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Adaptive Designs of Experiments
for Accurate Approximation of a
Target Region
This paper addresses the issue of designing experiments for a metamodel that needs to be
accurate for a certain level of the response value. Such a situation is common in con-
strained optimization and reliability analysis. Here, we propose an adaptive strategy to
build designs of experiments that is based on an explicit trade-off between reduction in
global uncertainty and exploration of regions of interest. A modified version of the clas-
sical integrated mean square error criterion is used that weights the prediction variance
with the expected proximity to the target level of response. The method is illustrated by
two simple examples. It is shown that a substantial reduction in error can be achieved in
the target regions with reasonable loss of global accuracy. The method is finally applied
to a reliability analysis problem; it is found that the adaptive designs significantly out-
perform classical space-filling designs. �DOI: 10.1115/1.4001873�
Introduction
In the past decades, the use of metamodeling techniques has

een recognized to efficiently address the issues of prediction and
ptimization of expensive-to-compute numerical simulators or
lack-box functions �1–3�. A metamodel �or surrogate model� is
n approximation to system response constructed from its value at
limited number of selected input values, the design of experi-
ents �DoE�. In many engineering problems, the total number of

unction evaluations is drastically limited by computational cost;
ence, it is of crucial interest to develop methods for efficiently
electing the experiments.

In this paper, we focus on a particular application where meta-
odels are used in a way that their accuracy is crucial for certain

evel-sets. This situation is common in two popular frameworks:
In constrained optimization, the constraint function often relies

n expensive calculations. For instance, a typical structural opti-
ization formulation is to minimize a weight such that the maxi-
um stress, computed by finite element analysis, does not exceed
certain value. When using a metamodel to approximate the con-

traint, it is of utmost importance that the approximation error is
inimal on the boundary that separates the feasible designs from

nfeasible ones. Substantial errors for values far from the bound-
ry, on the other hand, are not detrimental.
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In reliability analysis, a metamodel is often used to propagate
the uncertainty of random input variables to the performance
function of a system �4,5�. In particular, the probability of failure
of the system can be computed using sampling techniques �i.e.,
Monte Carlo simulations, MCS� by counting the number of re-
sponses that are above a certain threshold. The contour line of the
response equal to the threshold must be known accurately to dis-
criminate between samples.

The objective of the present work is to provide a methodology
to construct a design of experiments such that the metamodel
accurately approximates the vicinity of a boundary in design
space defined by a target value of the function of interest. Kuczera
and Mourelatos �6� used a combination of global and local meta-
models to first detect the critical regions and then obtain a locally
accurate approximation. Arenbeck et al. �7� used support vector
machine and adaptive sampling to approximate failure regions.
Ranjan et al. �8� proposed a modified version of the famous effi-
cient global optimization �EGO� algorithm �9� to sequentially ex-
plore the domain region along a contour line. Tu and Barton �10�
used a modified D-optimal strategy for boundary-focused polyno-
mial regression. Vazquez and Bect �11� proposed an iterative strat-
egy for accurate computation of a probability of failure based on
kriging. In this paper, we present an alternative criterion to choose
sequentially the experiments, based on an explicit trade-off be-
tween the exploration of the target region �on the vicinity of the
contour line� and reduction in the global uncertainty �prediction
variance� in the metamodel.

This paper is organized as follows: in Sec. 2, the kriging model

and the framework of design of experiments are described. In Sec.
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, the original criterion of selecting experiments is presented fol-
owed by its associated sequential strategy to derive designs of
xperiments in Sec. 4. Results are presented for two analytical
xamples in Sec. 5. Finally, the criterion is applied to a probability
f failure estimation problem.

Kriging Metamodel and Design of Experiments
Let us first introduce some notation. We denote by y the re-

ponse of a numerical simulator or function that is to be studied:

y:D � Rd → R
�1�

x � y�x�

here x= �x1 , . . . ,xd�T is a vector of input variables and D is the
esign space. In order to build a metamodel, the response y is
bserved at n distinct locations X:

X = �x1, . . . ,xn�
�2�

Y = �y�x1�, . . . ,y�xn��T = y�X�

In Eq. �2�, choosing X is called the design of experiments
DoE� and Y is the vector of observations. Since the response y is
xpensive to evaluate, we approximate it by a simple model M,
alled the metamodel or surrogate model, based on assumptions
n the nature of y and on its observations Y at the points of the
oE. In this paper, we present a particular metamodel, universal
riging �UK�, and we discuss some important issues about the
hoice of the design of experiments.

2.1 Universal Kriging Model. The main hypothesis behind
he kriging model is to assume that the true function y is one
ealization of a Gaussian stochastic process Y, y�x�=Y�x ,��,
here � belongs to the underlying probability space �. In the

ollowing, we use the notation Y�x� for the process and Y�x ,��
or one realization. For universal kriging �12�, Y typically is of the
orm

Y�x� = �
j=1

p

� j f j�x� + Z�x� �3�

here f j are linearly independent known functions and Z is a
aussian process �13� with zero mean and stationary covariance
ernel k with known correlation structure and parameters.

