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a b s t r a c t

In this paper, a statistical methodology of estimating wear coefficient and predicting wear volume in a
revolute joint using in situ measurement data is presented. An instrumented slider–crank mechanism
that can measure the joint force and the relative motion between the pin and bushing is built. The
former is measured using a load cell built onto a necked portion of the hollow steel pin, while the latter is
measured using a capacitance probe. In order to isolate the effect of friction in other joints, a porous carbon
air bearing for the revolute joint between the follower link and the slide stage, as well as a prismatic joint
for the linear slide, are used. Based on the relative motion between the centers of the pin and bushing, the
wear volumes are estimated at six different operating cycles. The Bayesian inference technique is used to
update the distribution of wear coefficients, which incorporates in situ measurement data to obtain the
posterior distribution. The Markov Chain Monte Carlo technique is employed to generate samples from
the given distribution. The results show that it is possible to narrow the distribution of wear coefficients
and to predict the future wear volume with reasonable confidence. The effect of the prior distribution on
the wear coefficient is discussed by comparing with the non-informative case.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Mechanical systems are characterized by motion. In order to
fulfill their design function, the individual components of a system
must move relative to one another, which inevitably produces slid-
ing along the mating surfaces and causes wear. Wear is the gradual
removal of material from contacting surfaces in relative motion,
which eventually causes failure of the system. Since mechanical
wear occurs for most systems in motion, it is important to pre-
dict its effects and estimate the service life of the system before
failure.

The traditional practice of predicting service life of a mechani-
cal component under wear is performed through three stages [1–3].
First, the material wear coefficient is measured using a tribometer
to approximate the actual conditions. Normally, a constant load is
applied on the two mating surfaces under rotational or recipro-
cating motion. Second, the contact pressure and sliding distance
of an actual component are calculated using either analytical or
numerical methods. The finite element method [1–3] or the elas-
tic foundation method [4,5] is often used for this purpose. Third,
wear volume is estimated as a function of service life by combin-
ing the wear coefficient with contact pressure and sliding distance.

∗ Corresponding author. Tel.: +1 352 846 0665; fax: +1 352 392 7303.
E-mail address: nkim@ufl.edu (N.H. Kim).

Kim et al. [1] showed this procedure using the tribometer test and
finite element analysis and validated the wear profile using the
block-on-ring test.

Although this process is commonly applied, the fundamental
limitation of wear prediction is that it applies only when the actual
contact pressure condition matches the tribometer test (constant)
pressure condition. In practice, however, the contact pressure usu-
ally varies as a function of time. Furthermore, it often varies over
the contact surface. Since the wear coefficient is not an intrinsic
material property, it depends on the operating conditions. Calcu-
lating wear coefficients at all possible operating conditions requires
numerous wear tests and is extremely time consuming. In addition,
the variability of wear coefficients is significant even if differ-
ent parts are made of the same material [6]. Recently, Mukras
et al. [7] presented an integrated framework for predicting wear
under variable kinematics and kinetics and showed that wear pre-
diction is computationally intensive for varying loads with wear
surfaces that change continuously. Thus, it is a preferred approach
to measure the wear coefficient directly from the mechanical com-
ponent in question. Since calculating the wear coefficient requires
kinematic information (wear volume and sliding distance) as well
as kinetic information (contact force/pressure), it is important to
design an in situ measurement apparatus to measure both factors.
In this paper, we used an instrumented slider–crank mechanism
[8] to measure these factors. Since in situ measurements inherently
include uncertainty, we used the Bayesian inference technique [9]

0043-1648/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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(a)

(b)

Fig. 1. Tribometer wear test and calculation of wear coefficient. (a) Schematic illus-
tration of tribometer test. (b) An example of wear coefficient data from an unfilled
PTFE polymer system [6].

to update the statistical distribution of wear coefficients and predict
future wear.

