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a b s t r a c t

Modeling fatigue crack growth is computationally challenging because the crack growth rate can only be
evaluated at the current crack size. Therefore, the forward Euler method has been a common choice in
integrating fatigue crack growth. However, since its accuracy can only be guaranteed with a small step
size, the method cannot be applied to the investigation of systems with complex geometry (calling for
expensive finite element simulations). Higher-order integration methods, such as the midpoint method,
allow larger step size but require evaluation of crack growth rate at crack sizes larger than the current
one. In arbitrary geometry, this is not an easy task because the direction of crack growth is unknown
in advance. In this paper, surrogate models are generated for the prior crack growth direction and stress
intensity factor data. These surrogates are cheap to evaluate and predict the crack growth rate without
the need of additional finite element simulations. The step size for the numerical integration is chosen
based on the accuracy of the extrapolated crack growth predictions for direction and stress intensity
factor. Several examples were tested in which crack growth follows linear and curved paths under a range
of boundary conditions leading to different relationships between stress intensity factor and crack size.
Results showed that a large increase in the allowable step size may be used with increased accuracy over
the Euler method with the need for fewer expensive function evaluations.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling fatigue crack growth is a challenging problem in com-
putational fracture mechanics. Fatigue crack growth is commonly
governed by an ordinary differential equation of the general form
[1]

da
dN
¼ f ðDK;RÞ ð1:1Þ

where DK is the stress intensity factor range and R is the stress ra-
tio. The relationship given in Eq. (1.1) is typically a monotonically
increasing function as shown in Fig. 1 (the exact curves depend
on geometry, loading conditions, and material properties).

Integration of Eq. (1.1) is expensive because evaluation of
f(DK, R) usually requires high-fidelity physics-based modeling
(such as those obtained with the finite element method1 [2,5,6]).
It is also computationally intensive because the large number of

loading cycles (103–108) for failure requires a large number of sim-
ulations. As a result, the applications might be limited to relatively
simple geometries (because DK depends on the characteristic crack
length a, except for very simple cases [7,8]). Sankararaman et al.
[9] used a Gaussian process surrogate to replace expensive finite ele-
ment simulations when predicting fatigue crack growth.

The two traditional approaches to numerically integrate the
crack growth are (a) to assume a fixed increment of crack growth
for each crack geometry or (b) to assume a constant number of
cycles elapses between each crack geometry [3,4,6]. The former
uses an initially large number of elapsed cycles for a given crack
geometry because the rate of crack growth is slow, and gradually
decreases the number of cycles as the rate increases. Evaluating
fatigue crack growth directly in terms of the number of elapsed
cycles is challenging because the crack grows rapidly as it ap-
proaches the critical crack size, leading to numerical instability
[5,6].

Forward Euler approximation [10] has been used to solve the
fatigue crack growth model [11]. The main advantage is that
f(DK, R) is evaluated only at the current crack geometry. Unfortu-
nately, there are two major drawbacks associated with the for-
ward Euler method. First, it requires a small step size to
maintain stability and accuracy of the solution. Second, due to
the monotonic behavior of f(DK, R) (see Fig. 1), the method will
always under predict a and DK from N and over predict DK from
a, increasing the error as integration progresses. Higher-order
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1 When using classical finite element approaches, there are also challenges

associated with meshing the crack tip. Remeshing [2] as growth occurs is a difficult
task and can be avoided through the use of the extended finite element method [3,4]
(XFEM). Through a series of XFEM simulations, it is possible to generate data points
and approximate the right-hand side of Eq. (1.1). Until the completion of the finite
element simulations, f ðDK;RÞ is an unknown function.
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approximations such as the midpoint method could be used to
address this issue, but such methods require additional function
evaluations needed for slope computation (besides increased
computational cost such computations cannot be done at the
present integration step. After all, the crack geometry is known
only up to that point).

This paper, propose the use of surrogate models to enable such
higher-order integrators. Surrogate modeling (also known as meta-
modeling or response surface approximation) consists of analyzing
a number of designs, fitting a surrogate, then replacing the costly
simulations by the surrogate model [12–15]. The basic idea is to
use the history of stress intensity factors as a function of either
number of cycles or crack lengths up to the current cycle to build
a surrogate model and predict the stress intensity factor at differ-
ent crack sizes or different cycles. New data points can be added to
the original set as the simulation evolves and more data points are
available for the surrogate model.

Here three cases are considered. First, for a fixed increment of
crack growth Da (or a fixed number of elapsed cycles DN), the rela-
tionship between DK and Da is fitted using a kriging surrogate.
Second, a variable step size algorithm is introduced for the auto-
matic generation of a step size Da (or DN) based on the accuracy
in the surrogate extrapolation of DK and the crack growth direc-
tion. This is an attempt to only perform expensive function evalu-
ations when needed. Third, the case of mixed-mode crack growth
is considered and the use of a surrogate model enables approxima-
tion to the crack growth direction.

Two examples with known relationships between DK and a are
used to illustrate how the proposed methodology enable accurate
high order integration: a center crack in an infinite plate under

uniaxial tension and an edge crack in a finite plate. In another
example, the extended finite element method is used to model
mixed-mode crack growth for an inclined center crack in a finite
plate and an edge crack in a finite plate with a hole. The results
show that kriging enables large step sizes without sacrificing
accuracy.

