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Abstract Accurate estimation of reliability of a system is
a challenging task when only limited samples are avail-
able. This paper presents the use of the bootstrap method to
safely estimate the reliability with the objective of obtain-
ing a conservative but not overly conservative estimate.
The performance of the bootstrap method is compared with
alternative conservative estimation methods, based on bias-
ing the distribution of system response. The relationship
between accuracy and conservativeness of the estimates is
explored for normal and lognormal distributions. In partic-
ular, detailed results are presented for the case when the
goal has a 95% likelihood to be conservative. The boot-
strap approach is found to be more accurate for this level of
conservativeness. We explore the influence of sample size
and target probability of failure on the quality of estimates,
and show that for a given level of conservativeness, small
sample sizes and low probabilities of failure can lead to a
high likelihood of large overestimation. However, this like-
lihood can be reduced by increasing the sample size. Finally,
the conservative approach is applied to the reliability-based
optimization of a composite panel under thermal loading.
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Nomenclature

Pf Probability of failure
P̂f Estimate of probability of failure
β Reliability index
MCS Monte-Carlo simulations
CDF Cumulative Distribution Function
G Limit-state function
FG CDF of limit-state G
θ Distribution parameters
θ̂ Estimate of distribution parameters
RMS Root mean square
CSP Conservative at sample point
CEC Conservative to the empirical curve
CVaR Conditional value-at-risk
PRS Polynomial response surface

1 Introduction

When an engineering system has uncertainty in its input
parameters and operating conditions, the safety of the sys-
tem can be evaluated in terms of reliability. Many methods
have been proposed to estimate the reliability of a system,
such as Monte Carlo simulation (MCS) method (Haldar
and Mahadevan 2000), First and Second-order Reliability
Method (Enevoldsen and Sørensen 1994; Melchers 1999),
importance sampling method (Engelund and Rackwitz
1993), tail modeling (Kim et al. 2006), and inverse meth-
ods (Qu and Haftka 2004). MCS is often used to estimate
the reliability of the system that has many random inputs or
multiple failure modes because its accuracy is independent
of the complexity of the problem. In this paper, reliability
analysis using MCS method is considered. The compari-
son between various reliability analysis methods is beyond
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the scope of the paper and can be found in the literature
(Rackwitz 2000; Lee et al. 2002).

When the cost of simulation is high, engineers can afford
to have only a limited number of samples, which is not suf-
ficient to estimate the reliability with acceptable accuracy
(Ben-Haim and Elishakoff 1990; Neal et al. 1991). In such
cases, it is often required to compensate for the lack of accu-
racy with extra safety margins. For example, Starnes and
Haftka (1979) replaced the linear Taylor series approxima-
tion with a tangent approximation biased to be conservative
in order to reduce the chance of unconservative approxima-
tions to buckling loads. Many engineering applications have
adopted conservative estimation. For example, the Federal
Aviation Administration requires the use of conservative
failure stress of the design of aircraft structures, using A- or
B-basis stresses based on redundancy. The A-basis failure
stress is the value of a failure stress exceeded by 99% (or
90% for B-basis) of the population with 95% confidence.
In the same context, anti-optimization (Elishakoff 1990; Du
et al. 2005) and possibility-based design (Du et al. 2006;
Choi et al. 2005) are used to compensate for the lack of
knowledge in the input distribution by seeking the worst
case scenario for a given design. Such approaches have
been found to lead to conservative designs (Nikolaidis et al.
2004). Bayesian reliability-based optimization (Youn and
Wang 2007) uses Bayesian theory to ensure production of
reliable designs when insufficient data is available for the
inputs.

In this paper, we focus on the case when the probabil-
ity of failure, Pf , of a system is estimated from a limited
number of samples. The objective is to find a conserva-
tive estimate, P̂f , that is likely to be no lower than the true
Pf . To provide such estimation, two alternatives are con-
sidered: the first method is based on biasing the process of
fitting the distribution used to compute the estimator of Pf .
The second is the use of the bootstrap method (Efron 1982;
Chernick 1999) to quantify the uncertainty in probability
of failure estimations, and defining conservative estimators
based on bootstrapping. As the conservative estimations
tend to overestimate the probability of failure, a trade-off
analysis between accuracy and the level of conservativeness
(i.e., chance of being conservative) is proposed with the help
of numerical examples.

In the next section, we discuss how we use sampling
techniques to estimate the probability of failure. Section 3
shows how to use constraints to obtain conservative esti-
mators. Section 4 describes the bootstrap method and how
to use it to define conservative estimators. The accuracy
of such estimators is analyzed using a simple numerical
example in Section 5, and an analysis of the effects of sam-
ple sizes and target probability of failure on the quality of
conservative estimators is given in Section 6. Finally, the

conservative approach is applied to an engineering problem
in Section 7, followed by concluding remarks in Section 8.