This paper is organized as follows. In Section 2, the simple wear
model used in this paper is summarized. Although a linear model is
used, the main concept of this paper can be extended to more com-
plex wear models. In Section 3, in situ measurements of joint force
and wear volume are presented. Section 4 describes the Bayesian
inference technique along with the Markov Chain Monte Carlo
(MCMC) method [9]. In Section 5, the wear coefficient is statisti-
cally identified and validated. Section 6 includes a discussion of the
results and conclusions.

2. Wear model and wear coefficient

Wear is the gradual removal of material; it progresses linearly
for many material combinations (mild wear). While various wear
phenomena are possible, it is assumed in this paper that all wear
cases to be predicted fall within the plastically dominated wear
regime, where sliding velocities are small and surface heating is
negligible. Archard’s wear model [10] is therefore applicable as dis-
cussed by Lim and Ashby [11] and Cantizano et al. [12]. Archard’s
wear model assumes that the volume of material removed is lin-
early proportional to the product of the slip distance and the normal
load. The traditional method for calculating the wear coefficient
is shown schematically in Fig. 1. In this model, first published by
Holm [13], the worn volume is considered to be proportional to the
normal load. The model is expressed mathematically as

V

s
= K

F

H
, (1)

where V is the worn volume, s is the slip distance, K is the dimen-
sionless wear coefficient, H is the Brinell hardness of the softer

Table 1
Slider–crank mechanism parameters. Mass moments of inertia are about the center
of mass for each body.

Property Value

Crank mass 0.404 kg
Crank moment of inertia 2.0 × 10−4 kg m2

Crank length 76.2 mm
Follower mass 0.812 kg
Follower moment of inertia 5.5 × 10−3 kg m2

Follower length 203.2 mm
Stage mass 8.5 kg
Pin diameter 19.00 mm

material, and F is the applied contact force. Since the wear coef-
ficient is the quantity of interest, Eq. (1) is often written in the
following form

k = V

F · s
. (2)

The non-dimensioned wear coefficient K and the hardness are
grouped into the dimensioned wear coefficient k. Therefore, the
main objective of wear analysis is to identify the wear coefficient
for given normal load and slip distance. Since the worn volume is
relatively small, it is often measured in the unit of mm3. Thus, the
units of k become mm3/N m.

As indicated in Fig. 1, the applied normal force and contact area
remain constant through the entire process. If the normal force
varies within the slip distance, the definition of wear coefficient
in Eq. (2) must be modified as

k = V∫ s

0
F(s) ds

. (3)

In this definition, it is assumed that the wear coefficient is inde-
pendent of normal force, which is not true in general. However, the
wear coefficient k in Eq. (3) can be interpreted as an average wear
coefficient for a given load profile.

The wear coefficient is not an intrinsic material property, but
instead depends on operating conditions, such as the normal force
and slip speed. The value of k for a specific operating condition and
given pair of materials may be obtained through experiments [1].
However, experimentation does not often represent the real con-
ditions of a machine, especially when loading conditions vary due
to the progress of wear. Thus, a difference may exist between the
wear coefficient measured in the tribometer test and that observed
from the real machine.

The wear coefficient from the tribometer test is reliable as it
is performed under a well-controlled environment, but it may not
reflect the real operating conditions. On the other hand, the wear
coefficient observed from the real machine reflects real operating
conditions, but uncertainty in the field measurements is relatively
large as it is not performed under laboratory conditions. The main
objective of this paper is to reduce the effect of uncertainty in the
field measurements by using a statistical tool to identify the wear
coefficient more accurately. The identified wear coefficient can be
used to predict the wear volume in the future and, thus, to schedule
maintenance intervals.

3. In situ measurement of joint wear for a slider–crank
mechanism

The slider–crank test apparatus used in this study is shown in
Fig. 2. The detailed dimensions of the crank and slider are summa-
rized in Table 1. In order to minimize dynamic contributions from
the other components in the mechanism, porous carbon air bear-
ings are used for the revolute joint between the follower link and
the slide stage, as well as the prismatic joint for the linear slide.
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Fig. 2. The layout of slider–crank mechanism used in the experiments.