The remainder of the paper is organized as follows. In Section 2
the crack growth model is introduced which consists of the fatigue
crack growth model, traditional solution procedures, equivalent
stress intensity factor range for mixed-mode loading, and crack
growth direction. In Section 3 the use of a surrogate model for
higher-order integration is introduced along with a variable step
size algorithm based upon the agreement between the surrogate
predictions and function evaluations. In Section 4 three numerical
experiments are conducted to test the proposed algorithms for a
several crack geometries, initial crack sizes, and materials. Finally,
in Section 5 conclusions are drawn about enabling higher-order
integration through surrogate models.

2. Crack growth model

2.1. Fatigue crack growth model

One of the first attempts to create a model to represent fatigue
crack growth was that of Paris [16]. Many modified versions of the
Paris model attempt to address areas which the Paris model ne-
glects such as crack closure [1,17,18], stress ratio R [19–21], and
the threshold stress intensity factor [1,21–23]. Other models in-
clude the state-space model [24,25] and the small time scale model
[26] which have an emphasis on modeling variable amplitude

Nomenclature

ak target percent error in kriging surrogate for DK
at target percent error in kriging surrogate for h
aN crack length at cycle N
KI Mode I stress intensity factor
KII Mode II stress intensity factor
Ni cycle corresponding to current crack geometry
Ni+1/2 cycle corresponding to midpoint between current and

next crack geometry
Ni+1 cycle corresponding to next crack geometry
ak rate of change in DNi+1 due to ak

at rate of change in DNi+1 due to at

Da crack growth increment
DK stress intensity factor range
DKi stress intensity factor range at cycle Ni

DKi+1/2 stress intensity factor range at cycle Ni+1/2

DKi+1 stress intensity factor range at cycle Ni+1

DKNUM
iþ1 stress intensity factor range at cycle Ni+1 from numerical

method
DKSUR

iþ1 stress intensity factor range at cycle Ni+1 from surrogate
model

DKeq equivalent stress intensity factor range
DKI Mode I stress intensity factor range
DKII Mode II stress intensity factor range
DN number of elapsed cycles
DNi number of elapsed cycles between cycles Ni and Ni+1

DNi+1 number of elapsed cycles between cycles Ni+1 and Ni+2

h crack growth direction in crack tip coordinate system
hNUM

iþ1 stress intensity factor range at cycle Ni+1 from numerical
method

hSUR
iþ1 stress intensity factor range at cycle Ni+1 from surrogate

model

Cycle number, N Cycle number, N Crack length, a 
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Fig. 1. The relationships between stress intensity factor range DK, crack length a, and number of cycles N. While the true curves are continuous as denoted by the solid lines,
they are commonly discretized into a finite number of points as shown by the open circles in each figure in order to reduce the number of function evaluations needed to
approximate the system.
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loading. For simplicity, the Paris model is used within this paper,
but the principles could be applied to any crack growth model
governed by an ordinary differential equation. The Paris model is
given as

da
dN
¼ CðDKÞm ð2:1Þ

where da/dN is the crack growth rate, C and m are model parame-
ters, and DK is the range of Mode I stress intensity factor. An analyt-
ical solution of Eq. (2.1) is available for the simplest case that is an
infinite plate under Mode I loading. Other cases require numerical
integration in order to calculate the crack growth as a function of
fatigue loading cycle N.

The solution of Eq. (2.1) with respect to modeling crack growth
with finite element simulations has taken two main approaches.
First, a fixed crack growth increment Da can be considered. Once
the simulations have completed, the relation between Da and DK
can be used to find the corresponding DN for each function evalu-
ation. For a fixed increment of elapsed cycles DN can be consid-
ered. Here, for a given crack geometry Da is approximated based
on the selected DN and the current function evaluation’s prediction
of DK. Either method is capable of yielding an accurate representa-
tion of the fatigue crack growth behavior for a given structure,
should an appropriate step size of Da or DN be chosen. Second,
an automated variable step size algorithm has been introduced
to distribute the simulations in a controlled manner with the goal
of reducing the number of simulations needed without a loss in
accuracy.

When there are nonzero Mode II stress intensity factors present,
it is necessary to consider an equivalent stress intensity factor
range as well as a direction of crack growth. There are many ways
to find an equivalent stress intensity factor range [23,27–29]. Here
the method proposed by Tanaka [28] is used:

DKeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DK4

I þ 8DK4
II

4
q

ð2:2Þ

where DKI and DKII are the ranges of Modes I and II stress intensity
factors, respectively.

The direction of crack growth can be found from many meth-
ods [3,4,23,30–34], but here is assumed to be the direction which
will maximize the opening Mode I stress intensity factor. This
angle for any combination of mixed mode loading consisting of
Modes I and II is given by the maximum circumferential stress
criterion [3] as

h ¼ 2 arctan
1
4

KI

KII
� sign KIIð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI

KII

� �2

þ 8

s0
@

1
A: ð2:3Þ

Note, that this is in essence an Euler approximation to the
crack growth direction as it only considers the stress intensity
factors at the ith data point. As mentioned before, when the
geometry of the plate is finite and the applied load generates
mixed mode, it is not easy to calculate DKi+1/2. This requires
building a finite element model with the crack geometry at
i + 1/2. However, without knowing the crack geometry at i + 1/2,
it is not possible to evaluate DKi+1/2. Thus, except for the forward
Euler method, some kind of approximation should be adopted to
estimate the range of stress intensity factors at the advanced
location. In the following section, a surrogate modeling technique
will be presented to approximate the range of stress intensity fac-
tor as well as the crack growth direction allowing for a midpoint
approximation to be applied to both the magnitude and direction
of crack growth for a given crack through the use of surrogate
modeling.

