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a b s t r a c t

Structural health monitoring enables fatigue damage for in-service structures to be evalu-
ated and the remaining useful life to predicted. In this paper, Bayesian inference using a
random walk method was implemented to predict the remaining useful life of an aircraft
fuselage panel subjected to repeated pressurization cycles. The Paris’ law parameters, m
and C, were treated as uncertain along with the initial crack size, a0. Random samples from
the joint distribution of m, C, and a0 were used to generate the fatigue crack growth curve
using Paris’ law. Using simulated crack size data, the probability that a selected fatigue
crack growth curve represented the true fatigue crack growth curve was updated. Crack
sizes were calculated using Paris’ law with uncertain parameters and random noise and
bias were added to the simulated crack sizes. With this approach, fatigue crack size was
characterized by a probability distribution at each loading cycle. A detailed explanation
of Bayesian updating using the random walk method is provided. crack size. The effect
of the likelihood on the remaining useful life predictions was also evaluated. The proposed
method takes into account model uncertainties as well as the presence of noise and bias in
the measurement data.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Structural health monitoring (SHM) is the process of identifying damage in civil, aerospace, and mechanical engineering
structures [1,2]. SHM provides automated damage diagnosis by combining damage detection algorithms with structural
monitoring systems [3]. In aerospace structures, such as a fuselage panel in an aircraft, SHM enables in-service fatigue dam-
age to be monitored and diagnosed. In this case, the aircraft fuselage is subjected to fatigue loading due to pressurization
cycles during each flight. In general, fatigue damage refers to the nucleation and growth of microstructure cracks, such as
dislocations, to detectable macrostructure cracks. For aircraft structures, the crack size information provided by the SHM
sensor can be used to predict the remaining useful life (RUL), or the number of cycles until a crack reaches the critical value.
Accurate RUL estimation is useful for scheduling maintenance and visual inspections. However, uncertainty always exists in
the RUL estimates due to uncertainty in the crack growth model, material and geometric properties, initial crack size, mea-
sured crack size (due to uncertainty in the SHM sensor measurements), and fatigue load values. The accuracy of the SHM
data is relatively low compared to non-destructive inspection/evaluation (NDI/E) techniques because the SHM sensor data
may have a bias and/or noise; the former is due to calibration error, sensor location, or device error, while the latter is due to
the measurement environment and sensor limitations [4]. Due to the inherent uncertainty in RUL, it should be reported to-
gether with the associated uncertainty [5]. An important consideration in SHM-based prognosis is therefore to accurately
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predict remaining life in the presence of uncertainty. Physics-based models capture the dynamics of fatigue crack growth.
However, they are deterministic and do not generally incorporate uncertainty [6–9]. To address this issue, various methods
to address uncertainty in fatigue have been proposed, such as stochastic modeling [10–15], particle filters [16–18], and
Bayesian inference [4,19–21]. In particular, Coppe et al. used Bayesian inference to progressively reduce the uncertainty
of the Paris’ law parameters using sensor measurement with noise and bias. The posterior probability distributions were
used to predict RUL [4]. Perrin et al. applied Markov Chain Monte Carlo simulation using the Metropolis algorithm to perform
Bayesian updating of the Paris’ law parameters [19]. Mohanti et al. used a multivariate Gaussian process, which is a Bayesian
statistic stochastic model [20]. Zhang and Mahadevan used a Bayesian procedure to quantify uncertainty in: mechanical and
statistical model selection; and the distribution parameters to predict the fatigue reliability [21].

Bayesian methods have increased in popularity in recent years. Bayesian inference provides a normative and formal
method of belief updating when new information, in the form of experimental results for example, becomes available.
The objective of this paper is to demonstrate and validate the random walk Bayesian inference technique for predicting
RUL of an aircraft fuselage panel subjected to repeated pressurization cycles. Paris’ law for crack growth with two parame-
ters, an exponent, m, and a y-intercept, C, was used in this study [22,23] to demonstrate the method; the method can also be