Fig. 3. Capacitance probes measure the location of the pin from fixed locations on
the follower link.

The revolute joint under study consists of a 19.0 mm diameter
instrumented steel pin and a polymer bushing. The pin is clamped
in the crank link at one end and rotates, subject to sliding fric-
tion, in the bushing clamped in the follower link. The pin is made
of hardened steel and is assumed to be hard enough so that no
appreciable wear occurs on its surface. The bushing, on the other
hand, is made of poly-tetra-fluoro-ethylene (PTFE) which is soft
and is subject to considerable wear. To enable the wear debris
to escape the contact area and prevent it from affecting the wear
progression, grooves are machined into the bushing, as shown in
Fig. 3.

The added mass and springs affect the joint force, which can
accelerate wear. In practice, mechanisms are usually operated
under added masses and additional constraint forces. The wear pat-
tern or process depends on three factors: (1) wear coefficient, (2)
joint force and (3) relative motion in the interface. Because differ-
ent joints may have different joint forces and relative motions, they
need to be measured.

Forces transmitted through the joint of interest are measured
via a load cell built into a steel pin (Fig. 4). Two full-bridge arrays of
strain gages mounted to a necked-down portion of the pin monitor
transverse loads while cancelling out bending stresses. The necked
portion of the pin, along with a hollow cross section, also serves
to localize the strain to the region where the gages are attached.
A slip ring mounted to the free end of the pin allows power and
signals to be transmitted to and from the strain gages. The load cell

Fig. 4. Instrumented steel pin load cell for measuring joint force.

is deadweight calibrated and has a full scale capacity of 400 N with
a resolution of 2 N.

Simultaneously, two orthogonally mounted capacitance probes
monitor the position of the pin relative to bushing (Fig. 3). These
probes are clamped to the follower arm and are electrically insu-
lated by polymer bushings. These probes have a range of 1250 �m
and a resolution of 40 nm. Additionally, the pin and target are elec-
trically grounded. The angular position of the crank is measured by
a hollow shaft incremental encoder attached to the spindle shaft.

Fig. 5 shows the joint force as a function of crank angle at Cycle
1 and Cycle 20,500. The measured joint force agrees well with the
multibody dynamic simulation with the coupled evolution wear
model (CEWM) [7]. High frequency oscillation is observed when the
slider changes its velocity direction. However, there is no significant
variation of joint forces between different cycles. Thus, the profile
of joint forces is fixed throughout all cycles.

It is well known that uncertainty in applied loading is the most
significant factor in prognosis. Without knowing future loadings,
the uncertainty in prediction can be so wide that the prediction
may not have significant meaning. This issue can be addressed
in two ways. First, although the loading condition is variable, if
there is enough proof that the future loadings will be similar to the
past loadings, then the collected data for past joint forces can be
used to predict the future loadings. In this case, the future load-
ings can be represented using statistical methods. Of course, the
uncertainty in predicted life will be increased due to the added
uncertainty. Second, wear parameters can be characterized using
only the past loading history. This approach is applied here. Note
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Fig. 5. Joint force predictions and measured data. (a) Cycle 1 and (b) Cycle 20,500.

Fig. 6. In situ measurements of pin displacement. (a) Profile of pin center locations. (b) Wear volume from the overlapped area.

Table 2
Wear coefficient calculation using pin locations at 0 radian.

0 radian

Cycles Force (N) Volume (mm3) Slip distance (m) k × 104 (mm3/N m)

1 64.41 1.59 0.06 4134.80
100 62.80 2.57 5.99 68.25

1000 63.17 8.10 59.85 21.44
5000 64.77 24.48 299.24 12.63

10,000 62.65 46.21 598.47 12.32
20,585 59.96 93.90 1232.00 12.71

that this method will also work for a variable load history. In this
case, the computation will be more expensive than the current
example.