2.2. Numerical integration of the fatigue crack growth model

2.2.1. Forward Euler method
For an arbitrary differential equation of the form y0(x) = f(x, y(x))

the goal is to predict the value of yn+1 while the current data is
available up to yn. The simplest numerical method available which
is applicable to the current crack growth problem is the explicit
forward Euler method [10] given as

ynþ1 ¼ yn þ hf ðxn; ynÞ ð2:4Þ

where h is the step size from xn to xn+1. Note that f(xn, yn) is the slope
of y(x) at xn; therefore a linear approximation is being made from xn

to xn+1 using the slope at the xn. This method has been popular in
engineering applications because it only requires evaluating the
slope at the current step, which often required expensive computa-
tional simulation. For example, in the case of crack growth simula-
tion, f(xn, yn) corresponds to calculating the stress intensity factor
with given crack size yn. Therefore, evaluating f(xn, yn) requires a fi-
nite element modeling with the current geometry of the crack. If a
different method, such as the backward Euler method, is used, then
f(xn+1, yn+1) is required, which is the stress intensity factor corre-
sponding to the unknown crack size yn+1. Therefore, there exists a
fundamental difficulty to use a numerical integration method other
than the forward Euler method.

The simplest approach to integrate the Paris model for fatigue
crack growth is the use of the forward Euler method. Here the
stress intensity factor range at the current crack geometry is the
only information needed to find the increment of growth between
the current and future crack geometries. The growth increment is
calculated as

Dai ¼ DN½CðDKiÞm� ð2:5Þ

where i is the current increment. The corresponding number of
elapsed cycles can be approximated as

DNi ¼
Da

CðDKiÞm
ð2:6Þ

for a fixed increment of crack growth. As the forward Euler method
only uses the slope at the current point and linearly interpolates to
the next crack size it can lead to large inaccuracies for relatively
small crack growth increments. Although the physical meaning of
DN is the number of elapsed cycles, in this model it is treated as
a continuous variable as crack growth occurs over tens of thousands
of cycles. Choosing a larger DN results in needing fewer finite ele-
ment simulations while sacrificing accuracy.

Although the forward Euler method can resolve the issue re-
lated to evaluating the slope at unknown crack sizes, it has a draw-
back in slow convergence; the accuracy of the method is
proportional to the step size, h. In crack growth analysis, the step
size, DN, is the number of fatigue loading cycles between two eval-
uation points. Since cracks grow slowly throughout the lifecycle of
a product, a small step size means tens of thousands of simula-
tions. Therefore, it is highly desired to use a numerical integration
method that allows a larger step size, while maintaining accuracy.

2.2.2. Midpoint integration method
There are numerous numerical methods that allow larger step

sizes for integration, but the midpoint integration method is used
as a demonstration tool in this paper. The midpoint method [10]
generally provides a better accuracy than the forward Euler meth-
od as it takes the slope at the midpoint between the current and
future data points xn+1/2 and uses that value to approximate the
interval from xn to xn+1 such that the approximation is given as

ynþ1 ¼ yn þ hf xn þ
h
2
; yn þ

h
2

f ðxn; ynÞ
� �

: ð2:7Þ
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The accuracy of the method is proportional to h2; therefore, it
allows a larger step size for the same accuracy with the forward
Euler method. However, this method requires evaluating the slope
at the advanced half step. In practice, this is not an easy task be-
cause the crack size at the advanced step is unknown; it is a part
of the solution. In addition, in a complex system, the direction of
crack growth may not be constant, and thus, it would be difficult
to build a numerical model to calculate the slope at the advanced
step.

The next approach to integrating the Paris model is the use of
the midpoint method where the growth increment is calculated as

Dai ¼ DN½CðDKiþ1=2Þm� ð2:8Þ

where i + 1/2 is the midpoint between the current and next incre-
ment. Similarly, DNi is given as

DNi ¼
Da

CðDKiþ1=2Þm
: ð2:9Þ

Here the slope at the midpoint of the current cycle is use to
extrapolate ahead to i + 1. This leads to a better approximation of
the crack size at the next increment as a more accurate approxima-
tion of the slope over the entire interval of the chosen growth
increment is used. This method requires additional function evalu-
ations at i + 1/2 for each crack geometry, effectively doubling the
number of function evaluations needed for the given simulation.

3. Use of surrogate model in integration

3.1. Constant step size algorithm

The limitation on the types of methods which can be used in the
direct integration of a fatigue model come from the need to evalu-
ate the stress intensity factor at some future crack tip position. Be-
cause this crack position is unknown, it is unclear how to apply a
numerical method to address this challenge. The idea presented
here is to use a surrogate model to fit the available stress intensity
factor history. The surrogate model can then be used to extrapolate
ahead of the current crack position to get an estimate of the stress
intensity factor which can then be used for a higher-order integra-
tion method. Visually, this is shown in Fig. 2 where the filled circles
represent current or past numerical data points, the empty circle
represents the data point being solved for currently, and the empty
square represents the function evaluation at the Ni+1/2.

In this paper, results are presented for the kriging surrogate (see
Appendix A for details). Kriging was chosen after quick benchmark
tests comparing other surrogates such as polynomial response sur-
faces [35], radial basis neural networks [36], and support vector
regression [37]. Nevertheless, the techniques are suitable for any
surrogate and the choice of which is problem dependent. A

comprehensive study comparing surrogate performance is an
objective of future research.

For problems with mixed mode loading, two kriging surrogates
are used. First, a kriging surrogate is used to approximate the re-
sponse of DK as a function of either the crack length a or the num-
ber of elapsed cycles N. The kriging approximation is then used for
a higher order approximation to Paris moldel, such as the midpoint
method given by Eq. (2.8). For the case of a fixed Da, DN is calcu-
lated a posteriori to the function evaluations using interpolation
between data points. Equally spaced data points between ai and
the final crack length are fitted using kriging. This surrogate is then
used to interpolate between data points and evaluate the corre-
sponding DN for each Da. For a fixed DN, kriging is used to fit
the data up to the current cycle and extrapolate approximate val-
ues of DK for the use of the midpoint method. Second, a kriging
surrogate is used to approximate the angle of crack growth h.