2 Estimation of probability of failure from samples

2.1 Limit-state and probability of failure

Failure of a system can usually be determined through a cri-
terion, called a limit-state, G. The limit-state is defined so
that the system is considered safe if G < 0 and fails oth-
erwise. For instance, the limit-state of a structure can be
defined as the difference between response, R, (e.g., max-
imum stress or strain) and capacity, C , (e.g., maximum
allowable stress or strain):

G = R − C (1)

Due to uncertainties in material properties and loadings, the
limit-state is random, and the safety of the system should
be evaluated in terms of reliability or probability of failure.
The probability of failure is defined as

Pf = Prob(G ≥ 0) (2)

There are many methods for calculating the failure proba-
bility of a system (Haldar and Mahadevan 2000; Enevoldsen
and Sørensen 1994; Melchers 1999). Some of them use the
relation between input random variables and the limit-state
(e.g., first-order reliability method) and others consider the
limit-state as a black-box output (e.g., MCS). When the
number of input random variables is large, and the limit-
state is complex and multi-modal, MCS has a particular
advantage as its accuracy is independent of the problem
dimension or complexity of G. MCS generates samples
of the limit-state and counts the number of failed sam-
ples (Melchers 1999). The ratio between the numbers of
failures and the total number of samples approximates the
probability of failure of the system.

The variance of MCS estimates is inversely proportional
to the square root of the number of samples times the prob-
ability of failure. Thus, accuracy is poor when the number
of samples is small or when the probability of failure is low.
For instance, if a probability of failure of 10−4 is estimated
(which is a typical value in reliability based design), 106

samples are needed for 10% relative error.
When the cost of simulation is high, engineers can afford

to have only a limited number of samples, and it is not good
enough to estimate the reliability with acceptable accu-
racy (Ben-Haim and Elishakoff 1990; Neal et al. 1991). In
such a case, it is possible to approximate the cumulative
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distribution function (CDF) FG using a limited number of
samples g1, g2,.., gn of the limit-state, and estimate the
probability of failure using:

Pf = 1 − FG(0) (3)

In this work, we consider the case where the number of
samples is between 20 and 1,000.

The samples of limit states can be obtained by generating
input random variables and propagating through the system.
However, the proposed method can be applied to the case
when input random variables and uncertainty propagation
are unknown. For example, the samples of limit states can
be obtained from experiments.

In the following section, two methods of estimating
distribution parameters from a set of samples are discussed.

2.2 Estimation of distribution parameters

In general, the CDF FG in (3) is unknown and is often
approximated by fitting empirical CDF. First, the limit-
state is assumed to follow a parametric distribution Fθ ,
which is defined by distribution parameters, θ. Then,
the parameters are estimated by minimizing differences
between the empirical CDF and Fθ . Compared to other tech-
niques, such as moment-based methods, this method is of
interest because it can be modified to build conservative
estimates.

Consider n limit-state samples arranged in increasing
order: (g1 ≤ g2 ≤ · · · ≤ gn). The empirical CDF Fn is
defined as:

Fn(g) =

⎧
⎪⎨

⎪⎩

0 for g ≤ g1

k/n for gk ≤ g ≤ gk+1

1 for g ≥ gn

(4)

It is then possible to estimate the parameters θ of the
CDF that approximates Fn best. Two different approx-
imation methods are discussed here: (1) minimizing
the root-mean-square (RMS) error, and (2) minimizing
the Kolmogorov–Smirnov distance (Kenney and Keeping
1951).

To minimize the RMS difference between the empirical
and the estimated CDF, errors are calculated at the sample
points. In order to have an unbiased estimation, the values
of the empirical CDF are chosen at the middle of the two
discrete data, as (see Fig. 1):

F ′
n(gk) = k − 1

2

n
, 1 ≤ k ≤ n. (5)

G

Fig. 1 Points (circles) chosen to fit an empirical CDF (line) obtained
by ten samples from N (0,1)

Then the estimated parameters θ̂ are chosen to minimize
the following error:

θ̂ = arg min
θ

√
√
√
√

n∑

k=1

[
Fθ(gk) − F ′

n(gk)
]2 (6)

where ‘arg min’ is the values of parameters that minimize
the error. The estimate based on (6) is called an ‘RMS
estimate’.

The Kolmogorov–Smirnov (K-S) distance is the classical
way to test if a set of samples are representative of a distri-
bution. The K-S distance is equal to the maximum distance
between two CDFs (see Fig. 2). The optimal parameters for
the K-S distance are:

θ̂ = arg min
θ

[

max
1≤k≤n

(∣
∣
∣
∣Fθ (gk) − k

n

∣
∣
∣
∣ ,

∣
∣
∣
∣Fθ (gk) − k − 1

n

∣
∣
∣
∣

)]

(7)

Figure 1 shows the empirical CDF from ten samples and
the data points that are used in (5). Figure 2 shows the
K-S distance between a normally distributed CDF and an
empirical CDF from 10 samples.

For the cases we consider in this work, it is found
that the two criteria give equivalent results. K-S distance
links to classical statistical framework, but can be diffi-
cult to minimize because it is non-smooth. The RMS error
minimization appears to be more robust.
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Fig. 2 K-S distance between an empirical CDF with ten samples and
a normal CDF (continuous line)

Once the distribution parameters are estimated, the proba-
bility of failure in (3) can be estimated by

P̂f = 1 − F
θ̂

(0) (8)

The choice of the distribution Fθ is critical for accurate
estimation of the probability of failure. Wrong assump-
tion on the form of the distribution can lead to large
bias in the estimate, for instance, if the distribution is
assumed to be normal while it is heavy-tailed. Statistical
techniques are available to test if a sample belongs to a
given distribution type (goodness-of-fit tests), such as the
Kolmogorov–Smirnov (for any distribution) or Lilliefors or
Anderson–Darling tests (for normal distributions) (Kenney
and Keeping 1951). Some statistical software also offers
automated procedures to choose from a benchmark of which
distributions best fit the data.

