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Structural health monitoring provides sensor data that can monitor fatigue-induced damage in service. This

information may in turn be used to improve the characterization of material properties that govern damage growth

for the structure beingmonitored. These properties are oftenwidely distributed amongnominally identicalmaterials

because of differences in manufacturing processes and due to aging effects. Improved accuracy in damage growth

characteristics would allowmore accurate prediction of the remaining useful life of the structural component. In this

paper, a probabilistic approach using Bayesian inference is employed to progressively reduce the uncertainty in

structure-specific damage growth parameters in spite of noise and bias in sensor measurements. Starting from an

initial wide distribution of damage growth parameters that are obtained from coupon tests, the distribution is

progressively narrowed using damage growth data between consecutivemeasurements. Detailed discussions on how

to construct the likelihood function under the given noise of sensor data and how to update the distribution are

presented. The approach is applied to simulated damage growth in fuselage panels due to cycles of pressurization. It

is shown that the proposed method rapidly converges to the accurate damage growth parameters when the initial

damage size is relatively large: e.g., 20 mm. Fairly accurate damage growth parameters are obtained even with

measurement errors of 5mm. Using the identified damage growth parameters, it is shown that the 95% conservative

remaining useful life converges to the true remaining useful life from the conservative side. The proposed approach

may have the potential of turning aircraft into flying fatigue laboratories.

Nomenclature

a = half-crack size
aC = critical half-crack size
aN = half-crack size at Nth inspection
atrue = true half-crack size
a1 = initial half-crack size

ameas = measured half-crack size
asimN = estimated true damage size
b = bias in damage-size measurement
C = Paris law parameter
d = difference between measured and estimated

damage growth
esimN = simulated error in measurements

Fmeas = cumulative distribution function of measured
damage growth

fini = initial (or prior) probability density function
fi;test = likelihood function
fsim = probability density function of estimated

damage growth

fupdt = updated (or posterior) probability density function
KIC = fracture toughness
M = Monte Carlo simulation sample size
m = Paris law exponent
N = step between inspections
p = pressure
r = fuselage radius
t = panel thickness
V = range of noise in damage-size measurement
v = noise in damage-size measurement
�a = crack growth
�aN = damage growth at Nth cycle

�ameas = measured crack growth

�asimN = estimated true damage growth

�esimN = estimated error in the damage growth

�K = range of stress intensity factor
� = applied stress

I. Introduction

S TRUCTURAL health monitoring (SHM) may have significant
impacts on increasing safety as well as reducing the operating

and maintenance costs of structures by providing an accurate
quantification of degradation and damage at an early stage to reduce
or eliminate malfunctions. Furthermore, SHM can allow damage
diagnosis that will provide the structural health status that in
conjunction with prognosis will help predictions of the remaining
useful life (RUL) without intrusive and time consuming inspections.
Continual online SHM is based on dynamic processes through the
diagnosis of early damage detection, then prognosis of health status
and remaining life.

Once the damage reaches a detectable size, various SHM tech-
niques can be employed to evaluate the current state of structural
health by measuring the size of the damage [1]. In physics-based
prognosis techniques, it is necessary to incorporate themeasured data
into a damage growth model to predict the future behavior of the
damage.
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Prognosis techniques can be categorized based on the usage of
information: 1) physics-based, 2) data-driven, and 3) hybrid
methods. The physics-based method, or model-based method [2],
assumes that the physical model that governs the structure’s behavior
is known and uses sensor data to identify the physical model param-
eters. The dynamic stochastic equation, lumped-parameter model
[3], and functional models [4] belong to this category. In the case of
SHM, a crack growth model [3,5,6] and spall growth models are
often used formicro levels, and first-principle models [7] are used for
macro levels.

The data-driven method [8] uses information from collected data
to predict the future status of the system and includes least-squares
regression [9,10], Gaussian process regression [11,12], neural
network [7,11,12], and relevance vector machine [11,13]. This
method has advantages when the structure’s behavior is so complex
that no simple physical model is available. Although the data-driven
method may be more accurate in early stages, the physics-based
model becomes more accurate as more data are used to identify the
physical parameters. The hybrid method [14] uses the advantages
frombothmethods and includes the particlefilteringmethod [15] and
Bayesian techniques [16,17].

It is generally accepted that uncertainty is the most challenging
aspect in prognosis [17,18]. Sources of uncertainty are from initial
state estimation, current state estimation, failure threshold, sensor
measurement, future load, future environment, and models. To
address the uncertainty, various methods have been proposed, such
as confidence intervals [19], relevancevectormachine [11],Gaussian
process regression [11,12], and particle filters [15,20]. Bayesian
methods have become popular in the past years but aremainly used to
extrapolate the crack behavior by updating the crack size distribution
rather than the material properties. Although the crack size distri-
bution is important to diagnose the current health status, the crack
growth properties of the material are more important for the purpose
of prognosis. The objective of this paper is to characterize the crack
growth properties as an intermediate step toward predicting the RUL
of the structure, which will allow us to improve our knowledge of the
entire structure rather than the specific damage that is being
monitored.

The current technology of diagnosis and prognosis using sensor-
based SHM has difficulties associated with uncertainties in sensor
data, damage growth models, and material and geometric prop-
erties. The first is related to identifying the current health status,
while the others are related to predicting the health status in the
future. Uncertainties in sensor data can be classified into two
categories: systematic departure due to bias and random variability
due to noise. The former is caused by calibration error, sensor
location, and device error, while the latter is caused by measurement
environment. Note that bias may tend to vary as the crack grows due
to the nature of the error; for example, the sensors located in the
parallel direction to the crack growth direction tend to have larger
error than those located in the perpendicular direction. In this paper,
however, it is assumed that the bias is constant over the entire life of
the structure.