Nomenclature

a half crack size
B true bias in the in the half-crack size measurements
C Paris’ law parameter
k parameter in the likelihood function
l likelihood function
m Paris’ law parameter
M true mean of the noise in the half-crack size measurements
n number of sample fatigue curves
N number of cycles
S true standard deviation of the noise in the half-crack size measurements
U uniform distribution
r fuselage radius
t panel thickness
r user estimated standard deviation in the half-crack size measurements
da/dN crack growth rate
a0 initial half crack size
ac critical half-crack size
ameas measured half-crack size
aN half crack size after N cycles
b1 user estimated bias in the half-crack size measurements
b2 user estimated bias in the half-crack size measurements
KIC plane strain fracture toughness
Nf the number of cycles when the crack size reaches the critical crack size or the number of cycles to failure
Ń normal distribution
p(a) probability of the half-crack size being less than the selected half-crack size value
p(a < ac) probability of the half-crack size being less than the critical half-crack size value
P(A|&) prior distribution about an uncertain event, A, at a state of information, &
P(B|A, &) likelihood of obtaining an experimental result B given that event A occurred
P(B|&) probability of receiving experimental result B (without knowing A has occurred)
P(A|B, &) posterior belief about event A after observing the experiment results, B
P(m) posterior probabilities for m
P(C) posterior probabilities for C
P(m, C) posterior probabilities for {m, C} pairs
RUL remaining useful life
DK range of stress intensity factor
Dp pressure differential
Drh range of hoop stress
lm mean values of m
lC mean value of C
qm,C correlation coefficient between m and C
rh hoop stress
rm standard deviations of m
rC standard deviation of C
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applied to more advanced models with additional parameters. Simulated crack size data was used to update the probability
crack size distributions and the uncertain crack growth model parameters using Bayes’ rule. The proposed method takes into
account uncertainties in the sensor measurement, crack growth model parameters, m and C, and the initial half-crack size.
Section 2 briefly summarizes Paris’ damage growth model for completeness. Bayes’ rule is described in Section 3. The Bayes-
ian inference method using random walks is described in Section 4. Section 5 shows the RUL predictions. Advantages are
discussed in Section 6 and conclusions are provided in Section 7.

2. Damage growth model

Microstructure cracks, such as dislocations, always exist in a structure. Fatigue loading can cause these microstructure-
level cracks to grow into macrostructure-level cracks. In this study, Paris’ law was used to model crack growth in a fuselage
panel subjected to constant amplitude fatigue loading from repeated pressurization cycles. Paris’ law was selected because it
is commonly used for fatigue analysis due to its simplicity [4,21,24–26]. Paris’ law is given by [22]:

da
dN
¼ CðDKÞm ð1Þ

where a is the half-crack size in m, N is the number of cycles, da
dN is the crack growth rate in meters/cycle, DK is the stress

intensity factor range in MPa
ffiffiffiffiffi
m
p

, and m and C are the damage growth parameters. The stress intensity factor range for a
center-cracked panel is calculated using Eq. (2). Note that Eq. (2) does not include any correction factor due to the assumed
finite size of the fuselage panel. The range of hoop stress, Drh, due to the pressure differential, Dp, is given by Eq. (3), where r
is the fuselage radius and t is the panel thickness.

DK ¼ Drh

ffiffiffiffiffiffi
pa
p

ð2Þ

Drh ¼
ðDpÞr

t
ð3Þ

The number of fatigue loading cycles required to grow a crack from the initial half-crack size, a0, to the final half-crack size,
aN, can be determined by integrating Eq. (1).

N ¼ a
1�m

2
N � a

1�m
2

0

C 1� m
2

� �
Drh

ffiffiffiffi
p
p� � ð4Þ

The half-crack size can be expressed as a function of N by rewriting Eq. (4).

aN ¼ NC 1�m
2

� �
Drh

ffiffiffiffi
p
p� �m þ a

1�m
2

0

� � 2
2�m ð5Þ

The panel will fail when the half-crack size reaches a critical half-crack size, ac. The critical half-crack size is defined as the
size when the stress intensity factor exceeds the plane strain fracture toughness, KC. The expression for the critical half-crack
size is provided in Eq. (6). Note that in the remainder of the paper, crack size refers to the half-crack size.