Under such hypothesis, the best linear unbiased predictor for
�x� �for any x in D�, knowing the observations Y, is given by the
ollowing equation �12,13�:

mK�x� = f�x�T�̂ + c�x�TC−1�Y − F�̂� �4�

here f�x�= �f1�x� , . . . , fp�x��T is p�1 vector of basis functions,
ˆ = ��̂1 , . . . , �̂p�T is p�1 vector of estimates of �, c�x�

�k�x ,x1� , . . . ,k�x ,xn��T is n�1 vector of covariance, C
�k�xi ,x j��1�i,j�n is n�n covariance matrix, and F

�f�x1� , . . . , f�xn��T is n� p experimental matrix. In Eq. �4�, �̂ is
he vector of generalized least square estimates of �:

�̂ = �FTC−1F�−1FTC−1Y �5�
In addition, the universal kriging model provides an estimate of

he accuracy of the mean predictor, the kriging prediction vari-
nce:

sK
2 �x� = k�x,x� − c�x�TC−1c�x� + �f�x�T − c�x�TC−1F�

��FTC−1F�−1�f�x�T − c�x�TC−1F�T �6�

here �2 is the process variance, �2=k�x ,x�. Note that if the
rediction variance is written in terms of correlations �instead of
ovariance here�, Eq. �6� can be factorized by �2. For details of

erivations, see, for instance, Refs. �12,13�. It is important to no-
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tice here that the kriging variance in Eq. �6�, assuming that the
covariance parameters are known, does not depend on the obser-
vations Y but only on the kriging model and on the design of
experiments.

We denote by M�x� the Gaussian process conditional on the
observations Y:

M ª �M�x��x�D = �Y�x��Y�X� = Y�x�D = �Y�x��obs�x�D �7�

The kriging model provides the marginal distribution of M at a
prediction point x:

M�x� 	 N�mK�x�,sK
2 �x�� �8�

The kriging mean mK interpolates the function y�x� at the de-
sign of experiment points:

mK�xi� = y�xi�, 1 � i � n �9�

The kriging variance is null at the observation points xi and
greater than zero elsewhere:

sK
2 �xi� = 0, 1 � i � n, and sK

2 �x� � 0, x � xi �10�
Besides, the kriging variance increases with the low values of

the covariance between Y�x� and Y�xi� �1� i�n�. Some param-
eters of the covariance kernel are often unknown and must be
estimated based on the observations, using maximum likelihood,
cross-validation, or variogram techniques, for instance, see Refs.
�12,13�. However, in the kriging model they are considered as
known. To account for additional variability due to the parameter
estimation, one may use Bayesian kriging models �see Refs.
�14,15��, which will not be detailed here. With such models, Eq.
�8� does not stand in general. However, the methodology proposed
here also applies to Bayesian kriging with the appropriate modi-
fications of the calculations shown in Sec. 3.

2.2 Design of Experiments. Choosing the set of experiments
�sampling points� X plays a critical role in the accuracy of the
metamodel and the subsequent use of the metamodel for predic-
tion. DoEs are often based on geometric considerations such as
Latin hypercube sampling �LHS� �16� or full-factorial designs
�17�. In this section, we introduce two important notions: model-
oriented and adaptive designs.

2.2.1 Model-Oriented Designs. Model-oriented designs aim at
maximizing the quality of statistical inference of a given meta-
model. In linear regression �18,19�, A- and D-optimal designs
minimize the uncertainty in the coefficients, when uncertainty is
due to noisy observations. Formally, the A- and D-optimality cri-
teria are, respectively, the trace and determinant of Fisher’s infor-
mation matrix.

These criteria are particularly relevant in regression since mini-
mizing the uncertainty in the coefficients also minimizes the un-
certainty in the prediction �Kiefer �18��. For kriging, uncertainties
in covariance parameters and prediction are not simply related.
Instead, a natural alternative is to take advantage of the prediction
variance associated with the metamodel, assuming that the cova-
riance structure and parameters are accurately estimated. The pre-
diction variance allows us to build measures that reflect the over-
all accuracy of kriging. Two different criteria are available: the
integrated mean square error �IMSE� and maximum mean square
error �MMSE� �20�:

IMSE =

D

MSE�x�d��x� �11�

MMSE = maxx�D�MSE�x�� �12�

� is a positive measure on D and

MSE�x� = E��mK�x� − M�x��2� = s2 �x� �13�
K
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Note that the above criteria are often called I-criterion and
-criterion, respectively, in the regression framework. The IMSE

s a measure of the average accuracy of the metamodel while the
MSE measures the risk of large error in prediction.
Optimal designs are model-dependent, in the sense that the op-

imality criterion is determined by the choice of the metamodel. In
egression, A- and D-criteria depend on the choice of the basis
unctions while in kriging, the prediction variance sK

2 depends on
he linear trend, the covariance structure, and parameter values.
owever, one may notice that, assuming that the trend and cova-

iance structures are known, none of the criteria depends on the
esponse values at the design points.