Compared to manual inspections [nondestructive inspection/
evaluation (NDI/E) techniques], the accuracy of SHM is relatively
poor. The minimum detectable size of damage using SHM is much
larger than that of NDI/E methods. In addition, the measured data
have the aforementioned noise and bias. Thus, themajor challenge in
SHM-based prognosis is how to accurately predict the damage
growthwhen themeasureddata includebothnoiseandbias.Although
noise is commonly discussed, bias is often ignored in literature.
However, unlike manual inspection, SHM may provide frequent
measurements of damage,making it possible to trackdamagegrowth.
This, in turn, can reduce the uncertainty in thematerial properties that
govern damage growth. The uncertainty in these properties is
normally large because of variability in manufacturing and aging of
the structure. The main objective of this paper is to demonstrate the
reduction in uncertainty of these parameters using an abundance of
SHM data, although they include noise and bias. In other words,
numerous data obtained from SHM can be used to characterize
damage growth behaviors of a specific structure. A statistical

approach using Bayesian inference is employed to progressively
improve the accuracy of predicting damage growth parameters under
noise and bias of sensor measurements.

The proposed approach is demonstrated using a through-the-
thickness crack in an aircraft fuselage panel which grows through
cycles of pressurization. A simple damage growth model [21] with
two damage growth parameters is used. However, more advanced
damage growth models can also be used, which usually come with
more parameters. Using this simplemodel, the goal is to demonstrate
that noisy SHM data can be used to identify the damage growth
parameters of the monitored panel. This process can be viewed as
turning every aircraft into a flying fatigue laboratory. Reducing
uncertainty in damage growth parameters can in turn reduce the
uncertainty in predicting RUL: i.e., prognosis. Improved knowledge
of RUL can have practical consequences such as increased time
between visual inspections or a reduction in hardware testing when
SHM is combined with manual inspection.

The paper is organized as follows. In Sec. II, a simple damage
growth model based on the Paris model is presented. In Sec. III the
measurement model used in this paper is introduced and shows how
error inmeasurements due to SHM is added to themodel presented in
the previous section. It also presents how Bayesian inference is used
to identify damage growth parameters. In Sec. IV the numerical
application of the model is presented. In Sec. V, the updating of
damage parameter m is presented as well as the resulting prognosis.
In Sec. VI, results similar to those presented in Sec.V but obtained by
updating the other damage parameter,C, are presented. Conclusions
are presented in Sec. VII along with future plans.

II. Damage Growth Model

Damage in a structure starts at a microstructure level, such as
dislocations, and gradually grows to the level of detectable macro-
cracks through nucleation and growth. Initial microdamage grows
slowly, is often difficult to detect, and is not dangerous for structural
safety. Thus, SHM often focuses on macrocracks, which grow
relatively quickly due to fatigue loadings.

In this paper, we consider fatigue crack growth in a fuselage panel
with initial half-crack size ai subjected to fatigue loading with
constant amplitude due to pressurization. The hoop stress varies
between a maximum value of � and a minimum value of zero in one
flight. One cycle of fatigue loading represents one flight. As used by
many other researchers [22,23], the following Paris law is used for
the damage growth model [21]:

da

dN
� C��K�m (1)

where a is the half-crack size in meters, N is the number of cycles
(flights), da=dN is the crack growth rate in meters/cycle, and�K is

the range of stress intensity factor inMPa
������������
meter
p

. The above model
has two damage growth parameters: C and m.

The range�K of stress intensity factor for a center-cracked panel
is calculated as a function of the stress� and the half-crack lengtha in
Eq. (2), and the hoop stress due to the pressure differential �p is
given by Eq. (3):

�K � �
������
�a
p

(2)

� � ��p�r
t

(3)

where r is the fuselage radius, and t is the panel thickness.
Equation (2) does not include a geometric correction factor due to the
finite size of the panel, and Eq. (3) does not include corrections due to
the complexity of the fuselage construction, so that they are both
approximate.

The number of cyclesN of fatigue loading thatmakes a crack grow
from the initial half-crack size ai to the final half-crack aN can be
obtained by integrating Eq. (1) as
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N �
Z
aN

ai

da

C��
������
�a
p
�m �

a
1�m2
N � a1�

m
2

i

C�1 � m
2
���

����
�
p
� (4)

Alternatively, the half-crack size aN after N cycles of fatigue
loading can be obtained by solving Eq. (4) for aN as

aN �
�
NC

�
1 �m

2

�
��

����
�
p
�m � a1�

m
2

i

� 2
2�m

(5)

The panel will fail when the crack reaches a critical half-crack size
aC. Here, we assume that this critical crack size is when the stress
intensity factor exceeds the plane-strain fracture toughnessKIC. This
leads to the following expression for the critical crack size (again
neglecting finite panel effects):

aC �
�
KIC
�

����
�
p

�
2

(6)

III. Statistical Characterization of Damage Growth
Properties Using Bayesian Inference

Damage growth parameters C and m are critical factors to
determine the growth of damage. These parameters are normally
estimated by fitting fatigue test data under a controlled laboratory
environment. However, uncertainty in these parameters is normally
large not only at a material level because of variability in manu-
facturing and aging of the specific panel, but also at a specimen level
because of variability related to testing processes. However, a
specific panel in an airplane may have a much narrower distribution
of damage growth parameters or even have deterministic values. In
this section, Bayesian inference will be used to identify these panel-
specific parameters.