3 Conservative estimates using constraints

As shown in the previous section, fitting a distribution to a
set of samples can be seen as an optimization problem. The
key idea of this section is adding various constraints to this
fitting problem so that the resulting estimate becomes con-
servative. As the process makes the distribution less accu-
rate, the trade-off between conservativeness and accuracy
becomes important.

A conservative estimate of the probability of failure
should be equal or higher than the actual one. From the
expression of the probability of failure given in (3), a

conservative estimate can be obtained by constraining the
estimated CDF to be lower than the true CDF when the
parameters are found through the optimization problems in
(6) or (7). Only small probabilities are considered, so the
failure occurs in the upper tail region of the distribution.
Hence, the constraints are applied to only the right half of
the data. However, if the failure occurs in the lower tail
region, the constraints should be applied on the left half of
the data.

The first conservative estimate of the CDF is obtained by
constraining the estimate to pass below the sampling data
points. A second can be obtained by constraining the esti-
mated CDF below the entire empirical CDF. They will be
called, respectively, CSP (Conservative at Sample Points)
and CEC (Conservative to Experimental CDF). The latter is
more conservative than the former. Obviously, both methods
introduce bias, and the choice between the two constraints is
a matter of balance between accuracy and conservativeness.

CSP constraints:

Fθ (gi ) − i

n
≤ 0 for

n

2
≤ i ≤ n (9)

CEC constraints:

Fθ (gi ) − i − 1

n
≤ 0 for

n

2
≤ i ≤ n (10)

To illustrate these conservative estimators, ten samples
are generated from a random variable G whose distribu-
tion is N (−2.33, 1.02). The mean is chosen in such a way
that the probability of failure is 1%. Assuming that the

Xlimit

Fig. 3 Example of CDF estimators based on RMS error for a sample
of size 10 generated from N (−2.33, 1.02)
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Table 1 Comparison of the mean, standard deviation, and probability
of failure of the three different CDF estimators for N (−2.33, 1.02)

No constraint CSP CEC

μ̂ −2.29 −2.34 −2.21

σ̂ 0.84 0.97 1.31

P̂f 0.32% 0.77% 4.65%

Exact value of Pf is 1%

distribution parameters are unknown, the estimated CDF
can be written as

Fθ (g) = 1

σ
√

2π

g∫

−∞
exp

[
− (u − μ)2

2σ 2

]

du (11)

where θ = {μ, σ } is the vector of unknown distribution
parameters. Using the form of estimated CDF, the distribu-
tion parameters can be found by solving the optimization
problems in (6) and (7). In addition, conservative estimates
can be found by solving the same optimization problems
with constraints in (9) or (10). Figure 3 shows the empirical
CDF along with the three estimates based on the minimum
RMS error: (1) with no constraint, (2) with CSP constraints,
and (3) with CEC constraints. Table 1 shows the parameters
of the three estimated distributions and the corresponding
probabilities of failure.

The effect of the constraints is clear from the graph. The
CSP estimator is shifted down to the ninth data point; hence,
the CDF at the tail is decreased. The CEC estimator is
shifted even further down. Since the conservative estima-
tors are unconstrained on the left half of the distribution,
their CDF curves cross the empirical curve on that side.

For this illustration, we chose a sample realization that
is unfavorable for conservativeness. As a consequence,

the estimate with no constraint is strongly unconservative
(0.32% compared to 1.0%) even though the estimation is
unbiased. The CSP estimate is unconservative but substan-
tially less than the unbiased estimate, while the CEC esti-
mate is conservative. In order to generalize these results and
derive reliable conclusions, statistical experiments based
on large numbers of simulations will be performed in
Section 5.

4 Conservative estimates using the bootstrap method

An alternative to biased fitting is to obtain confidence inter-
vals for the probability of failure estimates in order to
determine the margin needed to be conservative. However,
analytical derivation of confidence intervals for the prob-
ability of failure is very challenging. To overcome this
problem, we propose to obtain confidence intervals using
numerical procedures, i.e. bootstrap method.

4.1 Bootstrap method

When only limited samples are available, the bootstrap
method can provide an efficient way of estimating the dis-
tribution of statistical parameter θ using the re-sampling
technique (Efron 1982; Chernick 1999). The idea is to cre-
ate many sets of bootstrap samples by re-sampling with
replacement from the original data.

This method only requires the initial set of samples.
Figure 4 illustrates the procedure of the bootstrap method.
The size of the initial samples is n and the number of boot-
strap re-samplings is p. Each re-sampling can be performed
by sampling with replacement n data out of the n initial sam-
ples (hence, the bootstrap samples contain repeated values
from the initial samples and omit some of the initial values).

Initial sample, size n 
(Unknown distribution)

Resampling with 
replacement, size n 

p bootstraps 
. . . .