Fig. 6 shows measured displacements of the pin center using
the capacitance probe. The wear volume is computed based on the
values of ıx and ıy. Due to the pre-tensioned springs, the contact
points are located at only one side of the bushing. However, the
location of pin center varies according to crank angle. This can be
explained by the rounded pin surface and different amounts of elas-
tic deformation due to variation in spring forces with crank angle.
The measured forces, computed wear volume from the measured
displacement, sliding distance and wear coefficient are shown at six
cycles for crank angles 0 and � radians in Tables 2 and 3, respec-
tively. Although the wear coefficient converges for both cases, the
converged results do not match. This is because the joint force is not
constant with angle and the measured wear volume includes uncer-
tainty. In the following section, a statistical approach is introduced

to improve the wear coefficient estimate. The idea is to estimate
a wear coefficient incorporating uncertainty based on the first five
sets of measured data and then predict the wear volume in the
sixth cycle using the information. Since the actual data at this cycle
are also measured, we can evaluate the accuracy of the method by
comparing the measured and predicted results.

4. Bayesian inference for predicting progressive joint wear

4.1. Bayes’ theorem

In this study, the Bayesian technique is employed to identify the
wear coefficient k using wear volume measurements. The method
is based on Bayes’ rule as given by Gelman et al. [9], in which the
posterior distribution for a given observation can be written as

p(�|y) ∝ L(y|�)p(�), (4)
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Table 3
Wear coefficient calculation using pin locations at � radian.

� radian

Cycles Force (N) Volume (mm3) Slip distance (m) k × 104 (mm3/N m)

1 103.87 7.29 0.06 11731.00
100 106.90 7.64 5.99 119.43

1000 114.04 9.55 59.85 13.99
5000 138.77 23.87 299.24 5.75

10,000 143.50 44.41 598.47 5.17
20,585 147.85 91.56 1232.00 5.03

where L(y|�) is the likelihood of observed data y conditional on
the given model parameters �, p(�) is the prior distribution of �,
and p(�|y) is the posterior distribution of � conditional on y. The
goal of the Bayesian technique is to improve the knowledge on
model parameters � using observation y. As more data are pro-
vided, the posterior distribution is used as the prior in the next
step and the distribution is updated to more confident information.
The procedure to obtain the posterior distribution p(�|y) consists of
proper definition of the probability distribution for the likelihood
and prior. In order to satisfy the property of the probability distri-
bution function (PDF), p(�|y) needs to be normalized such that the
area under the PDF becomes one. In this paper, the wear volume
corresponds to the observed data, and the distribution parameters
for the wear coefficient correspond to the model parameters.

The likelihood is the probability (or probability density) of
obtaining observed data y for given model parameters � and is
related to variability in the measurement. The choice of likelihood,
probability model, can affect on the analysis results. In this con-
text, Martín and Pérez [14] studied about a generalized lognormal
distribution to provide flexible fits to many types of experimen-
tal or observational data. Moreover, there are many approaches to
select the appropriate distribution type for likelihood. For example,
Walker and Gutiérrez-Peña [15] suggested a simple one to select
a model when no information on variability of experimental data
is available. In this paper, two types of likelihood are assumed for
the simplicity: normal and lognormal distributions. In addition to
the wear coefficient, the standard deviation of the wear volume is
also considered as an unknown model parameter. In the likelihood
calculation, the actual wear volume at a given cycle is computed
by averaging the values at 0 and � radians (see Tables 2 and 3).
Denoting the wear volume measured at the specific cycle as V, the
likelihoods of the data for a given wear coefficient and standard
deviation can be defined as

L(V |k, �)∼N(�, �) (5)

and

L(V |k, �)∼LN(�, �), (6)

where � and � are the mean and standard deviation of the wear
volume, and � and � are two parameters of the lognormal distri-
bution. Note that N(�, �) represents a normal distribution, while
LN(�, �) indicates a lognormal distribution. In Eq. (5), the likelihood
is defined with mean and standard deviation. In reality, a single
wear volume is measured using in situ capacitance probes, but this
measured data has errors. In the likelihood definition, the measured
volume is used as a mean value, but the error is unknown. Therefore,
the standard deviation of the likelihood is considered unknown and
needs to be updated through the Bayesian inference. Therefore, the
distribution of standard deviation represents the error in data.