As can be seen in Fig. 1, the exponentm is the slope of the fatigue
crack curve in the log–log scale, while the parameter C corresponds
to the y intercept at �K � 1, of the fatigue curve. To simplify the
presentation, it is assumed that the parameter C has a known
deterministic value, and thus uncertainty is only in m. However, the
uncertainty in C can also be considered in the same way. From the
scattered coupon test data, the upper and lower bounds of m can be
estimated using log–log plots of crack growth rate illustrated in
Fig. 1. Since prior knowledge is limited, we assume that m is
uniformly distributed between these two bounds. Then the goal is to
narrow the distribution of the exponent using Bayesian inference
with measured damage growth.

Since the Paris model is based on crack growth, we use the
measured crack growth data from the diagnosis to characterize the
damage growth parameters. Let measurements be performed at every
�N, and let N be the current cycle. The half-crack growth between
two measurements can be defined as

�ameas
N � ameas

N � ameas
N��N (7)

Bayesian inference is based on the Bayes theorem of conditional
probability. It is used to obtain the updated (also called posterior)

probability of a random variable by using new information available
for the variable. In this paper, since the probability distribution ofm
given �a is of interest, we use the following form of the Bayes
theorem [24]:

fupdt�m� �
l��ajm�fini�m�R�1

�1 l��ajm�fini�m� dm
(8)

where fini�m� is the assumed (or prior) probability density function
(PDF) of m, fupdt�m� is the updated (or posterior) PDF of m, and
l��ajm� is called a likelihood function, which is the probability of
obtaining the measured damage growth �a for a given value of m.
The denominator in Eq. (8) can be considered as a normalizing
constant that makes fupdt�m� to satisfy the property of PDF. Since
fini�m� is given or assumed, the most important step in Bayesian
inference is to calculate the likelihood function, which determines
the uncertainty structure of the posterior distribution. In the literature,
the likelihood function is often assumed to be Gaussian or to have
analytical expressions. This assumption is made not because of
physics but because of convenience. Since the posterior distribution
strongly depends on the likelihood function, any assumptions about
the likelihood function may lead to errors in posterior distribution.
The main contribution of this paper is to rigorously show the process
of calculating the likelihood function by propagating uncertainties
through the physical model.

The likelihood function is designed to integrate the information
obtained from SHM measurements to the knowledge about the
distribution ofm. The physical interpretation of the likelihood is the
PDF value of the true crack growth at the measured crack growth for
givenm. Although the true crack growthwould be a single value, it is
considered to be randomly distributed in the viewpoint of measured
crack growth due to various uncertainties in the process. Thus, it is
important to estimate the distribution of true crack growth. In
general, the measured crack growth includes the effect of bias and
noise of the sensormeasurement aswell as uncertainty in input loads.

In this paper, instead of using measured crack growth data,
simulated crack growth data are used with appropriate models of
noise and bias. The process will be repeated to estimate the statistical
characteristics of real measurements. Let aN be the true half-crack
size, let b be the bias, and let �N be the noise at the current cycle N.
The true crack sizes are simulated using the true values of parameters
mtrue andCtrue fromEq. (5). Themeasured crack sizes 2ameas

N are then
simulated as

2ameas
N � 2aN � b� �N (9)

The measurement bias b reflects a deterministic bias, such as
calibration error, while the noise �N reflects random noise. For sub-
sequent simulated measurements, the bias b remains constant, while
the noise �N is uniformly distributed within the range of ��V;�V�.
Once the measure crack sizes are simulated using Eq. (9), the true
crack size aN is not used in damage growth parameter identification.
Then the goal is to estimate mtrue using the measured crack growth.

The expression in Eq. (9) can be used to define the crack growth
between two consecutive SHM measurements as follows:

�ameas
N � ameas

N � ameas
N��N ��aN ���N (10)

where �aN is the true crack growth and ��N � �N � �N��N is the
difference between two randomnoises. Although �N and �N��N have
the same range of ��V;�V�, they are independent.

At a given SHMmeasurement, the measured crack size in Eq. (9)
has the same distribution type as the noise, while the measured crack
growth in Eq. (10) has the same distribution type as��N . Since there
is no information regarding the distribution of noise, in this paper it is
assumed to be uniformly distributed with mean at zero. Thus, the
measured crack size is also uniformly distributed. On the other hand,
it can be easily shown that��N is triangularly distributed with mean
at zero. Consequently, the crack growth is also triangularly
distributed with the mean at�aN . Thus, the respective distributions
can be defined as

Fig. 1 Illustration of the estimation of Paris model parameters using a

log–log plot of crack growth rate.
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�
ameas
N � uniform�aN � b=2 � V=2;aN � b=2� V=2�

�ameas
N � triangular��aN � V; �aN; �aN � V�

(11)

The quantities defined above only involve measurement error. In
general, however, the crack growth model may also have modeling
error, which is related to numerical simulation. To calculate the
likelihood function, we introduce a simulated half-crack size asimN
that involves a modeling error esimN as

asimN �m� � aN � esimN �m� (12)

We use the superscript sim for modeling error, because it also
includes propagated uncertainty through numerical simulation. The
simulated crack size depends on Paris parametersm andC as well as
the initial crack size, but only uncertainty in m is considered.
Similarly, the simulated crack growth can be written as

�asimN �m� ��aN ��esimN �m� (13)

Different from measurement errors, the uncertainty in �esimN is not
well characterized; it often requires Monte Carlo simulation (MCS)
through the physics model that governs the crack growth.