2.2.2 Adaptive Designs. The previous DoE strategies choose
ll the points of the design before computing any observation. It is
lso possible to build the DoE sequentially by choosing a new
oint as a function of the other points and their corresponding
esponse values. Such approach has received considerable atten-
ion from the engineering and mathematical statistic communities,
or its advantages of flexibility and adaptability over other meth-
ds �21,22�.

Typically, the new point achieves a maximum on some crite-
ion. For instance, a sequential DoE can be built by making at
ach step a new observation where the prediction variance is
aximal. Sacks et al. �20� use this strategy as a heuristic to build

MSE-optimal designs for kriging. The advantage of sequential
trategy here is twofold. First, it is computationally efficient be-
ause it transforms an optimization problem of dimension n�d
for the IMSE minimization� into k optimizations of dimension d.
econd, it allows us to reevaluate the covariance parameters after
ach observation. In the same fashion, Williams et al. �23�, Currin
t al. �24�, and Santner et al. �2� used a Bayesian approach to
erive sequential IMSE designs. Osio and Amon �25� proposed a
ultistage approach to enhance first space-filling in order to ac-

urately estimate the kriging covariance parameters and then re-
ne the DoE by reducing the model uncertainty. Some reviews of
daptive sampling in engineering design can be found in Jin et al.
26�.

In general, a particular advantage of sequential strategies over
ther DoEs is that they can integrate the information given by the
rst k observation values to choose the �k+1�th training point, for

nstance, by reevaluating the kriging covariance parameters. It is
lso possible to define response-dependent criteria with naturally
eading to surrogate-based optimization. One of the most famous
daptive strategy is the EGO algorithm Jones et al. �9�, which was
sed to derive sequential designs for the optimization of determin-
stic simulation models by choosing at each step the point that

aximizes the expected improvement; a functional that represents
compromise between exploration of unknown regions and local

earch. Jones �27� also proposes maximum probability of im-
rovement as an alternative criterion.

In this paper, the objective is not optimization but to accurately
t a function when it is close to a given threshold. It is then
bvious that the DoE needs to be built according to the observa-
ion values, hence sequentially. Shan and Wang �28� proposed a
ough set based approach to identify subregions of the design
pace that are expected to have performance values equal to a
iven level. Ranjan et al. �8� proposed a sequential DoE method
or contour estimation, which consists of a modified version of the
GO algorithm. The functional minimized at each step is a trade-
ff between uncertainty and proximity to the actual contour. Tu
nd Barton �10� used a weighted D-optimal strategy for polyno-
ial regression, the acceptable sampling region at each step being

imited by approximate bounds around the target contour. Oakley
29� used kriging and sequential strategies for uncertainty propa-
ation and estimation of percentiles of the output of computer
odes. Vazquez and Bect �11� proposed an iterative strategy for
robability of failure estimation by minimizing the classification

rror when using kriging. All these papers aim at constructing

ournal of Mechanical Design
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DoEs for accurate approximation of subregions of the design
space. Our work proposes an alternative criterion, which focuses
on the integral of the prediction variance �rather than punctual
criterion�.

3 Weighted IMSE Criterion
In this section, we present a variation in the IMSE criterion,

adapted to the problem of fitting a function accurately for a certain
level-set. The controlling idea of this work is that the surrogate
does not need to be globally accurate but only in some critical
regions, which are the vicinity of the target boundary.

3.1 Target Region Defined by an Indicator Function. The
IMSE criterion is convenient because it sums up the uncertainty
associated with the kriging model over the entire domain D. How-
ever, we are interested in predicting Y accurately in the vicinity of
a level-set y−1�T�= �x�D :y�x�=T� �T a constant�. Then, such a
criterion is not suitable since it weights all points in D according
to their kriging variance, which does not depend on the observa-
tions Y and, hence, does not favor zones with respect to properties
concerning their y values but only on the basis of their position
with respect to the DoE.

We propose to change the integration domain from D to a
neighborhood of y−1�T� in order to learn y accurately near the
contour line. We define a region of interest XT,	 �parameterized by
	
0� as the subset in D whose image is within the bounds T−	
and T+	:

XT,	 = y−1��T − 	,T + 	�� = �x � D�y�x� � �T − 	,T + 	��
�14�

Figure 1 illustrates a one-dimensional function with the region
of interest being at T=1 and 	=0.2. Note that the target region
consists of two distinct intervals.

With the region of interest, the targeted IMSE criterion is de-
fined as follows:

IMSET =

XT,	

sK
2 �x�dx =


D

sK
2 �x�1�T−	,T+	��y�x��dx �15�

where 1�T−	,T+	��y�x�� is the indicator function, equal to 1 when
y�x�� �T−	 ,T+	� and 0 elsewhere.

Finding a design that minimizes IMSET would make the meta-
model accurate in the subset XT,	, which is exactly what we want.
Weighting the IMSE criterion over a region of interest is classical
and proposed, for instance, by Box and Draper �17�. However, the
notable difference here is that this region is unknown a priori.

