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I. Introduction

R ECENTLY, it has been shown that structural health monitoring
(SHM) systems can be used for inspection to detect damage [1].

SHM-based maintenance is effective as only those airplanes that are
in danger will be sent for maintenance (condition-based main-
tenance). Furthermore, Coppe et al. [2] showed that in addition to
damage diagnosis SHM can predict the remaining useful life by
identifying damage growth parameters. They used Bayesian
inference [3] to reduce uncertainty in the damage growth parameters
using measured damage size information.

Bayesian inference is a powerful method of quantifying
uncertainty in the model parameters. It can take into account prior
knowledge on the unknown parameters and improve them using
experimental observations. However, in the case of SHM, the advan-
tage of the prior information can be overpowered by the amount of
data available. In addition, when many parameters are updated
simultaneously, Bayesian inference becomes computationally
expensive due to multidimensional integration.

On the other hand, the traditional linear regression method [4] can
be used to identify deterministic parameters when the model is a
linear function of the parameters. This method is particularly
powerful when many data are available, which is the case for SHM.
By assuming that the noise in the experimental data is Gaussian, it is
possible to estimate the uncertainty in the identified parameters.

When the physical model is a nonlinear function of model
parameters, uncertainty quantification is not straightforward [5]. As
will be shown in the numerical examples, the crack growth in aircraft
structures nonlinearly depends on the parameters that need to be
identified. In this Note, a linear perturbation concept is used to
quantify uncertainty in the nonlinear regression result. First, the
nonlinear optimization is used to find the model parameters that
minimize error between themodel and SHMdata. Then the nonlinear
model is linearized at the identified parameter values, fromwhich the
uncertainty quantification in the linear regression method can be
used. This approach can introduce two errors into the uncertainty
estimation: 1) linearization error and 2) error associated with
assumption ofGaussian noise. In addition, it is assumed that noises at
different experiments are uncorrelated. The objective of theNote is to
examine their effect on accuracy of the uncertainty estimation.

II. Uncertainty Quantification in Nonlinear Regression

Regression is commonly used for identifying unknown param-
eters of a physical model using experimental data, which normally
include noise and error. Thus, if the experiment is repeated, it is likely
to identify different values of the parameters. In this section, a
method of calculating the uncertainty of identified parameters from
nonlinear regression will be reviewed. To make the presentation
more coherent, estimation of parameter uncertainty in linear regres-
sion is discussed first, followed by that of nonlinear regression.

A. Uncertainty in Linear Regression

In regression, a response function y�t� is approximated by a simple
function f�t;�� with the vector � of parameters whose dimension is
n� � dim���:

y�t� � f�t;�� � " (1)

where " is the approximation error. The regression model is called
linear when the approximate function is a linear function of �, as

f�t;�� �
Xn�
i�1

�i�i�t� (2)

where �i�t� are basis functions. It is assumed that the expression of
the response function, y�t�, is unknown, but its values can be
evaluated at discrete points. Or, it is also possible that the response
can be evaluated through experiments. In such a case, the experi-
mental data may include measurement noise.

The objective of regression is to estimate the vector of parameters
� so that the approximation error is minimized. Normally, this can be
done with ny data, which are given in the form of �ti; yi�, for
i� 1; . . . ; ny, which may contain error or noise. In regression, the
parameters are estimated by minimizing the sum of the squares of
discrepancies between the measurements and f�t;��. In general, the
exact values of� can only be foundwhen the number of experimental
data is infinity. With finite ny, the values are only estimates, which
will be denoted by b in this Note.

By denoting y�ti� � yi, the vector of errors (discrepancies) can be
written as
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Or, symbolically,

e � y �X � b (4)

The vector of parameters b is estimated by minimizing the rms error
defined as

erms �
��������������
1

ny
eTe

s
(5)

After substituting Eq. (4) into Eq. (5) and minimizing the rms
error, the following linear regression equation can obtained:

X TX � b�XTy (6)

which can be solved for b, the estimate of parameters.
Because the experimental data include random noise, the

estimated parameterswill vary for different sets of experimental data.
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Therefore, there is uncertainty in the identified parameters. The
objective is to estimate the uncertainty in the estimated parameters
due to the random noise in the experimental data.