The idea of calculating likelihood is to identify the damage growth
parameter by comparing the measured crack growth, �ameas

N , with
the simulated crack growth, �asimN , with a given m. The difference
between these two growths can be defined as

d�m� ��asimN �m� ��ameas
N (14)

If the analytical PDFs of�ameas
N and�asimN are available, then the

PDF of d can readily be calculated. The likelihood l��ajm� is then
defined as the value of this PDF at d�m� � 0. Since, in general, the
analytical PDFs are not available, the MCS is used to calculate the
likelihood. Since MCS is a discrete process, it is not trivial to
calculate the PDF directly. Instead, the probability of jdj 	 � with �
being a small constant is used as a definition of likelihood:

l��ajm� � P�jdj 	 �� (15)

Note that if the right-hand side is divided by 2� and if � approaches
zero, then the likelihood becomes the value of PDF at d�m� � 0. In
the viewpoint of Eq. (8), since the posterior distribution will be
normalized, the above definition works for likelihood although it is
given in the form of probability.

If the likelihood l��ajm� is purely calculated by sampling�ameas
N

and�asimN , the tolerance � needs to be large enough to include enough
samples to reduce sampling errors. On the other hand, if � is too large,
errors will be incurred due to nonlinearity in the likelihood function.

In general, since the measurement error that controls �ameas
N is

independent of the modeling error that controls�asimN , the separable
sampling scheme can be performed, and samples of in Eq. (14) can be
calculated by comparing all possible combinations of the two sets of
samples [25]. In addition, computational efficiency can significantly
be improved since the analytical PDF of �ameas

N is available from
Eq. (11). The PDF of�asimN is not available analytically, because it is
obtained by propagating uncertainties through the crack growth
model.

The definition of likelihood in Eq. (15) can be expanded by

l��ajm� � P�jdj 	 �� � P�d� � 
 0� � P�d � � 
 0� (16)

Using conditional expectation on the second term on the right-hand
side, we obtain

P�d � � 
 0� � P��asimN ��ameas
N � � 
 0�

�
Z
�asimN

P��asimN ��ameas
N � � 
 0�fsim��asimN � d�asimN

�
Z
�asim

N

Fmeas��asimN � ��fsim��asimN � dasimN (17)

where fsim�x� is the PDF of �asimN and Fmeas�x� is the cumulative
distribution function (CDF) of �ameas

N . The last relation is obtained

from the definition of CDF: i.e., by considering �ameas
N as the only

random variable,

P��ameas
N 	 �asimN � �� � Fmeas��asimN � ��

Similarly, the first term on the right-hand side of Eq. (16) can be
written as

P�d� � 
 0� �
Z
�asim

N

P��asimN ��ameas
N

� � 
 0�fsim��asimN � d�asimN

�
Z
�asim

N

Fmeas��asimN � ��fsim��asimN � d�asimN (18)

Thus, by combining Eqs. (17) and (18), the likelihood can bewritten
as

l��ajm� �
Z
�asim

N

�Fmeas��asimN � ��

� Fmeas��asimN � ���fsim��asimN � d�asimN

� 2�

Z
�asimN

fmeas��asimN �fsim��asimN � d�asimN (19)

where the central finite difference approximation is used in the
second relation, which becomes exact when �! 0. As explained
before, since the posterior PDFwill be normalized, the coefficient 2�
can be ignored. The above expression in particular is convenient for
separable MCS, because the analytical expression of fmeas�x� is
known, and fsim�x� can be evaluated by propagating uncertainty
through numerical simulation. Let M be the number of samples in
MCS; the likelihood can then be calculated by

l��ajm� �
Z
�asim

N

fmeas��asimN �fsim��asimN � d�asimN

� 1

M

XM
i�1

fmeas��asimN;i� (20)

First, input random samples such as noise and pressure are generated
according to their distribution types. These input random samples are
propagated through the Paris model to produce samples of crack
growth�asimN . Second, the values of PDF fmeas��asimN � are evaluated
for all samples, whose average is the likelihood. The numerical
experiments showed that M� 2000 is enough to obtain a smooth
distribution of the likelihood function. Note that likelihood
calculation is computationally intensive, because Eq. (20) needs to
be evaluated for every m in the range of Eq. (8). In addition, the
Bayesian inference in Eq. (8) is repeated at every inspection cycle.

Once the posterior distribution of m is obtained from Bayesian
inference, it can be used to estimate the RUL, which is the expected
life from the current cycle to the failure. In this paper, the failure is
defined as when the crack size reaches the critical crack size aC in
Eq. (6). From Eq. (5), the RUL can be estimated by

Nf �
a
1�m2
C � �asimN �1�

m
2

C�1 � m
2
����

����
�
p
� (21)

Note that the RUL, Nf , is also randomly distributed. Thus, it only
makes sense to estimate the RUL as a distribution. The distributions
of m and � are given from Bayesian inference and Eq. (3),
respectively. Although the true crack size, atrueN , should be a deter-
ministic value, it has to be estimated from the measured crack size,
ameas
N . Thus, it needs to be considered as a random variable. For the

given noise and bias model, the true crack size can be estimated by

atrueN �U�ameas
N � b=2 � V=2; ameas

N � b=2� V=2� (22)

The distribution of RUL is calculated at every inspection cycle
using MCS with 50,000 samples. Since predicting RUL is an
extrapolation process, the input uncertainties are amplified in
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predicting uncertainty in RUL. To predict the RUL safely, we choose
fifth percentile as a conservative estimate of RUL.