In order to build the surrogate model, at least three data points
are required, which are obtained using the forward Euler method
with a small time step. In addition, the initial crack grows slowly,
i.e., small Da, the forward Euler method can yield accurate crack
growth calculation. Two algorithms are provided for the selection
of a variable step size for direct fatigue evaluation. A general form
is introduced based on the agreement between the stress intensity
factor and crack growth direction values for the surrogate extrap-
olation and the theoretical or XFEM values.

3.2. Variable step size

There are numerical methods which will automatically adjust
the integration step size to some allowable error [10]. However,
these methods typically use function evaluations to estimate the
error associated with a given step size before choosing upon a step
size to use. In the finite element framework, this algorithm would
result in expensive function evaluations in order to determine the
allowable step size. To avoid these additional function evaluations,
an algorithm is proposed which allows for the step size to be
dynamically changed based on the accuracy of the surrogate
extrapolation. The step size at the ith step is adjusted at i + 1th step
according to the surrogate accuracy. That is, the more accurate the
surrogate is, the larger the i + 1th step size will be. Conversely, if
the surrogate is not accurate enough, the step size is reduced. For-
mally, the i + 1th step size is found from the solution for the ith
crack geometry as

DNiþ1 ¼ DNi min
ak

1� DKSUR
iþ1

DKNUM
iþ1

0
B@

1
CA

ak

;
at

1� hSUR
iþ1

hNUM
iþ1

����
����

0
BB@

1
CCA

at
2
664

3
775 ð3:1Þ

where DNi is the current step size, a is the allowable percent differ-
ence between the surrogate extrapolation and XFEM values at i + 1,

e 

Euler, slope at Ni ΔK Midpoint, slope at Ni+1/2

Expensive FunEval

Surrogate model

Cheap FunEval

ΔK 

e

ΔK 

e

Midpoint, slope at Ni+1/2

Ni Ni+1 N Ni Ni+1 N Ni Ni+1 N N NN

Fig. 2. Integration of fatigue crack growth model from Ni to Ni+1 for a specified error e. For an unknown DK–a relationship, a simple integration method is the Euler method
which uses the slope at Ni and extrapolates to Ni+1. To apply the midpoint integration method, which uses the slope at Ni+1/2 and extrapolates to Ni+1, an expensive function
evaluation is required at Ni+1/2. Instead of an expensive function evaluation at Ni+1/2, it is proposed to fit a surrogate model to the DK–N history. The surrogate model is then
used to extrapolate to Ni+1/2 enabling the use of high-order integration without additional expensive function evaluations.
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a is an exponent which determines how quickly the step size
changes, and DKi+1 and hi+1 are evaluated based on i + 1 for the cur-
rent crack geometry using either a numerical (e.g. XFEM) or surro-
gate (e.g. kriging) model. The step size is scaled based on the
accuracy of the predicted value. For the case where either
DKSUR

iþ1 ¼ DKNUM
iþ1 or hSUR

iþ1 ¼ hNUM
iþ1 , then DNi+1 = 2DNi. The values of ak

and at in Eq. (3.1) were found to be 0.001, while at and ak were de-
fined to be 0.1 based on a parameter study.

A summary of this approach follows. A series of XFEM simula-
tions were performed to evaluate DKNUM as a function of the crack
size a. In addition, the angle of crack growth given in terms of the
global coordinate system hNUM was evaluated as a function of crack
size. A brief summary of the XFEM is given in Appendix B. Once
these easily evaluated functions were available, the crack growth
was simulated such that:

1. For crack geometry i, fit surrogate for history of DKNUM and
hNUM, evaluate DKSUR and hSUR at i + 1/2 and i + 1.

2. Calculate the crack growth increment Da from
Da ¼ DNiC DKSUR

iþ1=2

� �m
.

3. Calculate the crack growth increments in the x and y-direc-
tions from Dx ¼ Da cos hSUR

iþ1=2

� �
and Dy ¼ Da sin hSUR

iþ1=2

� �
.

4. Update the crack tip location based on Dx and Dy followed
by evaluating DKNUM

iþ1 and hNUM
iþ1 .

5. Find the next step size based on the criteria in Eq. (3.1),
repeat for next crack geometry.

4. Numerical experiments

4.1. Setup

First a center crack in an infinite plate under uniaxial tension is
considered. This case is convenient as it has a closed form solution
for the crack size and stress intensity factor as a function of applied
stress, loading cycle, and material properties. This allows for an
estimate of the amount of error that can be expected by the use
of kriging to provide data points instead of performing a function
evaluation. The effect on the choice of a fixed Da or DN is consid-
ered for the theoretical model of a center crack in an infinite plate
to show the validity of the approach. The presented variable step
size algorithm is also used for each example problem. Results are
presented for each case as the final approximate value normalized
by the exact final value of crack size or cycle number. A value of
one denotes perfect agreement with the exact solution.