According to Eq. (3), the mean wear volume is expressed as the
integral of contact force and slip, multiplied by k. In practice, this
integral is computed discretely by dividing the cycle into m equal

intervals:

� = kC

(
m∑

i=1

Fi �si

)
. (7)

where Fi and �si are the contact force and incremental slip at ith
segment, respectively, and C is the number of cycles. Because the
force profile is consistent from one cycle to the next, the sum in Eq.
(7) is obtained as a constant with the value 5.966 [N m] based on
experimental data. In Eq. (6), � and � are given as

� = log � + 1
2

�2 and � =
√

log

(
1 + �2

�2

)
. (8)

Note that the mean is only a function of k since all other terms
are given or fixed in Eq. (7). This makes sense given that k and � are
unknown parameters to be estimated conditional on the observed
data V.

For the prior distribution of k, specific information from the
literature [6] is employed:

p(k)∼N (5.05, 0.74) × 10−4. (9)

This prior distribution was obtained from tribometer tests under
a constant contact pressure to determine k for the bushing with
the same material as the current study. In the Bayesian technique,
the posterior distribution of k is obtained by multiplying Eq. (5) or
(6) with the prior distribution p(k) provided in Eq. (9). Since the
Bayesian technique is sensitive to the prior, the case with no prior
knowledge (a non-informative prior) is also considered to study the
effect of prior information. Additionally, the non-informative prior
is considered for the standard deviation � of likelihood because no
knowledge is available. The non-informative prior is equivalent to
the uniformly distributed prior that covers entire range. In prac-
tice, however, it possible to consider the fist likelihood as a prior
distribution.

4.2. Markov Chain Monte Carlo (MCMC) simulation

Even if the expression of posterior distribution is available as a
product of likelihood and prior in Eq. (4), the shape of distribution
can only be estimated by calculating its values at different points.
A primitive way is to compute the values of PDF at a grid of points
after identifying the effective range and to calculate the value of the
posterior distribution at each grid point. This method, however, has
several drawbacks, such as the difficulty in selecting the location,
spacing, and scale of the grid points. In addition, it becomes com-
putationally expensive when the number of updating parameters
increases. MCMC simulation is a computationally effective alter-
native which generates a chain of samples to plot the PDF [16].
The Metropolis–Hastings (M–H) algorithm is a common choice for
MCMC simulation; it is summarized in Table 4.

In Table 4, [k(0), �(0)] are the initial values of unknown param-
eters to be estimated, C is the number of iterations or samples,
U(0, 1) is the uniform distribution in the interval of [0, 1], p(k, �) is
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Table 4
MCMC simulation process using Metropolis–Hastings algorithm.

1. Initialize [k(0), �(0)]
2. For i = 0 to N − 1

– Sample u ∼ U(0, 1)
– Sample [k*, �*] ∼ q(k*, �*|k(i) , �(i))

– If u < min
{

1, p(k∗, �∗)q(k(i), �(i) |k∗, �∗)
p(k(i), �(i) )q(k∗, �∗|k(i), �(i) )

}
[k(i+1), �(i+1)] = [k*, �*]

– Else
[k(i+1), �(i+1)] = [k(i) , �(i)]

the posterior distribution, and q(k, �) is an arbitrarily chosen pro-
posal distribution. A uniform distribution is used in this study for
the sake of simplicity. Then, q(k(i), �(i)|k*, �*) becomes a uniform
distribution centered at [k*, �*] with the interval of ±w, where w
is a vector for setting the sampling interval. The same interval is
used for q(k*, �*|k(i), �(i)). If the sample [k*, �*] is not accepted as an
i + 1th sample, the ith sample becomes the i + 1th sample; that is,
the particular sample is doubly counted.