Estimate 
bootθ̂  from bootstrap sample 

p estimates of θ

Empirical distribution of θ̂  estimator 

Resampling with 
replacement, size n 

Estimate 
bootθ̂  from bootstrap sample 

Fig. 4 Schematic representation of bootstrapping. Bootstrap distribution of θ (histogram or CDF of the p estimates) is obtained by multiple
re-sampling (p times) from a single set of data
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Since the re-sampling process draws samples from the exist-
ing set of samples, it does not require additional simulations.
For example, if the initial set of samples consists of (g1, g2,
g3, g4), the bootstrap method randomly selects four samples
with replacement. Examples of bootstrap samples are (g1,
g1, g2, g4), (g4, g2, g2, g3), etc. The parameter θ , such as
the mean or standard deviation, is estimated for each set of
bootstrap samples. Since the re-sampling procedure allows
for selecting data with replacement, the statistical properties
of the re-sampled data are different from those of the origi-
nal data. Then, the set of p bootstrap estimates θ̂boot defines
an empirical distribution of θ . This approach allows us to
estimate the distribution of any statistical parameter without
requiring additional data.

The standard error or confidence intervals of the statis-
tical parameter can be estimated from the bootstrap distri-
bution. However, the bootstrap method provides only an
approximation of the true distribution because it depends on
the values of the initial samples. In order to obtain reliable
results, it is suggested that the size of the samples should be
larger than 100 (i.e., n) (Efron 1982). The number of boot-
strap re-samplings (i.e., p) is chosen to be large enough so
that it does not affect the quality of the results (the major
source of uncertainty being the initial sample). The value of
p is typically taken from 500 to 5,000.

4.2 Estimation of probability of failure using
the bootstrap method

To illustrate the process, the following case is considered:
n = 100 and p = 5,000. That is, 100 samples of a ran-
dom variable G are generated from the normal distribution
N (−2.33, 1.02). The mean of −2.33 is chosen in such a way
that the true probability of failure Prob(G ≥ 0) is 1.0%.
Pretending that the statistical parameters (mean μ, stan-
dard deviation σ , or probability of failure Pf ) are unknown,
these parameters along with their confidence intervals will
be estimated using the bootstrap method.

Using the given set of 100 initial samples, 5,000 boot-
strap re-samplings are performed. Similar to the conserva-
tive estimations in the previous section, the distribution type
is first assumed to be normal. Using each set of bootstrap re-
samples, the mean μ̂ and standard deviation σ̂ are estimated,
from which the estimated probability of failure P̂f is calcu-
lated. The 5,000 P̂f values define the empirical bootstrap
distribution of the estimator P̂f .

The empirical bootstrap distribution can be used to mini-
mize the risk of yielding unconservative estimates. In other
words, we want to find a procedure that calculates the
following quantity:

α = P
(

P̂f ≥ Pf

)
(12)
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Fig. 5 Conservative estimators of Pf from bootstrap distribution: 95th
percentile (p95) and mean of the 10% highest values (CVaR)

A procedure that satisfies (12) is called an α-conservative
estimator of Pf . For example, if α = 0.95 is desired, then
P̂f is selected at the 95th percentile of the bootstrap distri-
bution of the estimated probability of failure. This estimator
is referred as ‘Bootstrap p95’ (see Fig. 5). Due to the finite
sample size, however, (12) is satisfied only approximately.

Besides this α-conservative estimator, the mean of the
δ-highest bootstrap values (conditional value-at-risk CVaR,
(Holton 2003)) is also used as a conservative estimate. Here
δ = 10% is used, so the estimator consists of the mean of
the 10% highest bootstrap values. Since CVaR is a mean
value, it is more stable than the α-conservative estimator.
However, it is difficult to determine the value of δ that
makes (12) satisfied precisely. This estimator is referred to
‘Bootstrap CVaR 90’ (see Fig. 5). Note that any bootstrap
percentile higher than 50% is a conservative estimator. A
very high α or low δ increases the value of P̂f and yields
over-conservative estimation.

5 Accuracy and conservativeness of conservative
estimates for normal distribution

The goal of this section is to evaluate the accuracy and the
conservativeness of the estimators presented in Sections 3
and 4 when the actual distribution and Pf is known to be
normal. Statistical measures of the estimators are evaluated
by estimating Pf a large number of times.

We also introduce here the reliability index, which is de-
noted by β and related to the probability of failure as:

β = −�−1(Pf ) (13)

where � is the CDF of the standard normal distribution.
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The reliability index is often used instead of Pf in
reliability-based design because the range of β (typically
between one and five) is more convenient and its variability
is lower than Pf . It is important to note that since −�−1

is a monotonically decreasing function, a low probability
corresponds to a high reliability index. Thus, a conser-
vative estimation of β should not overestimate the true β

(since a conservative estimation should not underestimate
the true Pf ). In the following, we present the results for
both probability of failure and reliability index.

First, 100 samples of G are randomly generated from the
normal distribution with mean −2.33 and standard devia-
tion 1.0. The failure is defined as G ≥ 0, which corresponds
to an actual probability of failure of 1.0%. For a given set
of samples, different estimators are employed to estimate
Pf . Five different estimators are compared: the unbiased
fitting, CSP, CEC, Bootstrap p95, and Bootstrap CVaR90
estimators. This procedure is repeated 5,000 times in order
to evaluate the accuracy and conservativeness of each esti-
mator. For the unbiased, CSP and CEC estimators, we
tested both RMS and Kolmogorov–Smirnov distance crite-
ria and found that their performance was comparable but
using K-S distance slightly increased variability. So, results
are presented for RMS criterion only.