The chosen geometry for all problems is a flat, square plate under
uniaxial tension. The plate is considered to be infinite in problem A
(Section 4.2) the plate width for problem B (Section 4.3) was 0.2 m,
and the plate width for problem C (Section 4.4) was 2 m. For prob-
lems A and B, the applied uniaxial tension was 78.6 MPa. The applied
stress for problem C was material dependent and is given in Table 7.
The tested materials and the corresponding material properties are
aluminum 2024 at stress ratios of 0.1 (C = 1.60 � 10�11, m = 3.59,
KIC = 30 MPa

ffiffiffiffiffi
m
p

) and 0.5 (C = 3.15 � 10�11, m = 3.59, KIC = 30 MPaffiffiffiffiffi
m
p

) as well as austenitic (C = 1.36 � 10�10, m = 2.25, KIC = 50 MPaffiffiffiffiffi
m
p

) and martensitic (C = 5.60 � 10�12, m = 3.25, KIC = 50 MPa
ffiffiffiffiffi
m
p

)
steel [38]. The results are presented for each case as a function of
the ratio between the known solution and the prediction for either
crack size or cycle number such that a value of one denotes the exact
solution.

4.2. Center crack in an infinite plate under tension

First, a center crack in an infinite plate with initial crack length
of 10 mm is considered. For the case of a center crack in an infinite
plate under uniaxial tension, the Mode I stress intensity factor [7,8]
is

KI ¼ r
ffiffiffiffiffiffi
pa
p

ð4:1Þ

where r is the applied stress, and a is the half crack length. By
substituting Eq. (4.1) into Eq. (2.1) for Paris model and rearranging
terms, the number of cycles for a crack to grow can be calculated
using the following integration:

N ¼
Z aN

ai

da
Cðr

ffiffiffiffiffiffi
pa
p

Þm
¼ a

2�m
2

N � a
2�m

2
i

C 2�m
2

� 	
ðr

ffiffiffiffi
p
p
Þm

" #
ð4:2Þ

where ai is the initial crack size. Rearranging Eq. (4.2), the crack size
aN after N cycles can be calculated by

aN ¼ NC 1�m
2

� �
ðr

ffiffiffiffi
p
p
Þm þ a

2�m
2

i

h i 2
2�m
: ð4:3Þ

This allows for the midpoint method to be applied as aN and KI

can be directly evaluated and used in the integration of Paris model
at any cycle number. For a geometry without known relationship
between DK and a a finite element solution would need to be per-
formed at Ni at which time an Euler approximation could be used
to approximate ai/2, allowing a second finite element simulation to
be performed and the midpoint method to be applied.

An aluminum 2024 plate with a stress ratio of 0.5 is chosen to
validate the use of kriging extrapolation for the integration of the
fatigue crack growth model. The critical stress intensity factor is
reached for a crack size of 50 mm given an initial crack size of
10 mm in about 22,300 cycles. For a fixed Da, the results are given
in Table 1. Recall that the common Da used in the literature [3,4,6]
is ai/10. For that crack growth increment, the Euler approximation
has over 5% error. Through the use of the midpoint approximation,
the error is reduced to less than 1%. Larger crack growth incre-
ments for the Euler method lead to very large errors, which can
be drastically reduced through the use of the midpoint approxima-
tion. Note also that the use of kriging to fit data and to interpolate
estimates for the necessary function evaluations for the midpoint
approximation results in no loss of accuracy. As interpolation is
being used here, it would also be possible to apply other higher-or-
der approximations such as the Runge–Kutta method [10] for the
back-calculation of elapsed cycles for the case of a fixed Da.

For a fixed DN, the results are given in Table 2. The first obser-
vation from Table 2 is that the accuracy of Euler approximations is
much more sensitive to changes in fixed DN when compared to a
fixed Da. However, the midpoint approximations are largely insen-
sitive to the chosen crack growth increment. As before, the kriging
assisted midpoint approximation is very accurate and comparable
to using the exact formula.

To assess the applicability of the variable step size algorithm to
a range of fatigue problems four different materials were chosen
along with initial crack sizes of either 1 or 10 mm and grown to
failure at 50 mm. As with the fixed step size approach, three data
points are found using the forward Euler approach with DN = 1 be-
fore the variable step size algorithm begins. The results for the
materials and crack sizes is given in Table 3.

Note that the number of function evaluations for the Euler
method is the same as Neuler

fail . It can be noted from Table 3 that
the number of function evaluations that the algorithm uses to
model the crack growth to failure is generally independent of the
number of cycles to failure. The general trend of the variable step
size algorithm is that initially there are smaller steps, then the step
size increases. When the crack approaches the critical crack size,
the integration step size decreases ensuring an accurate solution.
This behavior is shown in Section 4.4 in Fig. 4.

154 M.J. Pais et al. / International Journal of Fatigue 43 (2012) 150–159



Author's personal copy

4.3. Edge crack in a finite plate under tension

For the case of an edge crack in a finite plate under uniaxial ten-
sion, the Mode I stress intensity factor [7,8] is

KI ¼ 1:12�0:281
a

W
þ10:55

a
W

� �2
�21:72

a
W

� �3
þ30:39

a
W

� �4

 �

r
ffiffiffiffiffiffi
pa
p

ð4:4Þ
where a is the crack length and W is the plate width.

Table 1
Accuracy of kriging interpolation integration for fixed increment Da for a center crack in an infinite plate of Al 2024 with R = 0.5. The data is presented as normalized values of the
cycle at which the crack length is 50 mm. The kriging surrogate is used to calculate cycle number N for each discrete crack length a as a post-processing operation. Thus, all kriging
evaluations are based on interpolation. The midpoint method was used here by evaluating Eq. (4.1) for any crack size a. This gives an error estimate for kriging interpolation.