Figure 2 shows an example of predicted CDF of RUL of a panel
under cyclic uniform stress with initial half-crack size of 10mm after
500 and 1500 cycles. The total life of the structure is about 2500
cycles if mean values of all input parameters are used. It can be
observed that the estimated mean values of RUL are about 2000 and
1000 after 500 and 1500 cycles, respectively. However, these mean
values would provide about 50% chance of overpredicting the RUL
for given uncertainties in input parameters and SHMmeasurements.
To have a 95% conservative estimate, we choose the CDF value of
0.05, which corresponds to 1000 and 800 cycles, respectively, (two
vertical lines in Fig. 2). At 500 cycles, the conservativeRUL estimate
has ratio of 0.5 (1000/2000) compared to the mean RUL, while at
1500 cycles the ratio becomes 0.8 (800/1000). This happens because
the knowledge on damage growth parameterm is improved through
Bayesian inference: i.e., the uncertainty in m is reduced.

IV. Numerical Application

In this paper, synthetic SHM measurements are used to
demonstrate the process of Bayesian inference and predicting RUL.
Depending on manufacturing and assembly processes, the actual
damage growth parameters for individual aircraft can be different.
For a specific panel, it is assumed that there exists a true value of
deterministic damage growth parameters (mtrue � 3:8 and Ctrue�
1:5 � 10�10). In the following numerical simulation, the true damage
will grow according to the true values of damage growth parameters.
On the other hand, themeasured damage sizewill have bias and noise
frommeasurements. To simplify the presentation, the distributions of
m and C are considered separately, which means that when one
variable is uncertain, the other one is assumed to be known with its
true value.

Typical material properties for 7075-T651 aluminum alloy are
presented in Table 1. The applied fuselage pressure differential is
0.06 MPa [26], and the stress is given by Eq. (3). Paris model
parametersm andC are obtained using a crack growth rate plot [27].
Note that due to scatter of the crack growth rate, the exponentm and
log�C� are assumed to be uniformly distributed between the lower
and upper bounds.

From the preliminary damage growth analysis, it was found that
the distribution of pressurep has negligible effect on damage growth,
because the effect of randomness is averaged out. Thus, in the
following analysis, the applied pressure is assumed to be deter-
ministic, 0.06 MPa, which is the mean of the distribution obtained
from Niu [26].

In general, the minimum size of detectable damage using SHM is
much larger than that of the manual inspection. Although different
SHM techniques may have different minimum detectable size, we
chose an initial half-crack size of a0 � 10 mm, which is large
enough to be detected by most ultrasonic diagnostic methods in
SHM. In addition, this size of damage will provide significant crack
growth data between two consecutive inspections.

In the following sections, two cases are considered. The first is
updating parameterm, and the second is updating parameterC. First,
one set of measured crack sizes is generated at every SHM mea-
surement interval�N by adding noise and bias to the true crack sizes
that are calculated from the Parismodel [see Eqs. (5) and (9)]. Then at
everymeasurement interval, Bayesian inference is used to update the
PDFofm. Once the PDFofm is available, Eq. (21) is used to estimate
the distribution of RUL of which its fifth percentile is used as a
conservative estimate of RUL. Since synthetic data are used by
adding random noise, the result may vary with different sets of
samples. Thus, the above process is repeated with 100 sets of mea-
surements and the mean 1 standard deviation intervals are plotted.
Figure 3 shows a flowchart of calculating likelihood function using
Monte Carlo simulation.
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Fig. 2 Cumulative distribution function of RUL after updating the distribution of damage growth parameter m using Bayesian inference.

Table 1 Geometry, loading, and damage growth parameters

of 7075-T651 aluminum alloy

Property Distribution type

Radius of fuselage r, m Deterministic 3.25
Thickness of panel t, m Deterministic 0.00248
Pressure differential �p, MPa Lognormal (0.06,0.003)a

Fracture toughness KIC,MPa
������������
meter
p

Deterministic 30

Critical half-crack size, aC, m 0.0463
True damage growth parameter mtrue 3.8
True damage growth parameter Ctrue 1:5E � 10
Initial distribution of m Uniform (3.3, 4.3)b

Initial distribution of log�C� Uniform �log�5E � 11�;
log�5E � 10��

Noise v, mm Uniform ��V;�V�,
V � 1:0, or 3.0

Bias b, mm Deterministic, �2:0, 0.0, or 2.0
aLognormal (mean, standard deviation), modeled as constant in simulations.
bUniform (lower bound, upper bound).

Fig. 3 Flowchart of calculating likelihood function using Monte Carlo

Simulation.
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V. Updating Damage Growth Parameter m

In this section, it will be shown that the distribution of the damage
growth parameters for a fuselage panel is narrowed using SHM
measurement data andBayesian inference. It is assumed that initially
the panel has a 20 mm through-the-thickness crack that is monitored
by SHM equipment. Although some SHMmethods can detect small
cracks, 20 mm is chosen because it is a reasonable size that can be
detectable using most SHM equipments in the field. The true crack
grows according to damage growth parameters mtrue and Ctrue in
Table 1.

It is assumed that SHMmeasurements are performed at every 100
cycles (i.e.,�N � 100). Since the crack grows slowly and the noise
and bias of measurements are, in general, large, overly frequent
measurements may not provide significant information about the
crack growth. The synthetic measured crack size data are generated
by adding random noise and deterministic bias to the true crack size
data. In the following Bayesian inference, only the measured crack
size data are used.