When experimental data are uncorrelated with each other, random
noise can be assumed normally distributedwith standard deviation of
�: i.e., v� N�0; �2�. Then the unbiased estimate of the variance can
be obtained from [6] (p. 27):

�̂ 2 � eTe

ny � n�
(7)

The sensitivity of estimated parameters with respect to small
differences in data can be calculated using the covariancematrix ofb.
Using Eq. (6), the covariance matrix can be obtained as

�b � �2�XTX	�1 (8)

The diagonal component of�b is the variance ofb, which represents
a measure of the sensitivity of estimated parameters with respect to
the noise. Since the standard deviation of the noise is unknown in
advance, its estimate in Eq. (7) can be used. Thus, the standard error
(SE) of parameter bj can be obtained by

SE �bj� � �̂
������������������
�XTX	�1jj

q
; j� 1; . . . ; n� (9)

The above standard error is indeed the estimate of the standard
deviation of regression coefficient bj due to noise in the data.

B. Uncertainty in Nonlinear Regression

Different from a linear regression problem, many physical models
cannot be represented as a linear combination of unknown
parameters as in Eq. (2). In such a case, instead of solving a linear
regression Eq. (6), a nonlinear optimization problem is solved to
minimize the rms error in Eq. (5), in which the errors are now
defined as

ei � yi � f�ti;b�; i� 1; . . . ; ny (10)

The nonlinear optimization problem can then be to find the
optimum values of parameters b such that

b 
 � argmin
b
erms (11)

Once the optimum values of parameters are obtained, the
uncertainties in the parameters are estimated by linearizing the non-
linear model function at the optimum point. To linearize the model
function, the first-order Taylor series expansion method can be used
for f�t;b�where b� b
 ��b. By ignoring higher-order terms, the
model problem can be linearized as

f�t;b� ’ f�t;b
� �
X
i

@f�t;b
�
@bi

�bi (12)

By moving f�t;b
� to the left-hand side, the expression for the
residual can be obtained as

r� f�t;b� � f�t;b
� �
X
i

@f�t;b
�
@bi

�bi (13)

Equation (13) can be considered as a linear regression problem
with unknown parameters�b, and the gradient @f=@bi becomes the
basis vector �i in Eq. (2). Therefore, the uncertainty in parameters�b
can be calculated using the same procedure described in Sec. II.A.
For that purpose, the regression coefficient matrix can be written as

X �

@f�t1;b
�
@b1

@f�t1 ;b
�
@b2

� � � @f�t1;b
�
@bn�

@f�t2;b
�
@b1

@f�t2 ;b
�
@b2

� � � @f�t2;b
�
@bn�

..

. ..
. . .

. ..
.

@f�tny ;b
�
@b1

@f�tny ;b
�
@b2

� � � @f�tny ;b
�
@bn�

2
6666664

3
7777775

(14)

Then Eq. (9) can be used to estimate the standard error of�b, which
can also be considered as the standard error of b
 if the problem is
linear. Because of nonlinearity, the standard error of �b will be
different from that of b
. However, if the nonlinearity is small, or if
the uncertainty in b
 is small, them the difference between themwill
be small.

III. Uncertainty Identification of Crack
Growth Parameters

The problem of interest is to identify crack growth parameters in
the Paris model [7] using measured crack sizes at different cycles:

da

dN
� C��K�m (15)

where a is half the crack size,N is the number of cycles,m andC are
two Paris model parameters, and �K is the range of stress intensity
factor. In this model, the number of cycles is considered as time: i.e.,
ti � Ni. For an infinite panel under mode I loading condition, the
crack size at cycle Ni can be calculated from the initial crack size a0
as

ai �
�
NiC

�
1 � m

2

�
���

����
�
p
�m � a1�

m
2

0

� 2
2�m

(16)

In the above crack size model, model parameters (such as C,m, and
a0) need to be identified. Coppe et al. [2] used Bayesian inference to
identify the unknown parameters with measured crack sizes. They
showed that although Bayesian inference can accurately identify
uncertainty of unknown model parameters, it is a computationally-
intensive process, especially when many parameters need to be
identified.