Now, we can adapt the criterion in the context of kriging mod-

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

x

y

y(x)

T

T +/− ε
X

T

Fig. 1 One-dimensional illustration of the target region. Here,
T=1 and ε=0.2. The target region consists of two distinct
intervals.
eling, where y is a realization of a random process Y �see Sec.
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.1�.
Thus, IMSET is defined with respect to the event �:

IMSET =

D

sK
2 �x�1�T−	,T+	��Y�x,���dx = I��� �16�

To come back to a deterministic criterion, we consider the ex-
ectation of I���, conditional on the observations

IMSET = E�I����obs� = E�

D

sK
2 �x�1�T−	,T+	��Y�x,���dx�obs�

�17�
Since the quantity inside the integral is positive, we can com-
ute the expectation and the integral

IMSET =

D

sK
2 �x�E�1�T−	,T+	��Y�x,����obs�dx

=

D

sK
2 �x�E�1�T−	,T+	��M�x���dx =


D

sK
2 �x�W�x�dx

�18�
According to Eq. �18�, the reduced criterion is the average of

he prediction variance weighted by the function W�x�. Besides,
�x� is simply the probability that the response is inside the in-

erval �T−	 ,T+	�:

W�x� = E�1�T−	,T+	��M�x��� = P�M�x� � �T − 	,T + 	�� �19�

Using Eq. �8��, we obtain a simple analytical form for W�x�:

W�x� =

T−	

T+	

gN�mK�x�,sK
2 �x���u�du �20�

here gN�mK�x�,�K
2 �x���u� is the probability density function �PDF�

f M�x�. By integrating the PDF we obtain

W�x� = �T + 	 − mK�x�
sK�x�

� − �T − 	 − mK�x�
sK�x�

� �21�

here � is the CDF of the standard normal distribution.
Note that by dividing W�x� by the constant 2	, it is possible to

efine the weight function with 	→0:

lim
	→0

W�x�
2	

= gN�mK�x�,sK
2 �x���T� �22�

hich is the PDF of the kriging distribution evaluated at thresh-
ld.

3.2 Target Region Defined by a Gaussian Density. Defining
he region of interest as XT,	 is intuitive and makes it easy to
erive the weight function. However, one might prefer a criterion
hat continuously increases the importance of the location when
he response approaches the threshold. For instance, we can
hoose a triangular function �with a maximum at T� or a sigmoid
unction. Here, we choose to use the probability density function
f a normal distribution, which leads to a simple analytical form
f the weight function. In the spirit of Eq. �19�, the Gaussian-
ased weight function is therefore defined as follows:

W�x� = E�g	�M�x� − T�� �23�

here g	�u� is the PDF of N�0,�	
2�.

When M�x� stands for the kriging model, we can obtain a
imple form for the weight function:

W�x� =
+�

g	�u − T�gN�mK�x�,sK
2 �x���u�du �24�
−�

71008-4 / Vol. 132, JULY 2010

aded 08 Jul 2010 to 128.227.48.54. Redistribution subject to ASME
This integral is the convolution of the two Gaussian densities,
which is well-known to be the density of a sum of independent
Gaussian variables. Hence, we obtain

W�x� =
1

�2��	
2 + sK

2 �x��
e�−�1/2���mk�x� − T�2/�	

2+sK
2 �x��� �25�

This new weight function depends on a single parameter �	 that
allows us to select the size the domain of interest around the target
level of the function. A large value of �	 would enhance space-
filling since the weight function would tend to a constant and the
weighted IMSE to a uniform IMSE criterion. On the contrary, a
small value would enhance the accuracy of the surrogate on a
narrow region around the contour line of interest. In particular
when epsilon tends to zero, the weight function tends to the den-
sity gN�mK�x�,sK

2 �x���T�, which is purely local.
In practice, it has been found that the choice of �	—excepting

very large and very small values—has little impact on the crite-
rion and its use in sequential strategies. It only becomes important
when the number of observations is very large �thus, the target
region is well-known�. In the numerical examples of Sec. 5, we
chose �	 equal to approximately five percent of the output range.

3.3 Illustration. We consider a one-dimensional case, where
the function y to approximate is a realization of a Gaussian pro-
cess �so the kriging is an accurate model for y� with isotropic
Gaussian covariance structure:

k�u,v� = �2 exp�−  �u − v�
�

�2� �26�

y is defined on D= �0,1�; the design of experiments consists of
five observations equally spaced in this interval. The level-set of
interest T is chosen as 1.3 and both 	 and �	 are taken as 0.2.
Figure 2 represents the true function, the kriging metamodel and
corresponding weights. The weight function in Eq. �21� is shown
as “interval” while that in Eq. �25� is called “Gaussian.”

Among the five observations, one is substantially closer to T
than the others. As a consequence, the weight functions are large
around this observation point. For the indicator-based weight
function, the weights are null at the observation points since on
this example no observation is inside the target value interval. For
the Gaussian-based weight, we can observe a smoothing effect
compared with the interval. For both functions, high weights are
given to regions for which the actual function is inside the target
interval. Both weight functions are also nonzero where the uncer-
tainty is high even if the kriging mean is far from T �around x
=0.65 and 0.85�.