As an example, the parameter m will be updated, while the true
valueCtrue of the parameterC is assumed to be known. Starting from
the initial uniform distribution, the PDF of m is progressively
updated using Bayesian inference with measured damage sizes. The
noise in crack detection is assumed to be uniform ��1;�1 mm� and
the bias is assumed to be zero. SHM measurements are conducted
until the crack reaches its half critical sizeaC, defined inEq. (6)with a
value of about 42.7 mm. Figure 4 plots the updated PDFs of m at
every 1000 cycles. It is clear that as the crack grows, the PDF of m
becomes narrower and it converges to the true value ofmtrue � 3:8. It
is noted that the convergence becomes faster as the crack size
increases, because the crack growth is faster for a larger crack.

Figure 5 shows the effect of bias on the final updated PDF of m.
The noise in crack detection is assumed to be uniform ��1;�1� and
two different biases are used: b��2 and 2 mm. It is clear that bias
shifts the maximum likelihood point (the peak of PDF) from that of
the true value; the negative bias overestimates the PDF of m, while
the positive bias underestimates it. Even if bias cause a shift in the
distribution, its effect is insignificant in estimating RUL. Bayesian
inference over/underestimate the distribution so that the predicted
damage size is close to the measured one. In other words, Bayesian
inference tried to compensate the model error by shifting the
distribution.

Figure 6 shows the effect of noise on the PDF of m when
b� 0 mm. It is obvious that noise has an effect on the standard
deviation but does not shift the distribution as the bias does. The
smaller the noise, the narrower the final PDF of m.

Table 2 shows statistical characteristics, such as the maximum
likelihood, mean and standard deviation of PDF ofm, corresponding
to Figs. 5 and 6. It can be observed that the mean and maximum
likelihood values are minimally affected by the bias and noise.
However, the standard deviation increases with a large noise. As
expected, a positive bias (true crack size is smaller than themeasured
one) leads to an underestimation of m.

Once the PDFofm is obtained, it can be used to predict the RULof
the monitored panel. Since the PDF is updated at every SHM
measurement, the predicted RUL will vary at every measurement
interval�N. In predictingRUL, 50,000 samples ofm, atrueN , and � are
generated, and Eq. (21) is used to calculate samples ofNf . To have a
safe prediction of RUL, the fifth percentile ofNf samples is used as a
conservative estimate of RUL. Since we used synthetic data by
adding random noise, the result may vary with different sets of data.
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Table 2 Statistical characteristics of final PDF of with different

combinations of bias/noise

Effect of noise Effect of bias

Bias, noise, mm b� 0, V � 1 b� 0, V � 3 b��2, V � 1 b��2, V � 1
Max. likelihood 3.80 3.80 3.82 3.78
Mean 3.80 3.80 3.82 3.78
Standard deviation 0.01 0.04 0.01 0.01
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Thus, the above process is repeated with 100 sets of measurement
data, and mean 1 standard deviation intervals are plotted. Figure 7
shows these conservative intervals of RUL with two different
combinations of noise and bias. These combinations correspond to
extreme cases; the most and least conservative estimates of RUL. To
compare the predicted RUL with true one, the true RUL is also
plotted in thefigure.Note that initially the difference between the true
and predicted RULs is significant, because uncertainty is large at an
early stage. However, the predicted RUL converges to the true one
from the safe side as more numbers of updates are performed. In
addition, the variability of estimated RUL is also gradually reduced.
Thus, it can be concluded that the proposed Bayesian inference can
estimate panel-specific damage growth parameters as well as the
RUL while maintaining conservative.

VI. Updating Damage Growth Parameter C

In this section, as a second example, the damage growth parameter
C is updated, while m�mtrue is used, starting from the initial
distribution given in Table 1. Since the Paris model is linear in a log–
log scale and sinceC is the y intercept at�K � 1, log�C� is updated
instead of C. The updating process is the same as updating the
distribution ofm described in Sec. Vwith the same type of likelihood
function and the same noise and bias. Starting from the initial
uniform distribution, the PDF of log�C� is progressively updated
using Bayesian inference with measured damage sizes. The noise in
crack detection is assumed to be uniform ��1;�1� and the bias to be
zero. SHM measurements are conducted until the crack reaches its
half critical size, aC. Figure 8 plots the updated PDFs of log�C� at
every 1000 cycles. It is clear that as the crack grows, the PDF of
log�C� becomes narrower and it converges to the true value of
Ctrue � 1:5 � 10�10. It is noted that the convergence becomes faster
as the crack size increases, because the crack growth is faster for a
larger crack.

The effects of noise and bias turn out to be similar to the case of
updating m. Figure 9 shows the effect of bias on the final updated
PDFof log�C�. The noise in crack detection is assumed to be uniform
��1;�1� and two different biases are used:b��2 and 2mm.As for
m, bias appears to shift the maximum likelihood point from that of
the true value; the negative bias overestimates the PDF of log�C�,
while the positive bias underestimates it.

Figure 10 shows the effect of noise on the PDF of log�C� when
b� 0 mm. It is obvious that noise increases the standard deviation

Fig. 7 One-sigma intervals of 95% conservative RUL compared to the
true RUL.
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Table 3 Statistical characteristics of updated PDF of log�C�with different combinations of bias/noise

Effect of noise Effect of bias

Bias, noise, mm b� 0, V � 1 b� 0, V � 3 b��2, V � 1 b��2, V � 1
Max. likelihood 1:5E � 10 1:5E � 10 1:6E � 10 1:4E � 10
Mean 1:5E � 10 1:5E � 10 1:6E � 10 1:4E � 10
Standard deviation 5:9E � 12 1:3E � 11 5:3E � 12 6:0E � 12
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but it does not shift the distribution as the bias does. The smaller the
noise, the narrower the final PDF of log�C�.