In this section, the nonlinear regression method is used to identify
the model parameters as well as their uncertainty. The measured data
ameas
i are actually simulated in thisNote by applying an errormodel to

the modeled crack size ai in Eq. (16). The error model includes the
effect of bias b and noise v of the sensor measurement. The former is
deterministic and represents a calibration error, while the latter is
random and represents white noise. It is first assumed that the true
values of model parameters (C, m, and a0) are known. Then, using
Eq. (16), the true crack sizes are generated at given cycles Ni. The
measured crack size can then be defined as

ameas
i � ai � b� v (17)

In this Note, the random noise is assumed to be uniformly
distributed between the lower- and upper bounds as
v� uniform��z; z�. This is an efficient way of validating the
uncertainty in the model parameters because different sets of
measured crack sizes can be generated.

Let the vector of unknown model parameters be defined as
b� fm; a0; bgT : i.e., n� � 3. Using measured crack size ameas

i at
cycleNi, the regression problem can be stated as minimizing the rms
error in Eq. (5), in which the errors are defined as

ei � ameas
i � f�Ni;b� (18)

and

f�Ni;b� � ai�Ni;b� � b (19)

Using Eq. (18), the nonlinear optimization problem in Eq. (11) is
solved for the optimum parameters b
 � fm
; a
0 ; b
gT . The
lsqnonlin function in MATLAB is used to solve the nonlinear
optimization problem in Eq. (11). Once the model parameters are
identified, the uncertainty of these parameters are estimated using the
standard error in Eq. (9). The derivatives of model function f�Ni;b�
with respect to model parameters b are obtained using the symbolic
differentiation in MATLAB.

To assess the accuracy of this uncertainty quantification approach,
the Monte Carlo simulation (MCS) is used to estimate the uncer-
tainty in the identified parameters. In MCS, it is assumed that the
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experiments are repeated many times, and the parameters are
identified for each experiment, from which the distribution of
identified parameters can be estimated.

The first example assumes that all model parameters are known
except for the Paris model exponent, m. It is assumed that the
experimental data have random noise v� uniform��1; 1� mm, but
no bias. Figure 1 shows the standard error estimated from the
proposed linearization method in a dashed curve. The uncertainty is
calculated every 100 cycles. For example, at N5 � 500, five
measured data are used: i.e., ny � 5. It is noted that the standard error
decreases significantly as more data are used. To validate the
estimated standard error, the standard deviation from MCS is also
plotted on a solid curve. For MCS, the nonlinear regression problem

is solved 1000 times with randomly generated data using Eq. (17),
fromwhich the standard deviation of parameterm is estimated. It can
be observed that the calculated standard error (dashed curve) fits the
estimated standard deviation (solid curve) very well.

The second example considers all three parameters unknown.
Figure 2 shows the estimated standard error along with the standard
deviation from 1000 MCS. It can be observed that in this case, the
calculated standard error does not clearly match the simulated
standard deviation for the first 1000 cycles. There are many expla-
nations for this discrepancy. First, the regression method predicts a
larger standard error because not many data are available at the early
stage. Second, linearization error can also contribute to the
discrepancy. Finally, correlation between a0 and b can contribute to
large error at the early stage, which can lead to an ill-conditioned
XTXmatrix. As the damage grows, i.e., at the later stage, the effect of
a0 and b becomes more independent and the linearization can
estimate the standard deviation accurately.

IV. Conclusions

This Note presents a method of estimating the uncertainty of
model parameters in nonlinear regression using a linear perturbation
concept. It has been shown that the method yields a good estimate of
standard deviation for the case of single-variable identification. For
multiple variables, the correlation between variables can cause
overestimation of standard deviation if an insufficient numbers of
data are used. As the crack grows quickly, however, the proposed
method is able to identify uncertainty accurately.
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Fig. 2 Uncertainty in a) a0, b) b, and c) m using linearization of nonlinear regression (a0 � 10 mm, m� 3:8, C� 1:5E � 10, �� � 78:6 MPa, and
b� 0 mm).
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Fig. 1 Comparison of the calculated standard error with the simulated

standard deviation (a0 � 10 mm, m� 3:8, C� 1:5E � 10, ���
78:6 MPa, and b� 0 mm).
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