3.4 Application to Probability of Failure Estimation

3.4.1 Probability of Failure Using Metamodel. Failure of a
system can usually be determined through a criterion, called a
limit-state, g. The limit-state is defined such that the system is
considered safe if g�0, and failed otherwise. For instance, the
limit-state of a structure can be defined as the difference between
response r �e.g., maximum stress or strain� and capacity c �e.g.,
maximum allowable stress or strain� g=r−c.

The limit-state depends on a set of factors U �for instance, in
structural analysis, material properties, and loadings�, which are
often uncertain, and the limit-state shows random distribution.
Then the safety of the system is evaluated in terms of reliability or
probability of failure. The probability of failure is defined as

Pf = prob�g�U� � 0� �27�

where U is a �multivariate� random variable.
There are many methods for calculating the failure probability

of a system �4,30�. Some of them use the relation between input
random variables and the limit-state �e.g., first-order reliability
method� and some consider the limit-state as a black-box �e.g.,

MCS�. MCS generates samples of the limit-state and calculates
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he number of failed runs �4�. The ratio between the numbers of
ailures and the total sample size approximates the probability of
ailure of the system:

P̂f =
1

N�
i=1

N

1�0,+���g�ui�� �28�

here the ui are the independent and identically distributed �IID�
eplicates of the random variable U �1� i�N�.

The accuracy of MCS strongly depends on the number of runs
sed, especially when the probability of failure is low. When the
ost of simulation is high, engineers can afford to have only a
mall number of runs, which is not good enough to estimate the
eliability with acceptable accuracy �30�. Hence, using a meta-
odel to approximate the limit-state g is a natural solution to the

ack of data; MCS is then performed on the metamodel that is
nexpensive to evaluate.

Instead of using the indicator function on the kriging mean, we
se the full kriging information by computing, at each sampling
oint, the probability that the response exceeds the threshold:

P̂f =
1

N�
i=1

N

1 − �k
�i��0� �29�

here �k
�i� denotes the cumulative distribution function �CDF� of

he kriging model at xi �N�mk�ui� ,sk
2�ui���.

If the kriging variance is small, the CDF becomes equivalent to
he indicator function, being 1 if the kriging mean exceeds the
hreshold zero and 0 otherwise. On the other hand, when the vari-
nce is high or the predicted response close to the threshold, using
he kriging distribution offers a smoothing effect by giving a num-
er between zero and one instead of a Boolean number.

3.4.2 Adaptation of the Weighted IMSE Criterion. When ap-
roximating the limit-state, it is clear that accuracy is critical in
he regions where it is close to zero since error in that region is
ikely to affect the probability estimate. The region of interest can
e further refined by taking into account the distribution of the
nput variables. Indeed, let us consider the case of two distinct
ailure regions with the probability that the input falls onto the
rst region being much larger than the probability that it falls onto

he other�. Instead of focusing equally on the two critical regions,
t will be more efficient to spend more computational effort on the
ne that will affect most the probability estimate. In the same
ense, when refining the surrogate in a single critical region, it is
fficient to refine only where the input probability is high.

To address this probability distribution of input variables, we
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Fig. 2 Illustration of the weights f
observations, kriging mean, and c
is represented by the horizontal lin
weight functions. Both weights are
only inside the target region but a
tainties „around x=0.65 and 0.85….
odify the weighted IMSE criterion by integrating the weighted
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MSE not with a uniform measure but with the law � of the input
variables. In the usual case that � admits a PDF f�x� with respect
to the Lebesgue measure, we then have

IMSET =

D

sK
2 �x�W�x�d��x� =


D

sK
2 �x�W�x�f�x�dx �30�

In practice, the criterion becomes the integral of the product of
three quantities: The prediction variance, the weight function and
probability density function of the input variables.

4 Sequential Strategies for Selecting Experiments

4.1 Building DoEs Using the Targeted IMSE Criterion.
Without any observation, the weight function W�x� is, assuming
stationarity, a constant �the probability is the same everywhere�.
Every time a new observation is performed, the weight function
will more precisely discriminate the regions of interest from the
others. Hence, the procedure to build an optimal DoE is necessar-
ily iterative. If we add one observation at a time we can use the
procedure shown in Table 1.

A good evaluation of the covariance parameters is critical to
obtain a good kriging model. Besides, those parameters directly
affect the weight function: for instance, underestimation of the
range �� in Eq. �26�� makes the weight function flat �constant�,
which enhances space-filling; on the contrary, overestimation of
the range leads to a very discriminating �overconfident� weight
function.

The kriging parameters can be reevaluated after every new ob-
servation or only from the initial DoE before the iterative proce-
dure. However, re-evaluating the parameters at each iteration is
computationally intensive, which can harm the efficiency of the
method. Hence, one would consider estimating the parameters
only when necessary, as proposed by Gano et al. �31�. In the

0.6 0.7 0.8 0.9 1

0.6 0.7 0.8 0.9 1

Interval

Gaussian

True function

Training points

Kriging mean

Kriging CI

tions. Upper graph: true function,
dence intervals; the target region
at T−ε, T, and T+ε. Lower graph:
rge where the true function is not

signaling regions of high uncer-

Table 1 Procedure of the IMSET-based sequential DoE
strategy

Create an initial DoE Xk and generate observations Yk=y�Xk�
For i going from one to the total number of additional observations n:
Fit the kriging model to the data �Xk+i−1 ,Yk+i−1�
Find a new training point xnew that minimizes the criterion
IMSET��Xk+i−1 ,xnew��
Compute the new observation ynew=y�xnew�
Update the DoE and observations: Xk+i= �Xk+i−1 ,xnew� and Yk+i

= �Yk+i−1 ,ynew�
End of loop
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umerical examples used in this work, we found that after a first
ew iterations, the parameter re-evaluation had a negligible impact
n the efficiency of the method.