Most of the estimated values exceed the actual probabil-
ity of failure, but it is desirable to maintain a certain level of
accuracy. Thus, the objective is to compare each estimator
in terms of accuracy and conservativeness. N (−2.33, 1.02)

Table 2 shows the statistical results from 5,000 repeti-
tions. Results are presented in the form of the mean value
and the 90% symmetric confidence interval [5%; 95%]. For
the probability of failure estimates, the lower bound of the
confidence interval shows the conservativeness of the esti-
mator; the mean and the upper bound show the accuracy and
the variability of the estimator. A high lower bound means a
high level of conservativeness, but a high mean and upper

bound mean poor accuracy and high variability. For the
reliability index estimates, the upper bound shows the con-
servativeness and the mean and lower bound the accuracy
and variability.

First, the confidence interval of the unbiased estimator
illustrates the risk of unconservative prediction: indeed, the
lower bound is 0.37%, which means there is a five per
cent chance to underestimate Pf by a factor of at least 2.7
(1.0/0.37 = 2.7). This result provides an incentive for find-
ing a way to improve the conservativeness of the probability
estimate.

The CSP and CEC estimators are biased on the conser-
vative side. As expected, the CEC is more conservative than
the CSP. As a consequence, CEC is more biased and the risk
of large overestimation is increased. The CEC confidence
interval shows that there is a 5% chance of overestimat-
ing Pf by at least a factor of 5.5, while this value is 3.6
for the CSP estimator; on the other hand, the CEC leads
to 94% conservative results, while the CSP estimator leads
to only 82% conservative results. The choice between the
CSP and CEC estimators is a choice between accuracy and
conservativeness.

The Bootstrap p95 estimator achieves 92% conserva-
tiveness and the Bootstrap CVaR90 93% conservativeness.
From the upper bounds of both estimations, we find that the
risk of overestimating Pf by at least a factor of 3.7 is 5%.

The amplitude of error in the reliability index β is much
lower than the amplitude in the probability of failure. For the
CEC estimator, the lower bound of the confidence interval
corresponds to 31% error ((2.33 − 1.6)/2.33 = 0.31). For
the bootstrap estimators, this error is reduced to 23%. The
mean errors are 16% and 11%, respectively.

Bootstrap methods appear to be more efficient than the
biased fitting (CSP and CEC) in terms of accuracy and
conservativeness. For the equivalent level of conservative-
ness (92–94%), the level of bias is reduced and the risk of

Table 2 Means and confidence
intervals of different estimates
of P(G ≥ 0) and corresponding
β values where G is the normal
random variable
N (−2.33, 1.02)

*Refers to the percent of the
5,000 simulation runs that
resulted in a conservative
estimate for each method

Estimators Statistics obtained over 5,000 simulations

Pf (%) β % of cons.

90% C.I. Mean 90% C.I. Mean results*

Unbiased [0.37; 2.1] 1.02 [2.0; 2.7] 2.34 48

CSP [0.63; 3.6] 1.86 [1.8; 2.5] 2.12 82

CEC [0.95; 5.5] 2.97 [1.6; 2.3] 1.96 94

Boot. p95 [0.83; 3.7] 2.06 [1.8; 2.4] 2.07 92

Boot. CVaR90 [0.88; 3.8] 2.15 [1.8; 2.4] 2.05 93

Actual 1.00 2.33
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Fig. 6 Mean and confidence intervals of the bootstrap p95 conservative estimators for Normal distribution based on a 100, b 200, and c 500
samples. x-axis is the true probability (lognormal scale), and y-axis is the ratio between the estimate and the true probability. Variability increases
when target probability or sample size are smaller

overestimation is lower when the bootstrap method is used.
However, as mentioned earlier, the bootstrap method needs
a minimum sample size to be used. It has been observed
that when very small samples are available (10 to 50 data),
the accuracy of the bootstrap method drops dramatically.
In such a case, optimization-based methods should be used
instead.

6 Effect of sample sizes and probability of failure
on estimates quality

In the previous section, we showed that the bias in the
conservative estimate can lead to large overestimations of
the probability of failure. The magnitude of such an error
mainly depends on two factors: the sample size and the
value of the true probability. Indeed, increasing the sam-
ple size will reduce the variability of CDF fitting and, as
a consequence, the upper bound of the confidence interval.
Meanwhile, in order to estimate a lower value of the prob-
ability of failure, we need to use the tail of the CDF, which
increases the variability of the estimation.

Controlling the level of uncertainty is crucial in opti-
mization in order to avoid over-design. In this section, we
quantify a measure of the uncertainty in the conservative
estimate as a function of the sample size and the value of
the actual Pf . Such a measure can help with deciding on the
appropriate sample size to compute the estimate.

Bootstrap p95 performed well based on the previous
example. Thus, in this section we consider only this esti-
mator. We study two distribution cases: standard normal
distribution and lognormal distribution with parameters μ =
0 and σ = 1 (mean and standard deviation of the loga-

rithm of the variable). Three sample sizes are considered:
100, 200, and 500 and seven probabilities of failure are esti-
mated: (1 × 10−5, 3 × 10−5, 1 × 10−4, 3 × 10−4, 1 × 10−3,
3 × 10−3 and 1 × 10−2).1

For a given distribution, sample size, and Pf , the mean
and 90% confidence intervals are calculated using 5,000
repetitions. Results are presented in Fig. 6 for normal dis-
tribution and in Fig. 7 for lognormal. The accuracy is
measured in terms of ratios of the estimate over the true
probability of failure.