Table 3 shows statistical characteristics, such as the maximum
likelihood, mean and standard deviation of PDF ofC, corresponding
to Figs. 9 and 10. It can be observed that the mean is only minimally
affected by the bias and noise in the data. However, the standard
deviation is large with large noise. As expected, positive bias (true
crack size is smaller thanmeasured) leads to an underestimation ofC.
From Figs. 9 and 10, it can be concluded that the effects of noise and
bias are similar to updating both m and C.

Similar to the case of updating m, the predicted RULs from the
updated log�C� at every measurement interval are plotted in Fig. 11.
Again, it is clear that the conservative estimate of RUL approaches
the true RUL from the safe side. In addition, the variability of
estimated RUL is also gradually reduced. Thus, it can be concluded
that the proposed Bayesian inference can estimate panel-specific
damage growth parameters as well as predict the RUL while main-
taining conservative.

VII. Conclusions

In this paper, a Bayesian inference method is employed to identify
panel-specific damage growth parameters using damage sizes
measured from SHM sensors. The actual measurement environment
is modeled by introducing deterministic bias and random noise. The
likelihood function is calculated by comparing measured crack
growth with simulated crack growth, which requires uncertainty
propagation though the physicsmodel that governs the crack growth.
Because of many uncertainties involved, the RUL is predicted
statistically and uses 95% conservative estimation.

Through numerical examples, it is shown that the probability
distributions of the two damage growth parameters m and C are
effectively narrowed and converged to the true values. The large
number of SHMdata compensates for the effect of noise, and thus the
identified damage growth parameters are relatively insensitive to it.
However, the effect of bias remains, and it affects the identification of
true damage growth parameters. It is shown that convergence is slow
when the bias is negative and noise is large, while it is fast when the
bias is positive and the noise is small. However, the latter yields an
underestimation of the true parameters.

The identified distributions of parameters are used to estimate the
RUL with 95% confidence. In all combined cases with noise and
bias, the proposed method converges to the true RUL from the
conservative side.

In themore general approach, it is possible to update bothm andC
using their joint PDF. In addition, the unknown bias can also be
considered as an uncertain variable and can be updated together.
However, as the number of variables increases, the computational
cost increases significantly, because the proposedmethod is based on
MCS for uncertainty propagation. In the future, the possibility of
reducing computational cost by using surrogatemodeling techniques
will be investigated.

Acknowledgments

This workwas supported by theU.S. Air ForceOffice of Scientific
Research under grant FA9550-07-1-0018 and by NASA under grant
NNX08AC334.

References

[1] Wang, L., andYuan, F. G., “Damage Identification in a Composite Plate
Using Prestack Reverse-TimeMigration Technique,” Structural Health
Monitoring, Vol. 4, No. 3, 2005, pp. 195–211.
doi:10.1177/1475921705055233

[2] Luo, J., Namburu, M., Pattipati, K., Qiao, L., Kawamoto, M., and
Chigusa, S., “Model-Based Prognostic Techniques [Maintenance
Applications],” IEEE Systems Readiness Technology Conference,
Inst. of Electrical and Electronics Engineers, Piscataway, NJ,
2003, pp. 330–340.

[3] Li, C. J., and Lee, H., “Gear Fatigue Crack Prognosis Using Embedded
Model, Gear Dynamic Model and Fracture Mechanics,” Mechanical

Systems and Signal Processing, Vol. 19, 2005, pp. 836–846.
doi:10.1016/j.ymssp.2004.06.007

[4] Berruet, P., Toguyeni, A., K. A., and Craye, E., “Structural and
Functional Approach for Dependability in FMS,” IEEE International

Conference on Systems,Man, andCybernetics, Vol. 4, Inst. of Electrical
and Electronics Engineers, Piscataway, NJ, 1999, pp. 481-485.
doi:10.1109/ICSMC.1999.812452

[5] Ray, A., and Patankar, R., “A Stochastic Model of Fatigue Crack
Propagation Under Variable-Amplitude Loading,” Engineering

Fracture Mechanics, Vol. 62, 1999, pp. 477–493.
doi:10.1016/S0013-7944(98)00103-9

[6] Ray, A., and Tangirala, S., “Stochastic Modeling of Fatigue Crack
Dynamics for Online Failure Prognostics,” IEEE Transactions on

Control Systems Technology, Vol. 4, 1996, pp. 443–451.
doi:10.1109/87.508893

[7] Law, L. C., “Neural Networks for Model-Based Prognostics,” IEEE

Aerospace Conference, Vol. 3, Inst. of Electrical and Electronics
Engineers, Piscataway, NJ, 1999.
doi:10.1109/AERO.1999.789761

[8] Schwabacher, M. A., “A Survey of Data-Driven Prognostics,” AIAA
Infotech@Aerospace Conference, AIAA Paper 2005-7002, 2005.

[9] Montanari,G.C., “Aging andLifeModels for Insulation SystemsBased
on PD Detection,” IEEE Transactions on Dielectrics and Electrical

Insulation, Vol. 2, 1995, pp. 667–675.
doi:10.1109/94.407031

[10] Xue,Y.,McDowell, D. L., Horstemeyer,M. F., Dale,M.H., and Jordon,
J. B., “Microstructure-Based Multistage Fatigue Modeling of
Aluminum Alloy 7075-T651,” Engineering Fracture Mechanics,
Vol. 74, 2007, pp. 2810–2823.
doi:10.1016/j.engfracmech.2006.12.031

[11] Goebel, K., Saha, B., and Saxena, A., “A Comparison of Three Data-
Driven Techniques for Prognostics,” 62nd Meeting of the Society for

Machinery Failure Prevention Technology (MFPT), 2008, pp. 119–
131.