Defining a stopping criterion for this problem is an open and
omplex question. We consider here that in most cases the number
f observations is very limited so the iterative process stops at
arly stage. Ideally, the adaptive process should be stopped when
he identified target region does not change significantly over sev-
ral adaptations, which can be detected by looking at changes in
he probability to be inside target regions.

Finding the new training point requires an inner optimization
rocedure. When the classical IMSE criterion is considered, the
ptimization can be expressed as

min
xnew�D

IMSE�Xk+1� = IMSE��Xk,xnew�� �31�

here IMSE��Xk ,xnew��=�DsK
2 �x � �Xk ,xnew��dx.

sK
2 �x � �Xk ,xnew�� is the variance at x of the kriging model based

n the design of experiments X augmented with the training point
new. Since the kriging variance does not depend on the observa-
ion, there is no need to have y�xnew� to compute the IMSE.

In contrast, the weighted IMSE depends on the observations
hrough the weight function W�x�. The weight function cannot
ake into account the new observation since the response is not
vailable. Hence, when expressing the weighted IMSE as a func-
ion of xnew, we update only the variance part under the integral

IMSET�Xk,Yk,xnew� =

D

sK
2 �x��Xk,xnew��W�x�Xk,Yk�dx

�32�

here sK
2 �x � �Xk ,xnew�� is the same as in Eq. �31� and W�x �Xk ,Yk�

s the weight function based on the existing DoE. Using this ex-
ression, we have the simple formulation for the inner optimiza-
ion problem

min
xnew�D

IMSET�Xk,Yk,xnew� �33�

4.2 Solving the Optimization Problem. Finding the new ob-
ervation xnew by solving the optimization problem of Eq. �33� is,
n practice, challenging. Indeed, the IMSET criterion in Eq. �32�
ust be evaluated by numerical integration, which is computa-

ionally intensive. Besides, for any candidate xnew, the kriging
odel must be reevaluated with this new observation to obtain

K
2 �x � �Xk ,xnew���. Therefore, we propose here some alternatives
hat may be used to reduce the cost.

A popular heuristic to minimize sequentially the IMSE is to find
he point where the prediction variance is maximum �Refs.
20,23��, which can be used here with the weighted prediction
ariance. This strategy has the advantage of saving both the nu-
erical integration and the inversion of a new covariance matrix.
owever, the prediction variance is likely to have many �local or
lobal� maximizers, which are not equivalent in terms of the
MSE. In particular, many optima are located on the boundaries,
hich is very inefficient for the IMSE minimization. To compen-

ate for this issue, one may, in a first time, get a large number of
ocal optima using adapted optimization strategies �multistart,
tc.� and, in a second time, evaluate those optima in terms of the
eighted IMSE criterion and perform a local optimization on the
est point. It is to be noted that the gradients of the weighted MSE
an be calculated analytically �in the fashion of Ginsbourger �32�
chapter 4� for the expected improvement criterion�.

A valuable computational shortcut can be achieved in the up-
ate of the inverse of the covariance matrix when adding an ob-
ervation. Let us call Ck the covariance matrix corresponding to a
oE with k observations. Then, the covariance matrix of the DoE
ugmented with the k+1th observation can be written as

71008-6 / Vol. 132, JULY 2010
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Ck+1 = � �2 cnew
T

cnew Ck
� �34�

with cnew
T = �k�xnew,x1� , . . . ,k�xnew,xk�� a 1�k vector.

Using Schur’s complement formula �33�, we get

Ck+1
−1 = � 1 0

− Ck
−1cnew Ik

�� 1

�2 − cnew
T Ck

−1cnew
0

0 Ck
−1 ��1 − cnew

T Ck
−1

0 Ik
�

�35�

This formula allows to compute Ck+1
−1 from Ck

−1 without doing
any matrix inversion, and compute sK

2 �x � �Xk ,xnew�� at reasonable
cost.

Another typical problem of sequential strategies for kriging is
the ill-conditioning of the covariance matrix, which happens in
particular when two �or more� observations are very close to each
other. Since the IMSE criterion enhances exploration, this risk is
limited here. Therefore, when the number of iterations is large, the
observations can concentrate on the target region and the covari-
ance matrix becomes difficult to invert. In that case, it is possible
to add a small diagonal matrix �nugget effect� to the covariance
function in order to facilitate the inversion �Neal �34��.

