in Tables 1 and 2. This mech-
anism is larger (greater inertia) than the one used in the validation
and no spring is attached to the slider. As a result wear on the bush-
ing is expected to occur at various locations on the bushing. This
is initially evident from the plot of contact point C for this system
as seen in Fig. 15. The location of contact is concentrated on both
halves of the bushing in contrast to the previous case. Results from
a wear analysis for this case are shown in Fig. 16, which provides
further confirmation.

6. Summary and concluding remark

A procedure to analyze planar multibody systems experienc-
ing wear at the revolute joint was presented. The procedure
incorporates the effects of non-ideal revolute joint and therefore
includes joint clearance. Unlike the ideal joint which uses kine-
matic constraints to restrict the motion of the joint components,
the non-ideal joint uses force constraints to guide the motion of
the joint components. The procedure assumes that the joint com-
ponents can exhibit one of three configurations: (1) free-flight; (2)
impact; and (3) following motion. In the case of the free-flight, no
contact occurs between the components. This situation is modeled
by requiring zero contact/reaction force so that no restriction is
imposed on the motion of the joint components. For the impact
and following motion, contact between the joint components is
established. Contact force is developed based on the amount of
penetration experienced during contact. By applying the contact
force on the opposing joint components, the force constraints are
enforced. Wear can then be incorporated by allowing the con-
tact surfaces of the joint components to evolve while iteratively
performing the dynamic analysis. The evolution is dictated by an
iterative wear prediction procedure which estimates wear based
on the joint reaction force and the relative sliding distance between
the joint components.
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The procedure was demonstrated using a slider-crank mecha-
nism that experiences wear at a single joint. Wear predictions from
the analysis show reasonable agreement with those from an exper-
imental slider-crank mechanism. Another analysis was conducted
to emphasize the need for performing wear prediction (for such
systems) in a multibody dynamics framework. The main issue is
that the location of contact (between the joint components) can-
not be determined beforehand, but requires an analysis of the entire
system.
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