Since the MCMC method is a sampling-based one, it has to
include enough samples so that the statistical characteristics of the
distribution can be well captured. There are some methods avail-
able to determine the convergence condition, such as El Adlouni
et al. [17] and Plummer et al. [18]. In this paper, the convergence
condition is determined graphically as the simplest method. It
involves discarding the values at the initial stage of iteration, and
monitoring the traces and histogram plots for later iterations from
which the subjective judgment is made as to the convergence to a
stationary chain. As an example of MCMC simulation, we consider

a posterior distribution which is given as

p(k, �) ∝
(

1√
2��

)5
exp

[
−1

2

5∑
i=1

(Vi − kFs)2

�2

]
. (10)

Eq. (10) is the posterior distribution with non-informative prior
when the error, ε, between obtained data (in situ wear volume, Vol)
and estimated values from wear volume equation (kFns) is normally
distributed with zero mean and standard deviation, �. Therefore,
the measured wear volume can be represented by

Vol = kFns + ε, ε∼N(0, �). (11)

When n measured data are used, Eq. (10) can be written in a
general form as

p(k, �) ∝
(

1√
2��

)n

exp

[
−1

2

n∑
i=1

(Vi − kFs)2

�2

]
. (12)

If n is one, the equation is exactly same with normal distribution.
Eq. (10) is the case that n is five, which is obtained by multiplying
Eq. (12) with n = 1 five times. Fig. 7 and Table 5 show the sampling
result of [k, �] for Eq. (10).

Fig. 7(a) represents traces of 10,000 sample iterations. As men-
tioned previously, the initial stages are discarded because they are
not converged; the discarding value can be selected as an arbitrary
value, in this case we select 4000 as the discarding value. Fig. 7(b)
gives the estimated PDF with 6000 samples from 4001 iterations,
while Fig. 7(c) shows the analytical PDF from Eq. (10). It can be seen
that the MCMC sampling result follows the analytical distribution
quite well. Table 5 shows that the first statistical moments have
less than 1% error.

Fig. 7. Joint posterior PDF. (a) Trace of iteration. (b) Using MCMC. (c) Exact solution.
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Table 5
Statistical moments.

�k �� �k �� cov(k, �)

MCMC 7.82 × 10−4 5.61 0.93 × 10−4 2.59 0
Exact sol. 7.76 × 10−4 5.63 0.92 × 10−4 2.51 0
Error (%) 0.79 0.47 1.09 3.13 0
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Fig. 8. Posterior distribution when using the first five data sets. (a) Normal likelihood with non-informative prior. (b) Normal likelihood with normal prior. (c) Lognormal
likelihood with non-informative prior. (d) Lognormal likelihood with normal prior.
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Table 6
Mean and standard deviation of k (10−4 mm3/N m).

Likelihood Prior Data set number 3 4 5 6

Normal Non-inform. Mean 17.49 8.28 7.89 7.57
Std. 10.02 2.32 0.90 0.40

Prior Mean 5.11 5.42 5.93 6.89
Std. 0.73 0.73 0.76 0.57

Lognormal Non-inform. Mean 20.81 8.89 7.88 7.64
Std. 5.82 1.17 0.51 0.25

Prior Mean 5.46 5.67 6.29 7.41
Std. 0.72 0.75 0.77 0.25
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Fig. 9. Confidence intervals of the wear coefficient in terms of the data set number. (a) Likelihood: normal distribution. (b) Likelihood: lognormal distribution.

Once the samples are obtained from the posterior distribution of
[k, �], the samples of wear volume can be obtained by using Eq. (3)
or Eq. (7). In Eq. (7), � represents the wear volume which is obtained
as a distribution due to the uncertainty of unknown parameter, k,
and the 90% interval is defined as a confidence interval (CI). The
level of prediction interval (PI) can also be calculated by adding the
measurement error � to the wear volume in Eq. (7).