aC ¼
KC

rh
ffiffiffiffi
p
p

� �2

ð6Þ

3. Bayesian inference of the damage growth model

Bayesian inference forms a normative and rational method for belief updating when new information is made available.
Let the prior distribution about an uncertain event, A, at a state of information, &, be P(A|&), the likelihood of obtaining an
experimental result B given that event A occurred be P(B|A, &), and the probability of receiving experimental result B (with-
out knowing A has occurred) be P(B|&). Bayes’ rule is used to determine the posterior belief about event A after observing the
experiment results, P(A|B, &), as shown in Eq. (7) [27,28]. Using Bayes’ rule, information gained through experimentation can
be combined with the prior prediction about the crack size distribution to obtain an updated posterior distribution for the
crack size.

PðAjB;&Þ ¼ PðAj&ÞPðBjA;&Þ
PðBj&Þ ð7Þ

Bayesian inference provides a rigorous mathematical framework of belief updating about an unknown variable when new
information becomes available. The damage parameters, C and m, in Eq. (1) are normally estimated by fitting fatigue test
data measured under controlled, laboratory-environment conditions. Due to potential differences between the test and
in-service conditions, there is uncertainty in the tabulated growth parameters. In addition, there is uncertainty in the stress
intensity factor range (due to uncertainty in the pressure differential and, therefore, the hoop stress) and the initial crack
size, a0. Bayesian inference assigns a probability distribution to the crack size and takes into account the inherent uncertainty

590 J.M. Karandikar et al. / Engineering Fracture Mechanics 96 (2012) 588–605



Author's personal copy

in the crack growth model. The prior, or initial belief, can be based on theoretical considerations, expert opinions, past
experiences, or data reported in the literature; the prior should be chosen to be as informative as possible. The prior is
represented as a probability distribution and, using Bayes’ theorem, the probability distribution can be updated when
new information becomes available (from experiments, for example).

4. Bayesian updating using random walks

Bayesian updating using the random walk approach is explained in this section. From a Bayesian standpoint, an uncertain
variable, such as crack size, is treated as a random variable and is characterized by a probability distribution. To generate n
sample fatigue crack growth curves (i.e., aN versus N), samples were selected from the prior joint distribution of m, C, and a0

(assumed independent) and Eq. (5) was applied. It was considered equally likely that each path represented the true fatigue
crack growth curve. Thus, the probability that each sample path was the true crack growth curve was 1/n. These sample
paths were used as the prior in applying Bayesian inference. As noted, the prior can be updated by experimental test results
using Bayes’ rule. For each sample path, Bayes’ rule can be written as:

Pðpath ¼ true crack growth curvejtest result; &Þ

¼ Pðtest resultjpath ¼ true crack growth curve; &Þ
Pðtest resultj&Þ Pðpath ¼ true crack growth curvej&Þ

Here, P(path = true crack growth curve|&) is the prior probability, which before any testing was simply 1/n for each sample
path, P(test result|path = true crack growth curve|&) is referred to as the likelihood, P(test result|&) is the normalization con-
stant, and P(path = true crack growth curve|test result, &) is the posterior probability that the crack growth curve is the true
curve given a test result. From the axioms of probability theory, the area under a probability density function in a continuous
case should be equal to unity. Therefore, P(test result|&) acts as a normalization constant of the posterior distribution and
need not be calculated separately. According to this equation, the posterior distribution is proportional to the product of
the prior and the likelihood. The decision maker should use all available information to generate the prior sample paths,
i.e., the crack growth curves. As shown, Bayes’ rule is used to update the probability that each sample path is the true crack
growth curve using experimental results. For multiple experiments, the posterior after the first update becomes the prior for
the second update and so on. Note that the posterior probabilities of each sample path must be normalized so that the sum is
equal to unity.

Note that when completing Bayesian updates using the random walk method, the probability that each random sample
path is the true path is updated after each measurement. These new sample path probabilities are then used to update the
probability distribution of crack size and RUL prediction. This does not require an update of the individual parameter distri-
butions in Paris’ law. As an alternative, Monte Carlo simulation can be used to update the parameter distributions and RUL
predictions after each measurement. However, this is computationally more expensive. Since the goal is to predict RUL, the
intermediate step of updating the uncertain model parameters is eliminated using the random walk method.