[12] Srivastava, A. N., and Das, S., “Detection and Prognostics on Low
Dimensional Systems,” IEEE Transactions on Systems, Man, and

Cybernetics, Pt. C, Vol. 39, 2009, pp. 44–54.
doi:10.1109/TSMCC.2008.2006988

[13] Tipping, M., “The Relevance Vector Machine. in Advances in
Neural Information Processing Systems,” MIT Press, Cambridge,
MA, 2000.

[14] Yan, J., and Lee, J., “A Hybrid Method for On-line Performance
Assessment and Life Prediction in Drilling Operations,” IEEE

International Conference on Automation and Logistics, Inst. of
Electrical and Electronics Engineers, Piscataway, NJ, 2007, pp. 2500-
2505.

[15] Orchard, M., Kacprzynski, G., Goebel, K., Saha, B., and Vachtsevanos,
G., “Advances in Uncertainty Representation and Management for
Particle Filtering Applied to Prognostics,” International Conference on
Prognostics and Health Management, Prognosis and Health Manage-
ment Society, 2008, pp. 1–6.

[16] Sheppard, J. W., Kaufman, M. A., Inc, A., and Annapolis, M. D.,
“Bayesian Diagnosis and Prognosis Using Instrument Uncertainty,”
IEEE Autotestcon, Inst. of Electrical and Electronics Engineers,
Piscataway, NJ, 2005, pp. 417–423.

[17] Saha, B., and Goebel, K., “Uncertainty Management for Diagnostics
and Prognostics of Batteries Using Bayesian Techniques,” IEEE

Aerospace Conference, Inst. of Electrical and Electronics Engineers,
Piscataway, NJ, 2008, pp. 1–8.
doi:10.1109/AERO.2008.4526631

Fig. 11 One-sigma intervals of 95% conservative RUL compared to

the true RUL.

COPPE ETAL. 2037

http://dx.doi.org/10.1177/1475921705055233
http://dx.doi.org/10.1016/j.ymssp.2004.06.007
http://dx.doi.org/10.1109/ICSMC.1999.812452
http://dx.doi.org/10.1016/S0013-7944(98)00103-9
http://dx.doi.org/10.1109/87.508893
http://dx.doi.org/10.1109/AERO.1999.789761
http://dx.doi.org/10.1109/94.407031
http://dx.doi.org/10.1016/j.engfracmech.2006.12.031
http://dx.doi.org/10.1109/TSMCC.2008.2006988
http://dx.doi.org/10.1109/AERO.2008.4526631


[18] Engel, S. J., Gilmartin, B. J., Bongort, K., and Hess, A., “Prognostics:
The Real Issues Involved with Predicting Life Remaining,” IEEE

Aerospace Conference, Vol. 6, Inst. of Electrical and Electronics
Engineers, Piscataway, NJ, March 2000, pp. 456–467.
doi:10.1109/AERO.2000.877920

[19] Gu, J., Barker, D., and Pecht, M., “Uncertainty Assessment of
Prognostics of Electronics Subject to Random Vibration,” AAAI Fall

Symposium on Artificial Intelligence for Prognostics, AIAA, Reston,
VA, 2007, pp. 50–57.

[20] Orchard, M., Wu, B., and Vachtsevanos, G., “A Particle Filter
Framework for Failure Prognosis,” World Tribology Congress III,
Washington, D.C., Paper WTC2005-64005, Sept. 2005.

[21] Paris, P. C., Tada, H., and Donald, J. K., “Service Load Fatigue
Damage—AHistorical Perspective,” International Journal of Fatigue,
Vol. 21, 1999, pp. 35–46.
doi:10.1016/S0142-1123(99)00054-7

[22] Harkness, H. H., “Computational Methods for Fracture Mechanics and
Probabilistic Fatigue,”Ph.D. Thesis, NorthwesternUniv., Evanston, IL,
1994.

[23] Lin, K. Y., Rusk, D. T., and Du, J. J., “Equivalent Level of Safety
Approach to Damage-Tolerant Aircraft Structural Design,” Journal of
Aircraft, Vol. 39, 2002, pp. 167–174.
doi:10.2514/2.2911

[24] An, J., Acar, E., Haftka, R. T., Kim, N. H., Ifju, P. G., and Johnson, T. F.,
“Being Conservative with a Limited Number of Test Results,” Journal
of Aircraft, Vol. 45, 2008, pp. 1969–1975.
doi:10.2514/1.35551

[25] Smarslok, B. P., Alexander, D., Haftka, R. T., Carraro, L., and
Ginsbourger, D., “Separable Monte Carlo Applied to Laminated
Composite Plates Reliability,” 49th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Schaum-
burg, IL, AIAA Paper 2008-17512008.

[26] Niu, M., “Airframe Structural Design,” Fatigue, Damage Tolerance

and Fail-Safe Design, Conmilit, Hong Kong, 1990, pp. 538–570.
[27] Newman, J. C., Phillips, E. P., and Swain, M. H., “Fatigue-Life

Prediction Methodology Using Small-Crack Theory,” International

Journal of Fatigue, Vol. 21, 1999, pp. 109–119.
doi:10.1016/S0142-1123(98)00058-9

2038 COPPE ETAL.

http://dx.doi.org/10.1109/AERO.2000.877920
http://dx.doi.org/10.1016/S0142-1123(99)00054-7
http://dx.doi.org/10.2514/2.2911
http://dx.doi.org/10.2514/1.35551
http://dx.doi.org/10.1016/S0142-1123(98)00058-9