As expected, the variability of P̂f increases when the
sample size and actual Pf decrease. Here, the most unfa-
vorable case is when the sample size is equal to 100 and the
actual Pf is equal to 10−5. In such a case, for both distri-
butions there is a 5% chance to overestimate Pf by more
than 25 times its actual value! On the other hand, the case
with 500 samples leads to a very reasonable variability. For
the three sample sizes and all target probabilities, the lower
bound of the ratio is equal to one, which means that the
95% conservativeness does not depend on these factors. The
bootstrap estimate performances are remarkably similar for
the two distributions, even though the distribution shapes
are very different.

For any given reliability analysis problem, careful atten-
tion needs to be given to the accuracy of probability of
failure estimates. The graphs in Figs. 6 and 7 address this
issue. They show the confidence intervals and therefore
define adequate sample sizes needed to compute reliable
estimates. In terms of cost-effectiveness, the figures indicate

1For the normal distribution, the failures are defined for G greater,
respectively, than 4.26, 4.01, 3.72, 3.43, 3.09, 2.75 and 2.33; for
the lognormal case, the values are 71.2, 55.3, 41.2, 30.9, 22.0, 15.6
and 10.2.
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Fig. 7 Mean and confidence intervals of the bootstrap p95 conservative estimators for lognormal distribution based on a 100, b 200, and c 500
samples. Results are almost identical to the normal distribution case

that it may be smart to allocate greater number of simu-
lations to low probability designs than to high probability
design in order to get a constant level of relative accuracy.

7 Application to a composite panel under
thermal loading

In this section, conservative estimates are obtained for the
probability of failure of a composite laminated panel under
mechanical and thermal loadings. The panel is used for a
liquid hydrogen tank. Cryogenic operating temperatures are
responsible for large residual strains due to the different
coefficients of thermal expansion of the fiber and the matrix,
which is challenging in design.

Qu et al. (2003) performed the deterministic (with safety
factors) and probabilistic design optimizations of composite
laminates under cryogenic temperatures using response sur-
face approximations for probability of failure calculations.
Acar and Haftka (2005) found that using CDF estimations
for strains improves the accuracy of probability of fail-
ure calculation. In this paper, the optimization problem
addressed by Qu et al. (2003) is considered. The geometry,
material parameters, and the loading conditions are taken
from their paper.

7.1 Problem definition

The composite panel is subject to resultant stress caused
by internal pressure (Nx = 8.4 × 105 N/m and Ny =
4.2 × 105 N/m) and thermal loading due to the operating
temperature in the range of 20 K–300 K. The objective
is to minimize the weight of the composite panel that is

made of a symmetric balanced laminate with two ply angles
[±θ1, ±θ2]s (that means an eight-layer composite). The
design variables are the ply angles and the ply thicknesses
[t1, t2]. The geometry and loading condition are shown
in Fig. 8. The thermal loading is defined by a stress free
temperature of 422 K, and working temperature of 300 K
to 20 K. The material used in the laminates composite
is IM600/133 graphite-epoxy, defined by the mechanical
properties listed in Table 3.

The minimum thickness of each layer is taken as 0.127 mm,
which is based on the manufacturing constraints as well as
preventing hydrogen leakage. The failure is defined when
the strain values of the first ply exceed failure strains. The
deterministic optimization problem is formulated as:

Minimize
t1,t2,θ1,θ2

h = 4 (t1 + t2)

s.t. t1, t2 ≥ 0.127
εL

1 ≤ SFε1 ≤ εU
1

εL
2 ≤ SFε2 ≤ εU

2
SF |γ12| ≤ γ U

12

(14)

where the safety factor SF is chosen at 1.4.

2  1

 NX +θ
-θ

NY 

Fig. 8 Geometry and loading of the cryogenic laminate
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Table 3 Mechanical properties of IM600/133 material

Elastic properties E1 (GPa) 147

v12 0.359

E2* (GPa) [14 8]

G12* (GPa) [8 4]

Coefficients of α1* (K−1) [−5 × 10−7 −1.5 × 10−7]
thermal expansion α2* (K−1) [1 × 10−5 3 × 10−5]

Stress-free temperature Tzero (K) 422

Failure strains εU
1 0.0103

εL
2 −0.013

εU
2 0.0154

γ U
12 0.0138

*Temperature dependent; the numerical values in the bracket are the
range for T going from 20 to 300 K

The analysis of the structural response is based on the
classical lamination theory using temperature-dependent
material properties. E2, G12, α1 and α2 are functions of
temperature. Since the design must be feasible for the entire
range of temperature, strain constraints are applied at 21 dif-
ferent temperatures, which are uniformly distributed from
20 K to 300 K. Details on the analysis and the temperature
dependence of the properties are given in Qu et al. (2003).
Their solutions for the deterministic optimization problem
are summarized in Table 4. For those results, t1 and t2 were
chosen only as multiples of 0.127 mm. Three optima are
found with equal total thickness but different ply angles and
ply thicknesses.