5. Identification of wear coefficient and prediction of wear
volume

5.1. Posterior distribution of wear coefficient

The posterior distributions of k and � are obtained as the results
of five times updating using the MCMC technique with the first five
sets of data in Tables 2 and 3. The last data set is remotely located
and is used for the prediction validation. In the MCMC process, the
number of iterations is fixed at 10,000. The resulting PDFs are given
in Fig. 8. Both normal and lognormal distributions are considered
for the likelihood, and both non-informative and normal distribu-
tions are considered for the prior. In the case of a non-informative
prior, the PDF shape in Fig. 8(c) with the lognormal likelihood is nar-
rower than that of Fig. 8(a) with the normal likelihood. As shown
in the fifth set of Table 6, the standard deviation from the log-
normal likelihood (0.51 × 10−4 mm3/N m) is 43% less than that of
normal likelihood (0.9 × 10−4 mm3/N m), whereas the mean values
are nearly equal; i.e., 7.89 and 7.88, respectively. These results show
that the lognormal likelihood exhibits increased accuracy over the
normal likelihood. The reason that the former is better than the lat-
ter may be attributed to the non-negative nature of the lognormal
distribution, which is the case of the wear coefficient.

By comparing the results for the two priors, i.e., Fig. 8(a) vs.
Fig. 8(b) and Fig. 8(c) vs. Fig. 8(d), it is seen that the use of a normal
prior leads to underestimation of the mean for k. It is noted that

the actual k values at the last data set are found to vary between
5.03 × 10−4 and 12.71 × 10−4 (see Tables 2 and 3), of which the aver-
age is 8.5 × 10−4. The reason that the results with a prior are worse
than the non-informative results may be attributed to the inac-
curate prior distribution; as mentioned previously, the tribometer
wear tests were performed under the uniform pressure condition,
while the contact pressure in the bushing is not constant. In addi-
tion, the wear coefficient is not an intrinsic material property, but
depends on contact pressure and contact area. It is also observed
that the posterior distributions of k in Fig. 8(a) and (c) are close
to Laplacian distribution with heavy tails. Although the case with
lognormal likelihood has narrower distribution, the type of distri-
bution is very close. On the other hand, the posterior distributions
with the normal prior in Fig. 8(b) and (d) show quite different
distribution type. Therefore, it can be concluded that the prior con-
tributes significantly to the posterior distribution. This is partly
related to the fact that the prior information is not consistent with
observed data.

In order to investigate the effects of the prior in more detail, the
posterior distributions of k are obtained after updating at each data
set. Values of the mean and standard deviation are given in Table 6,
and 5%/95% percentiles as well as maximum likelihood values are
plotted in Fig. 9. In Fig. 9, the star maker denotes the mean value of
the distribution after the last update; i.e., using the sixth data set.
This is used as a target value for correct prediction of the earlier
stage.

In Fig. 9(a) and (b), the confidence intervals with the normally
distributed prior are located much lower than the ones without a
prior (non-informative) and do not include the target value. What is
remarkable from this observation is that, although the use of prior
knowledge is usually recommended to accommodate more confi-
dence and faster convergence, it should be used with caution. In
this study, the wear coefficient is not an intrinsic material property
but can vary with operating conditions. This turned out to be the
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Fig. 10. Prediction intervals of the wear volume at 20,585 cycles in terms of the data set number. (a) Likelihood: normal distribution. (b) Likelihood: lognormal distribution.
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Fig. 11. Predicted distributions of wear volume at cycle = 20,565. (a) Likelihood: N and non-inform. (b) Likelihood: N and prior. (c) Likelihood: LN and non-inform. (d)
Likelihood: LN and prior.

cause of incorrect prediction, and should be avoided. It should be
noted, however, that this is not always the case. Unlike the present
case, if only limited data are available, the user may have to depend
more on prior knowledge than the likelihood of the data.