In this study, synthetic crack growth data was used to demonstrate the approach. To establish the true crack growth
behavior, the values in Table 1 were used, where the applied fuselage pressure differential was taken as 0.06 MPa [29]
and m and C were obtained using a crack growth rate plot reported in [30] for 7075-T651 aluminum. The hoop stress range
was calculated as Drh = 78.6 MPa using Eq. (3) and the critical crack size was determined to be ac = 46.3 mm using Eq. (6).
The true crack growth values as a function of the number of cycles were determined using the Table 1 values together with
the derived values of Drh and ac. As shown in Fig. 1, the critical crack size was reached after 2488 cycles, starting from the
initial crack size of 10 mm. The corresponding RUL plot is provided in Fig. 2.

Once the true crack growth behavior was established, the prior joint distribution for the uncertain Paris’ law parameters
was established and Bayesian updating of this distribution was completed using contrived measurement data to demon-
strate the random walk approach.

4.1. Prior

For the prior, n sample paths were generated using random samples from a joint probability density function (pdf) of m, C,
and a0. A large value of n improves the probability that all relevant combinations of these values are included. The sample

Table 1
Parameters for the numerical study.

Parameter Value Unit

r 3.25 m
t 0.00248 m
Dp 0.06 MPa
m 3.8 –
C 1.5 � 10�10 m/cycle
a0 0.01 m
KC 30 MPa

ffiffiffiffiffi
m
p
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paths representing the prior were generated using Eq. (5). The hoop stress range was assumed to be deterministic (see
Table 1). The prior distribution for the damage growth parameters can be determined from laboratory coupon tests or other
experimental evidence, finite element analyses, and/or theoretical considerations. In this study, the prior distribution of m, C,
and a0 was assumed to be uniform. The prior joint distribution for the uncertain parameters was selected as [4]: m = U
(3.3,4.3), C = U (5 � 10�11, 5 � 10�10), and a0 = U (8,12) mm, where U represents a uniform distribution and the parenthetical
terms indicate the lower and upper values of the range. The prior m, C, and a0 distribution was taken as a joint pdf where the
parameters were independent of each other. Random samples (1 � 104) were drawn from the prior joint pdf and the fatigue
crack growth curve was calculated for each {m, C, a0} sample. Note that uncertainty in a0 was considered due to measure-
ment bias and noise. The prior distribution of a0 implies that the initial crack size was equally likely to take any value
between 8 mm and 12 mm. According to the prior, each sample fatigue crack growth curve was equally likely to be the true
fatigue crack growth curve.

To demonstrate the approach, consider a scenario where {m,C} values can take only the 10 different combinations listed
in Table 2. Let the initial crack size be 10 mm for illustration purposes. All combinations of {m,C} were assumed to be equally
likely to be the true combination. This gives a probability of 0.1 for each {m,C} pair since there were 10 possible pairs. The
fatigue crack growth curves were calculated for the 10 {m,C} pairs as a function of N. These are the sample paths, or random
walks, each generated using a different {m,C} sample. Fig. 3 shows the 10 crack growth curves. The crack size as a function of
N was calculated until the crack size reached the critical crack size. Table 2 lists the crack size for each {m,C} sample at 1000,
2000, and 3000 cycles. The number of cycles when the crack size reaches the critical crack size, denoted as the number of
cycles to failure, Nf, for each sample path is also provided in Table 2. Fig. 4 displays the discrete crack size cumulative
distribution function (cdf) at the three intervals. These cdfs give the probability, p(a), of the crack size being less than a
selected crack size value as a function of the number of cycles. For example, the probability that the crack size will be less
than the critical crack size is 1 at 1000 cycles, 0.7 at 2000 cycles, and 0.4 at 3000 cycles.

There is uncertainty in Nf due to uncertainty in the m and C values. Fig. 5 shows the prior probability that the crack size
will be less than the critical crack size as a function of N. These results can be interpreted as follows. From the 10 sample

Fig. 1. True crack growth as a function of the number of cycles. The critical crack size is reached in 2488 cycles.