Da Euler FunEval Midpoint FunEvala Kriging Interpolating Midpoint FunEval

ai/160 1.00 640 1.00 640 1.00 640
ai/80 1.01 320 1.00 320 1.00 320
ai/40 1.01 160 1.00 160 1.00 160
ai/20 1.03 80 1.00 80 1.00 80
ai/10 1.05 40 0.999 40 0.999 40
ai/5 1.11 20 0.997 20 0.997 20
ai/2 1.30 10 0.981 10 0.981 10
ai 1.66 5 0.935 5 0.944 5

a For this problem since a closed for expression for aN is available there are no additional function evaluations required for the midpoint method. For an arbitrary geometry
where DK is evaluated using a numerical method, an additional function evaluation is needed between known data points, resulting double function evaluations compared to
Euler and the kriging interpolating midpoint method.

Table 2
Accuracy of kriging extrapolation integration for fixed increment DN for a center crack in an infinite plate of Al 2024 with R = 0.5. The data is presented as normalized values of the
crack length at cycle number 23,000. The kriging surrogate is used to extrapolate a stress intensity factor range allowing the midpoint method to be applied. While for a general
crack direct application of the midpoint method is not possible, it is for this simple problem and provides an indication in the amount of error introduced by using kriging to
replace expensive function evaluations.

DN Euler FunEval Midpointa FunEval Kriging extrapolating midpoint FunEval

1 1.00 23,000 1.00 23,000 1.00 23,000
25 0.995 920 1.00 920 1.00 920
50 0.990 460 1.00 460 1.00 460
100 0.981 230 1.00 230 1.00 230
500 0.918 46 1.00 46 0.999 46
1000 0.856 23 0.999 23 0.995 23

a For a center crack in an infinite plate, the midpoint method can be used through Eq. (4.3). For an arbitrary geometry the midpoint method cannot be used. It is used here
to assess the error introduced by the kriging extrapolation.

Table 3
Effect of material and initial crack size on estimated cycles to failure for the variable step size algorithm for a center crack in an infinite plate. Crack growth is simulated from
initial crack length ai until the crack a length of 50 mm. A comparison between the cycle where failure occurs based on the Euler Neuler

fail and kriging extrapolation NKRG
fail methods is

given in addition to the number of required function evaluations.

Material ai Neuler
fail , FunEvaleuler NKRG

fail
FunEvalKRG

NKRG
fail /Nfail

FunEvalKRG/FunEvaleuler

R = 0.1 1 364,676 369,169 49 1.01 1.34E-4
R = 0.1 10 43,237 43,437 38 1.00 8.79E-4
R = 0.5 1 185,232 188,126 48 1.02 2.59E-4
R = 0.5 10 21,962 22,053 38 1.00 1.70E-3
Austenitic 1 951,320 957,139 46 1.01 4.84E-5
Austenitic 10 428,539 429,546 46 1.00 1.07E-4
Martensitic 1 2193,024 2225,481 75 1.01 3.42E-5
Martensitic 10 435,647 438,664 47 1.01 1.08E-4

Table 4
Accuracy of kriging interpolation integration for fixed increment Da for an edge crack in a finite plate of Al 2024 with R = 0.5. The data is presented as normalized values of the
cycle at which the crack length is 50 mm. The kriging surrogate is used to calculate cycle number N for each discrete crack length a as a post-processing operation. Thus, all kriging
evaluations are based on interpolation. The midpoint method was used here by evaluating Eq. (4.4) for any crack size a. This gives an error estimate for kriging interpolation.

Da Euler FunEval Midpoint FunEval Kriging interpolating midpoint FunEval

ai/160 1.00 640 0.996 640 0.996 640
ai/80 1.00 320 0.996 320 0.996 320
ai/40 1.01 160 0.996 160 0.996 160
ai/20 1.03 80 0.995 80 0.996 80
ai/10 1.07 40 0.995 40 0.994 40
ai/5 1.14 20 0.991 20 0.991 20
ai/2 1.39 8 0.969 8 0.973 8
ai 1.88 4 0.905 4 0.944 4
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In this case, no analytical expression for aN is available. The
crack length after 10,700 cycles was found to be 30 mm using
the forward Euler method (the step size was reduced until conver-
gence in crack size at 10,700 cycles was achieved). For a fixed step
size, aluminum 2024 with a stress ratio of 0.5 is chosen to validate
the use of kriging extrapolation for the integration of the fatigue
crack growth model with a constant step size. The critical stress
intensity factor is reached for a crack size of 30 mm given an initial
crack size of 10 mm in about 11,000 cycles, which is close to the

reference value of 10,700 cycles. For a fixed Da, the results are gi-
ven in Table 4. Here for a fixed crack growth increment of ai/10 the
corresponding Euler approximation has an error of 7%, while the
midpoint approximation yields less than 1% error.

For a fixed elapsed number of cycles in each function evalua-
tion, the exact results for the midpoint method are not available
as there is no explicit value for aN. From Table 5 it is apparent that
once again, the kriging assisted midpoint method allows for larger
step sized compared to the forward Euler method. In this case, for a

Table 5
Accuracy of kriging extrapolation integration for fixed increment DN for an edge crack in a finite plate of Al 2024 with R = 0.5. The data is presented as normalized values of the
crack length at cycle number 11,000. The kriging surrogate is used to extrapolate a stress intensity factor range allowing the midpoint method to be applied. The midpoint method
may not be applied to this problem as no closed for solution for a(N) is known to the authors for the stress intensity factor given by Eq. (4.4).