7.2 Reliability-based optimization problem

Given the material properties and design variables, the
ply strains can be calculated using the classical lamination
theory (Kwon and Berner 1997). Due to the manufactur-
ing variability, the material properties and failure strains
are considered random variables. All random variables are
assumed to follow uncorrelated normal distributions. The
coefficients of variation are given in Table 5. Since E2, G12,
α1 and α2 are functions of the temperature, the mean values
of the random variables are calculated for a given temper-

Table 4 Deterministic optima found by Qu et al. (2003)

θ1 (deg) θ2 (deg) t1 (mm) t2 (mm) h (mm)

27.04 27.04 0.254 0.381 2.540

0 28.16 0.127 0.508 2.540

25.16 27.31 0.127 0.508 2.540

Table 5 Coefficients of variation of the random variables

E1, E2, G12, v12 α1, α2 Tzero εL
1 , εU

1 εL
2 , εU

1 , γ U
12

0.035 0.035 0.03 0.06 0.09

ature, and then, a set of random samples are generated
according to their distributions.

The transverse strain on the first ply (direction 2 in Fig. 8)
turns out to be the most critical, and the effect of other
strains on the probability of failure is negligible. Hence, the
limit-state is defined as the difference between the critical
strain and the failure strain:

G = ε2 − εU
2 (15)

Note that the safety factor is not applied in the definition of
limit state. The probability of failure is defined in (3) using
the distribution FG of the limit-state.

In order to determine which distribution type fits the best
the limit-state G, we generated 1,000 samples at each of the
three first optimum designs. Using a Lilliefors test (Kenney
and Keeping 1951), we found that all the samples belong
to a normal distribution. Hence, we assumed that the limit-
state G is normally distributed for any design.

One might prefer not to assume a single distribution type
over the design domain and test several distributions to find
the one that fits best the data. Such a procedure is necessary
for instance when the limit-state distribution varies from
normal to heavy-tail within the design domain; assuming
a single distribution can lead to large error in the reliabil-
ity estimation. More generally, one has to keep in mind
that the method proposed here can become hazardous if the
determination of the distribution type is uncertain.

In our case, since the three designs considered are quite
different from one another and have the same limit-state dis-
tribution, it is reasonable to assume that the limit-state distri-
bution is always normal, hence reducing the computational
burden.

The reliability-based optimization replaces the con-
straints on the strains in (14) by a constraint on the prob-
ability of failure. The target reliability of the cryogenic tank
is chosen as 10−4. Since the probability of failure can have
a variation of several orders of magnitude from one design

Table 6 Variable range for
response surface Variables Range

θ1, θ2 (deg) [20 30]

t1, t2 (mm) [0.127 0.800]
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Table 7 Statistics of the PRS
for the reliability index based on
the unbiased and conservative
data sets

Data sets R2 F p-value

Unbiased estimates
{
β̂

(1)
unb, β̂

(2)
unb, . . . , β̂

(m)
unb

}
0.96 138 <10−6

Bootstrap conservative estimates
{
β̂

(1)
cons , β̂

(2)
cons , . . . , β̂

(m)
cons

}
0.96 136 <10−6

to another, it is preferable to solve the problem based on the
reliability index:

Minimize
t1,t2,θ1,θ2

h = 4 (t1 + t2)

s.t. t1, t2 ≥ 0.127

β (t1, t2, θ1, θ2) ≥ −�−1
(
10−4

) = 3.719

(16)

7.3 Reliability-based optimization using conservative
estimates

By solving (16) with a sampling-based estimate of relia-
bility, we face the problem of having noise in the con-
straint evaluation, which can severely harm the optimization
process. To address this issue, we chose to fit a poly-
nomial response surface (PRS) to approximate the relia-
bility index everywhere on a region of the design space,
and solve the optimization with the response surface. The
response surface is based on the estimation of the reliabil-
ity index for a selected number of designs, called a design
of experiments:{β̂(1), β̂(2), . . . , β̂(m)}. All the estimates are
done before the optimization process.

The range of the response surface is given in Table 6. We
find that a fourth order polynomial provides a good approx-
imation for the reliability index. The number of training
points is taken as 500; the points are generated using Latin
hypercube sampling to ensure a good space-filling property.
Each estimate of the reliability index is based on the same
n = 200 samples, which gives us a total number of 100,000
simulations to fit the response surface.

With the 3,000 simulations used to determine the distri-
bution of the limit state, the total number of simulations
is 103,000. This number is a reasonable total budget for

solving the RBDO problem; indeed, there is no further sim-
ulation run during the optimization, the reliability being
estimated by the PRS. To compare this number to classi-
cal MCS estimates, in order to achieve reasonable noise
for a probability of failure of 10−4, at least 106 samples
are needed for a single evaluation, and the reliability is re-
estimated at each optimization step. It is more difficult to
compare to FORM and SORM methods, but due to the large
number of random parameters in the problem, they are not
efficient.

The reliability indexes are calculated using two meth-
ods: the unbiased fitting and the bootstrap conservative
estimation with 95% confidence. The estimates are denoted,
respectively, β̂

(i)
unb and β̂

(i)
cons. Figure 6b shows that with 200

samples, the confidence interval of the conservative estima-
tor for a probability of 10−4 is [10−4; 8 × 10−4], which
corresponds to an error in β between 0 and 20%. Since the
number of observations is much larger than the number of
coefficients (500 compared to 70), the noise is filtered by
the PRS.

A different response surface is fitted to each set of data.
For both, the response surface is found to fit accurately the
data. Table 7 shows the statistics of each response surface.
Both R2 values (percentage of variance explained) are very
close to one, and p-values show that both models are very
significant.