In general, the criterion has several local minimizers. Then, it is
necessary to use global optimization methods such as population-
based methods, multistart strategies, etc. In the test problems pre-
sented in this chapter, we optimize the criterion on a fine grid for
low dimensions, and using the population-based �covariance ma-
trix adaptation evolution strategies �CMA-ES� algorithm �35� for
higher dimensions. Experimentation showed that due to the nu-
merical integration precision, the targeted IMSE strategy becomes
inefficient for dimensions higher than ten.

5 Numerical Examples
In this section, we evaluate the accuracy and efficiency of the

methods presented in the Secs. 3 and 4 through numerical ex-
amples. We consider three examples: the first is the fitting of an
analytical function in two dimensions with estimated covariance
parameters. The second is the fitting of realizations of random
processes in six dimensions with known covariance parameters,
which allows us to decompose the problem and evaluate the rel-
evance of our criterion since in this case there is no modeling
error. Finally, the method is applied to probability of failure esti-
mation.

5.1 Two-Dimensional Example. The first example is the ap-
proximation of a two-dimensional parametric function from the
optimization literature �camelback function �36��. The original
function is modified �bounds are different and a negative constant
is added� and the target is chosen in order to have two failure
regions, one dominating the other. The two-dimensional design
space is given as �1,1�2. The performance function is defined as

f�u,v� = 4 − 2.1ū2 +
1

3
ū4�ū2 +

2

3
ūv̄ +

16

9
− 4 +

16

9
v̄2�v̄2 − 0.7

�36�

where ū=1.2u−0.1 and v̄=0.9v.
For both numerical integration and optimization, the design

space is discretized in a 32�32 grid. We present the results for
the following configuration: target value T is chosen as 1.3,
Gaussian-based weight function is used with parameter �	=0.2,
initial DoE consists of the four corners and the center of the do-
main, and 11 points are added iteratively to the DoE as described
in the previous section.

An isotropic Gaussian covariance function �Eq. �26�� is chosen
for the kriging model. The covariance parameters �process vari-
ance �2 and range �� are estimated from the initial five-point DoE,

and re-estimated after each new observation, using the MATLAB
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oolbox GPML �13�. The final results are presented in Fig. 3.
Figure 3�a� is the plot of the true function, and Fig. 3�b� is that

f the kriging mean. In the contour plot in Fig. 3�c�, it is shown
hat there are two critical regions. After 11 iterations, the sequen-
ial strategy used four points to explore the first critical region,
hree points to explore the second region, and four points for
pace-filling. As shown in Fig. 3�d�, the kriging variance becomes
mall near the critical regions while it is relatively large in the
oncritical region.

Figure 4 shows the evolution of the target contour line for the
riging expectation, which is a good indicator of the quality of the
urrogate. We see that because the first four iterations �Fig. 4�b��
re used for space-filling, the kriging contour line is very different
rom the actual one. After eight iterations �Fig. 4�c��, the two
arget regions are found and additional sampling points are chosen
lose to the actual contour line. Final state �Fig. 4�d�� shows that
he kriging contour line is close to the actual one.
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5.2 Six-Dimensional Example. In the second example, we
consider a realization of a six-dimensional isotropic Gaussian pro-
cess with Gaussian covariance function. The design space is
�−11�6. In order to limit the complexity �number of nonconnected
target regions� of the target region, we add a linear trend to the
Gaussian process. We take �2=1, �=0.1, and �= �1. . .1�.

The weighted IMSE criterion is computed by quasi Monte
Carlo integration. The integration points are chosen from a Sobol
sequence �37� to ensure a good space-filling and are changed at
each step to limit the risk of keeping a hole in the integration
region over the iterations. At each step, the optimization is per-
formed using the population-based optimizer CMA-ES �35�. The
number of integration points is chosen equal to 5000 and the
number of function evaluations for CMA-ES is limited to 1000.
With this set-up, one optimization �which is the computational
bottleneck� takes of the order of two minutes on a PC with a 1.8
GHz processor and 1 Go RAM. For comparison, the two-
dimensional problem described earlier requires about 1 s to per-
form the optimization.

We present the results for the following configurations: target
value is chosen as 2, Gaussian-based weight function is used with
�	=0.05. The initial DoE consists of 20 points chosen from LHS
and 70 points are added iteratively to the DoE.

The kriging parameters are not estimated here but taken equal
to the covariance parameters of the true function. Hence, no mod-
eling error is involved since the function to approximate corre-
sponds exactly to the assumptions of the kriging model, and the
error of kriging is only due to the lack of sampling. The advantage
of using such test case is to decompose the problem: here, we
evaluate only the relevance and efficiency of our criterion, regard-
less the difficulty of estimating the covariance parameters from a
small number of observations.

For comparison purpose, we generate a classical space-filling
DoE that consists of 90 LHS points with maximum criterion.

First, we represent the error at 10,000 �uniformly distributed�
data points �Fig. 5�. The classical space-filling DoE leads to a
uniform error behavior while the optimal DoE lead to large errors
when the response is far from the target value while small errors
when it is close to the target.

In order to analyze the error in the target region, we draw the
boxplots of the errors for the test points where responses are in-
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pace-filling strategy, the optimal design reduces significantly the
rror. In particular, the interquartile interval is 2.5 times smaller
or the optimal DoE.