DN Euler FunEval Midpointa FunEvalb Kriging extrapolating midpoint FunEval

1 1.00 11,000 N/A N/A 1.00 11,000
25 0.994 440 N/A N/A 1.00 440
50 0.987 220 N/A N/A 1.00 220
100 0.975 110 N/A N/A 0.999 110
500 0.947 22 N/A N/A 0.995 22
1000 0.877 11 N/A N/A 0.978 11

a Due to the inability to exactly integrate Paris model with the stress intensity factor of Eq. (4.4), it is not possible to use the midpoint method for this problem.
Nevertheless, when using a surrogate model to extrapolate, it is possible to apply the midpoint method to any problem based on the stress intensity factor range history.

b It would be possible to do a function evaluation for each Ni and then use a forward Euler step to find crack size ai+1/2 at Ni+1/2. However, the number of function evaluations
would double and additional error would be introduced by the forward Euler step used to find ai+1/2.

Table 6
Effect of material and initial crack size on estimated cycles to failure for the variable step size algorithm for an edge crack in a finite plate. Crack growth is simulated from initial
crack length ai until the crack a length of 50 mm. A comparison between the cycle where failure occurs based on the Euler Neuler

fail and kriging extrapolation NKRG
fail methods is given in

addition to the number of required function evaluations.

Material ai Neuler
fail , FunEvaleuler NKRG

fail
FunEvalKRG

NKRG
fail /Nfai

FunEvalKRG/FunEvaleuler

R = 0.1 1 235,374 42 240,401 1.02 1.78E-4
R = 0.1 10 20,701 38 21,473 1.03 1.80E-3
R = 0.5 1 119,557 44 122,705 1.03 3.68E-4
R = 0.5 10 10,516 38 10,799 1.03 3.60E-3
Austenitic 1 594,634 49 601,308 1.01 8.24E-5
Austenitic 10 189,225 41 193,493 1.02 2.17E-4
Martensitic 1 1415,883 46 1459,668 1.03 3.25E-5
Martensitic 10 196,924 41 200,215 1.01 2.08E-4
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Fig. 3. Initial (A) and final (B) crack geometries for an inclined center crack in a square finite plate under uniaxial tension. XFEM was used to calculate the stress intensity
factors and the crack growth direction was found from the stress intensity factors.
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step size of 100, the errors for the Euler and kriging assisted mid-
point methods are 3.5% and 0.2%. The increased errors in the
approximation compared to the case of a center crack in an infinite
plate can most likely be explained by the increased nonlinearity
caused by the edge and finite effects present in this geometry.

The variable step size algorithm is again tested with a range of
fatigue problems. Four different materials were chosen along with
initial crack sizes of either 1 or 10 mm and grown to failure at
50 mm. As with the fixed step size approach, three data points
are found using the forward Euler approach with DN = 1 before
the variable step size algorithm begins. The previously determined
values for ak and at were found to be 0.0001, while at and ak were

defined to be 0.1 based on a parameter study. The results for the
materials and crack sizes are given in Table 6. Note that there is
an increased error for this case can be attributed to the a/W rela-
tionship present in Eq. (4.4).

4.4. Inclined center crack in a finite plate under uniaxial tension

The first test problem which also considers the effect of crack
growth direction is that of an inclined center crack in a finite plate
subjected to uniaxial tension in the y-direction as shown in Fig. 3.
The plate was chosen to be a 2 m � 2 m plate with an initial half
crack size of 0.187 m. The crack was grown by XFEM simulations

Table 7
Comparison of Euler and variable step size predictions for the coordinates (Xfinal, Yfinal) of the right crack tip marked with a dotted circle in Fig. 3 and cycle number Nfail

corresponding to a final crack size of 0.6 m from an initial crack size of 0.187 m for four different materials. A comparison between the cycle where failure occurs based on the
Euler Neuler

fail and kriging extrapolation NKRG
fail methods is given in addition to the number of required function evaluations. Different stress levels were applied to different materials

to reduce the cost associated with the number of XFEM simulations needed for the Euler method for austenitic and martensitic steel.

Material applied stress (Mpa) Material (MPa) Al 2024, R = 0.1 Al 2024, R = 0.5 Austenitic Martensitic
50 50 125 75

Xfail, m Euler 1.5431 1.5432 1.5431 1.5431
Variable 1.5432 1.5433 1.5450 1.5431

Yfail, m Euler 1.0902 1.0902 1.0902 1.0902
Variable 1.0902 1.0902 1.0900 1.0902

Nfail Euler 29,519 14,996 68,331 80,597
Variable 29,574 15,025 68,622 80,707

FunEvalKRG 356 157 52 245
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Fig. 4. Integration step size (A) and percent error (C) for each cycle for aluminum 2024, R = 0.1 as well as the step size (B) and percent error (D) for aluminum 2024, R = 0.5.
The integration step size is based on the proposed variable step size algorithm. The percent error is given as the error in the kriging surrogate at the extrapolated point used
for midpoint integration. Note that once the surrogate model has an error exceeding the target value, the step size is decreased.
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on a structured mesh of element size h = 0.05 m to a final half crack
size of 0.6 m. The values of the constants in the variable step size
algorithm were retained from the previous sections.

For the variable step size algorithm, different applied stresses
were considered in order to make the Euler approximation feasible.
The comparison of the number of cycles to failure and the final
crack position for the Euler with constant DN = 1 to the variable
step size algorithm for the functions for DK and h is presented in
Table 7. Note that the cycle number corresponding to failure in
each case is in excellent agreement with the XFEM solution, but
with substantially less function evaluations are needed for the
solution. The step size trends and the errors as a function of cycle
number for both stress ratios for aluminum 2024 are given in
Fig. 4.