In addition, we computed accurate estimates of the
reliability index at 22 designs uniformly chosen in the
design space using separable Monte-Carlo method (SMC)
(Smarslok et al. 2008) with 40,000 samples for each design.
Table 8 shows the statistics based on the test points: the
root mean square error (RMSE) between the 22 accurate
responses and the response surface, error mean and num-
ber of unconservative predictions. Based on the test points,
we can see that the first PRS is unbiased: the error mean is

Table 8 Statistics of the PRS
based on 22 test points Data sets RMSE Error mean No. of unconservative

predictions

Unbiased estimates
{
β̂

(1)
unb, β̂

(2)
unb, ..., β̂

(m)
unb

}
0.081 −0.01 10

Bootstrap conservative estimates
{
β̂

(1)
cons , β̂

(2)
cons , ..., β̂

(m)
cons

}
0.354 −0.34 0
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Table 9 Optimal designs of the deterministic and probabilistic problems with unbiased and conservative data sets

t1 t2 θ1 θ2 h β from PRS Actual β Pf from PRS Actual Pf (SD)*

Unbiased data set 0.127 0.507 22.2 30.0 2.536 3.72 3.61 10−4 1.51e–4 (2.28e–6)

95% cons. data set 0.127 0.582 21.9 30.0 2.835 3.72 3.98 10−4 3.50e–5 (6.3e–7)

Deterministic optima 0.127 0.416 20.0 30.0 2.170 X 2.97 X 15.0e–4 (9.6e–6)

*The standard deviation of the accurate Pf is computed using formula given in Smarslok et al. (2008)

approximately zero and there are ten unconservative errors
for 12 conservative. On the other hand, the second PRS has
large bias since the error mean is 0.34 and all the predictions
at test points are conservative.

7.4 Optimization results

We present the results for the two probabilistic optimiza-
tions based on the response surfaces fitted on unbiased and
conservative estimates. To compare deterministic and prob-
abilistic approaches, the deterministic optimization as stated
in (14) is also performed for the same range of the ply
angles ([20 30] degrees). The optimization is performed
using MATLAB’s function fmincon repeated 20 times with
different initial points to ensure global convergence. The
optimal designs (best over the 20 optimizations) are given in
Table 9. For these designs, an accurate estimate of the prob-
ability of failure is computed using SMC (Smarslok et al.
2008) with 40,000 samples.

The three optima are similar in terms of ply angles,
and for all the first ply thickness t1 is the lower bound;
the significant difference is in the second ply thickness t2.
Both probabilistic designs are heavier than the determinis-
tic optimum. The optimum found using unbiased dataset is
substantially lighter than the other (h = 2.54 compared to
2.84). However, the accurate estimate of reliability shows
that the optimum design using unbiased dataset violates the
constraint. On the other hand, the design found using the
conservative dataset is conservative; the actual probability is
three times smaller than the target probability of failure. The
deterministic design is very unconservative, its probability
of failure being 15 times the target.

The fact that an unbiased strategy leads to an unconserva-
tive design is not surprising. Indeed, optimization is biased
to explore regions where the error is ‘favorable’; that is,
where the constraint is underestimated. Using the conser-
vative approach, the level of bias is sufficient to overcome
this problem, but at the price of overdesign: since the proba-
bility of failure is three times the target, the actual optimum
is lighter than the one we found.

We have shown that despite a very limited computational
budget (103,000 MCS to solve the RBDO problem), it was

possible to obtain a reasonable design by compensating the
lack of information by taking conservative estimates.

8 Concluding remarks

The estimation of the probability of failure of a system
is crucial in reliability analysis and design. In the con-
text of expensive numerical experiments, or when a limited
number of data samples are available, the direct use of
Monte Carlo Simulation is not practical, and estimation
of continuous distributions is necessary. However, classi-
cal techniques of estimation of distribution do not prevent
dangerous underestimates of the probability of failure.

In this paper, several methods of estimating safely the
probability of failure based on the limited number of sam-
ples are tested, when the sample distribution type is known.
The first method constrains distribution fitting in order to
bias the probability of failure estimate. The second method
uses the bootstrap technique to obtain distributions of prob-
ability of failure estimators, and these distributions define
conservative estimators.

In the case of samples generated from normal distri-
butions, the numerical test case shows that both methods
improve the chance of the estimation to be conservative.
Bootstrap-based estimators outperformed constrained fits to
the experimental CDF. That is, for the same confidence in
the conservativeness of the probability estimate, the penalty
in the accuracy of the estimate was substantially smaller.
However, optimization based methods can be used when
the sample size is very small, where the bootstrap method
cannot be used.

We also explored the influence of sample sizes and target
probability of failure on the quality of estimates. We found
that larger sample sizes are required to avoid large variabil-
ity in probability of failure estimates when that probability
is small. The results indicate that when sampling at differ-
ent points in design space, it may be more cost effective to
have different numbers of samples at different points. Such
approaches will be explored in a future work.

Finally, we have applied the conservative estimation pro-
cedures to perform the optimization of composite laminates
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at cryogenic temperatures. We compared the optimization
results found where response surfaces are fitted to unbi-
ased and conservative estimates respectively. We found
that the unbiased response surfaces led to unsafe designs,
while the conservative approach returned an acceptable
design.
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