5.2. Posterior prediction of wear volume

Once the posterior distribution of k and � are obtained, the infor-
mation can be used to predict the wear volume at the next stage.
For that purpose, the wear volume for the sixth data set (20,585
cycles) is predicted using the posterior distribution for the wear
coefficient from previous data sets. Due to the uncertainty in k and
�, the predicted wear volume is a distribution. Fig. 10 shows 5%/95%
percentiles and maximum likelihood values of the wear volume dis-
tribution. In the figure, the actual value of wear volume measured
at the sixth data set (92.73 mm3) is used as a target value. As noted

previously, the use of selected prior does not predict the wear vol-
ume well. Even the upper confidence limit is below the target value,
which can cause unexpected failure if the value is carelessly used
in the design decision.

Comparing the results of normal and lognormal likelihood, the
size of the interval is quite large at the third stage of data in the
case of the normal likelihood. However, the size of the interval is
quickly reduced as the number of data set increases. Overall, the
size of the interval of the lognormal likelihood is smaller than that
of the normal likelihood.

In Fig. 11, the predicted distributions of the wear volume at the
sixth stage using the posterior distributions from the fifth stage
are given with different combinations of likelihoods and priors; the
line indicates the measured value. It can be seen that the result with
the non-informative prior is better than that with the normally dis-
tributed prior. Due to the underestimation of the wear coefficient
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Fig. 12. Confidence and prediction intervals of wear volume. (a) Likelihood: normal distribution. (b) Likelihood: lognormal distribution.

Table 7
CI and PI of wear volume.

Data set number 1 2 3 4 5 6
Measured wear V 4.44 5.105 8.825 24.175 45.31 92.73

CI N 95% 6.61 12.13 22.14 35.75 56.25 100.38
5% 0.75 0.35 2.03 12.78 38.87 85.09
Inter 5.86 11.77 20.11 22.97 17.38 15.28

LN 95% 6.61 7.06 18.73 32.88 52.27 99.04
5% 2.50 3.60 7.66 21.52 42.31 88.78
Inter 4.11 3.46 11.07 11.36 9.96 10.26

PI N 95% 9.19 20.32 30.96 40.34 60.64 104.04
5% −2.84 −9.18 −7.01 7.56 33.78 81.22
Inter 12.03 29.50 37.97 32.78 26.87 22.82

LN 95% 9.90 12.22 23.72 36.06 55.18 101.86
5% 0.24 1.23 5.18 19.36 39.87 86.70
Inter 9.66 10.99 18.53 16.70 15.30 15.15

in the normally distributed prior, the predicted wear volumes with
the prior are less than the actual one.

In Fig. 12, the confidence interval (CI) and prediction interval
(PI) of the wear volumes at all stages are given using the posterior
distribution at each stage along with the measured data (denoted
by dots). In both cases of likelihoods, the CI and PI have a tendency
to gradually decrease from 1000 cycles as the cycles increase. The
results at the first and second stages, which are 1 cycle and 100
cycles, respectively, exhibit smaller intervals than other high cycles
even if they are results with small data. The reason is that the vari-
ances of the parameters are large, but the wear volume itself is
very small at low cycle compared to higher cycles. Although these
early stages are not of interest in terms of prognosis, the estimation
results are fairly exact. In Table 7, the numerical values of CI and PI
are provided. The CIs and PIs of the lognormal case are smaller than
that of the normal case, which demonstrates improved accuracy.

6. Discussions and conclusions

In this paper the Bayesian inference technique is used to esti-
mate the probability distribution of wear coefficients from in situ
measurements. The first five sets of data up to 10,000 cycles
are used to reduce uncertainty in wear coefficient and the last
set of data at 20,585 cycles is used for the prediction validation.
The numerical results show that the posterior distribution with a
non-informative prior is more accurate than that with the prior
distribution from the literature. This result is obtained because the
converged posterior distribution is quite different from the prior
distribution. In order to predict the wear coefficient of a mechan-
ical component, it has been suggested that the wear volume, slip
distance and applied load must be measured simultaneously.
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