5. Conclusions

The ordinary differential equation which governs fatigue crack
growth is not easily solved because there is no analytical solution
for complex geometries. In a general sense, the stress intensity fac-
tor can only be calculated at the current crack size using the ex-
tended finite element method. With that, it is common to take a
forward Euler approach to the direct calculation of both the mag-
nitude and direction of crack growth. To achieve sufficient accu-
racy, the forward Euler approach limits the step size and
increases the number of function evaluations.

In this paper, kriging was used to fit the available history of the
stress intensity factor and crack growth direction. The surrogate al-
lows extrapolation ahead of the current data point, enabling the
use of the midpoint approximation method for both stress inten-
sity factor and crack growth direction. Additionally, an algorithm
that adjusts the step size for a given allowable error was presented.
The proposed approaches were demonstrated on a center crack in
an infinite plate under uniaxial tension, an edge crack in a finite,
and an inclined center crack in a square finite plate under uniaxial
tension. It was found that:

� The use of surrogate modeling enables high order integration of
crack growth, and
� the algorithm for adjusting the step size produces comparable

accuracy with a significantly reduced number of function
evaluations.

Results can be augmented with other problems to provide a
more solid estimate of the savings associated with the procedure.
In particular, the optimal choice of allowable prediction error
and step size change exponent need to be studied. Future research
also includes the use of uncertainty estimates available in certain
surrogates (such as kriging) for further guidance on the integration
step size.

Appendix A. Kriging surrogate

Surrogate modeling is a technique of approximating a function
which is expensive to evaluate with one which is less expensive.
Normally the approximation is done such that the error between
the original function and approximate one is minimized at a given
set of points. In this paper, the kriging [39–41] surrogate model is
used to approximate a function of interest y(x). As this function is
expensive to evaluate, it may be approximated by a cheaper model
ŷðxÞ based on assumptions on the nature of y(x) and on the ob-
served values of y(x) at a set of p data points called experimental
design. More explicitly,

yðxÞ ¼ ŷðxÞ þ eðxÞ; ðA:1Þ

where x = [x1, . . ., xd]T is a real d-dimensional vector of input vari-
ables and e(x) represents both the error of approximation and ran-
dom errors.

Kriging estimates the value of the unknown function y(x) as a
combination of basis functions fi(x) such as a polynomial basis
and departures z(x) as

ŷðxÞ ¼
Xm

i¼1
bifiðxÞ þ zðxÞ; ðA:2Þ

where z(x) satisfies zðxkÞ ¼ yðxkÞ �
Pm

i¼1bifiðxkÞ for all sample points
(xk) and is assumed to be a realization of a stochastic process Z(x)
with mean zero,

covðZðxiÞ; ZðxjÞÞ ¼ r2Rðxi; xjÞ; ðA:3Þ

and process variance r2, and spatial covariance function given by

r2 ¼ 1
p
ðy � XbÞT R�1ðy � XbÞ; ðA:4Þ

where R(xi, xj) is the correlation between Z(xi) and Z(xj), y is the va-
lue of the actual responses at the sampled points, X is the Gramian
design matrix constructed using the basis functions at the sample
points, R is the matrix of correlations R(xi, xj) among sample points,
and b is an approximation of the vector of coefficients bi of Eq. (A.2).
Fig. A1 shows the prediction and the error estimates of kriging. It
can be noticed that since the kriging model is an interpolator, the
error vanishes at data points. The MATLAB SURROGATES Toolbox
[42] was used in all numerical experiments.

Appendix B. Extended finite element method

Modeling crack growth in a traditional finite element frame-
work is a challenging engineering task. Originally the finite ele-
ment framework was modified to accommodate the
discontinuities that are caused by phenomena such as cracks,
inclusions and voids. The finite element framework is not well sui-
ted for modeling crack growth because the domain of interest is
defined by the mesh. At each increment of crack growth, at least
the domain surrounding the crack tip must be remeshed such that
the updated crack geometry is accurately represented.

The extended finite element method [3,4,6] (XFEM) allows dis-
continuities to be represented independently of the finite element
mesh. Arbitrarily oriented discontinuities can be modeled inde-
pendent of the finite element mesh by enriching all elements cut
by a discontinuity using enrichment functions satisfying the
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Fig. A1. Comparison of exact function and kriging model yKRG(x) for an arbitrary set
of five points.
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discontinuous behavior and additional nodal degrees of freedom.
For the case of a domain containing a crack [3] the approximation
takes the form:

uhðxÞ ¼
X

I2X
NIðxÞ uI þ

X
I2XH

HðxÞaI þ
X

I2XT

X4

a¼1
UaðxÞba

I

h i
ðB:1Þ

where NIðxÞ are the traditional finite element shape function, HðxÞ is
the Heaviside enrichment function, Ua(x) are the crack tip enrich-
ment functions, and uI, aI, and bI are the classical and enriched de-
grees of freedom. When a node would be enriched by the Heaviside
and crack tip enrichment functions, only the crack tip functions are
used as is shown in Fig. B1.

To decrease the computational time for the repeated solutions,
a reanalysis algorithm [5] is used which takes advantage of the
large constant portion of the global stiffness matrix. The mixed-
mode stress intensity factors for the given cracked geometry were
calculated using the domain form of the interaction integrals
[43,44]. The direction of crack growth was calculated using the
maximum circumferential stress criterion given by Eq. (2.3). The
effective stress intensity factor was found from Eq. (2.2) and was
used in Paris Law to calculate the magnitude of crack growth for
a given crack geometry. MATLAB XFEM code [45] was used in the
numerical experiment of an inclined center crack in a finite plate.
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Fig. B1. The location of the enriched nodes corresponding to the crack enrichment
functions where the Heaviside enriched nodes are filled circles and crack tip
enriched nodes are filled squares for a crack represented by a dashed line.
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