5.3 Reliability Example. The limit-state function is taken as
he Camelback function used in the previous section. Let U and V
e independent Gaussian variables with zero mean and standard
eviation taken at 0.28, i.e., U ,V	N�0,0.282�. Then, the failure
s defined when f becomes greater than 1.3. Thus, the limit-state is
efined as

G = f�U,V� − 1.3 �37�
For this example, we generate two adaptive designs: the first is

enerated sequentially as described previously with uniform inte-
ration measure �Eq. �18��; the second is generated using the input
istribution as integration measure �Eq. �30��. Both use the four
orners and the center of the domain as starting DoE and 11 it-
rations are performed. For comparison purpose, a 16 points full-
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ig. 5 Comparison of error distribution for two 90 points
oEs: optimal DoE „top… and classical LHS „bottom…. The x-axis

s the difference between the true function and the threshold,
he y-axis is the error. Three vertical bars are drawn at −2�ε, 0,
nd +2�ε for the target region. The error is on average smaller
or the LHS design but the optimal DoE reduces substantially
he error in the target region.
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ig. 6 Boxplots of errors for the 90 points LHS and optimal
esigns for the test points where responses are inside the do-
ain †T−2�ε ,T+2�ε‡. Error at these points is about 2.5 smaller
or the optimal designs.

71008-8 / Vol. 132, JULY 2010

aded 08 Jul 2010 to 128.227.48.54. Redistribution subject to ASME
factorial design is also used. It is found that an ordinary kriging
model �UK without linear trend� with isotropic Gaussian covari-
ance function approximates well the function. The covariance pa-
rameters are computed using the toolbox GPML for all the DoEs.
For the sequential DoEs the parameters are re-evaluated at each
new observation.

Figure 7 draws the two optimal designs obtained and the full-
factorial designs. Both optimal designs concentrate the computa-
tional effort on the failure regions and the center of the domain.
With uniform measure integration in Fig. 7�a�, the DoE is more
space-filling than the one based on the distribution �shown in Fig.
7�d��. By taking the input distribution into account in Fig. 7�b�, we
see that all the observations are located relatively close to the
center of the domain. Part of each target regions is not explored
since it is far from the center.

Finally, we perform 107 MCS on the three metamodels to com-
pute the probability of failure estimates. 107 MCS are also per-
formed directly on the test function to obtain the true probability
of failure. Results are reported in Table 2. The full-factorial design
leads to 77% error while both optimal designs lead to a small
error. Substantial improvement is obtained by taking the input
distribution into account.

6 Conclusions
In this paper, we have addressed the issue of choosing a design

of experiments when the kriging metamodel was used to approxi-
mate a function accurately around a particular level-set. This situ-
ation frequently occurs in constrained optimization and reliability
analysis. We proposed a modified version of the classical IMSE
criterion, obtained by weighting the prediction variance using a
kriging-based measure of the expected proximity to target values.
The choice of a new observation based on such criterion is a
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Fig. 7 Optimal design with „a… uniform integration measure
and „b… input distribution integration measure; „c… full-factorial
designs with 16 points. Plain green line shows the limit of the
failure region; input distribution is shown in „d….

Table 2 Probability of failure estimates for the three DoEs and
the actual function based on 107 MCS. The standard deviation
of all estimates is of the order of 2Ã10−5.

DoE
Pf

�%�
Relative error

�%�

Full factorial 0.17 77
Optimal without input distribution 0.70 7
Optimal with input distribution 0.77 3
Probability estimate based on 107 MCS 0.75
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rade-off between exploration of the target region �on the vicinity
f the contour line� and reduction in the global uncertainty �pre-
iction variance� in the metamodel.

We applied our strategy to examples in two and six dimensions.
n two dimensions, we showed that the adaptive sampling effi-
iently explored the target regions while ensuring space-filling. In
ix dimensions, we showed that compared with a classical space-
lling design, the error reduction in the target region was by a
actor of 2.5.

Finally, the method was tested for reliability estimation on an
nalytical example. An additional criterion was adapted to inte-
rate the distribution of input random variables. It was found that
oth criterion-based strategies significantly outperformed space-
lling designs, and taking into account the input distribution pro-
ides additional improvement in the accuracy of the probability of
ailure.

However, it has been found some limitations to the method,
hich were not solved here and requires future work to apply the
ethod to a wide range of problems.
Since it relies on numerical integration, the method can become

omputationally expensive if a large number of integration points
re needed to compute the criterion. We found that for dimensions
igher than ten, the criterion minimization becomes critical with-
ut the use of complex and problem-dependant numerical proce-
ures such as dimension reduction or adapted numerical integra-
ion.

Second, it is important to recall that it is a model-believer strat-
gy since the criterion is entirely based on the kriging model.
lthough sequential strategies allow some correction of the model
uring the process �through re-estimation of the parameters, for
nstance�, the success of the method will strongly depend on the
apability of the kriging model to fit the actual response.

Future research may compare the results obtained with this
ethod to alternative methods, in particular in the frameworks of

eliability analysis and constrained optimization.
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