Fig. 2. True RUL at each cycle.
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curves in Fig. 3, zero curves reach the critical crack size before 1343 cycles. Thus, the probability that the crack size is less
than the critical crack size is 1 until 1343 cycles. Three curves reach the critical crack size from 1343 cycles to 2000 cycles;
these correspond to the {3.6, 5 � 10�10}, {3.6, 4 � 10�10}, and {3.5, 5 � 10�10} combinations for which the Nf values were
1344, 1680, and 1804 cycles, respectively. Therefore, the probability that the crack size will be less than the critical crack
size at 2000 cycles is 0.7 as three equally likely sample curves from the 10 total curves reached the critical crack size. All
curves reach the critical crack size before 10,000 cycles. Subsequently, the probability that the crack size will be less than
the critical crack size is 0 at 10,000 cycles. The decision maker can estimate the RUL based on an acceptable probability
of the crack size reaching the critical crack size.

The procedure was repeated for 1 � 104 sample paths that were generated by drawing random samples from the same
prior joint {m,C} distribution. The prior probability that any sample curve is the true fatigue crack growth curve was there-
fore 1 � 10�4. Recall that uncertainty was assumed in the initial crack size along with the damage growth parameters; the
random sample fatigue crack growth curves were equally likely to originate anywhere between 8 mm and 12 mm. As dem-
onstrated, the prior sample paths can be used to determine the cdf of the crack size at any number of cycles in the domain.
Fig. 6 shows the crack size cdf at 1000 cycles. From Fig. 6, the probability that the crack size at 1000 cycles will be less than
20.5 mm is 0.5, whereas the probability that the crack size will be less than the critical crack size (46.3 mm) is 0.653. The cdf
was then calculated for every cycle in the domain (0 to 10,000). Fig. 7 shows the prior cdf of crack growth as a function of N.
Lines of equal probability that the crack size is less than the selected crack size value are provided. Fig. 8 shows the prior
probability that the crack size will be less than the critical crack size as a function of N. As expected, the probability of
the crack size being less than the critical crack size decreases with N. From Fig. 8, the 95% RUL based on the prior information
was 302 cycles. This means that there is a 0.05 probability that the crack size will exceed the critical crack size at 302 cycles.

4.2. Likelihood

According to Bayes’ rule, the posterior distribution is proportional to the product of the prior and likelihood functions.
This section explains the likelihood function formulation. There is crack size uncertainty due to uncertainties in the under-
lying model and the presence of bias and noise in crack size measurements. The user can estimate the uncertainties in the
crack size measurements based on his/her beliefs about the SHM system. To illustrate, consider a crack size measurement of
16.2 mm after 1000 cycles. Based on the measurement result and the measurement and model uncertainties, the user might
believe that it is very likely that the true crack size is between 15.2 mm and 17.2 mm. The user may also estimate that it is

Table 2
Prior probabilities and tool life for sample {m,C} pairs.

Sample {m,C} Crack size (mm) Nf Prior

1000 cycles 2000 cycles 3000 cycles

1 {3.5, 1 � 10�10} 11.1 12.4 14.1 9021 0.10
2 {3.5, 2 � 10�10} 12.4 16.2 22.4 4510 0.10
3 {3.5, 3 � 10�10} 14.1 22.4 46.1 3007 0.10
4 {3.5, 4 � 10�10} 16.2 34.7 >46.3 2255 0.10
5 {3.5, 5 � 10�10} 18.9 >46.3 >46.3 1804 0.10
6 {3.6, 1 � 10�10} 11.5 13.4 16.1 6720 0.10
7 {3.6, 2 � 10�10} 13.4 19.8 34.8 3360 0.10
8 {3.6, 3 � 10�10} 16.1 34.8 >46.3 2240 0.10
9 {3.6, 4 � 10�10} 19.8 >46.3 >46.3 1680 0.10

10 {3.6, 5 � 10�10} 25.4 >46.3 >46.3 1344 0.10

Fig. 3. Sample crack growth curves for the {m,C} pairs listed in Table 2.
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unlikely that the true crack size was less than 13.2 mm or greater than 19.2 mm, for example. The likelihood function takes
into account these beliefs. See Eq. (8), where l is the likelihood function, ameas is the measured crack size, a is the crack size for
a sample fatigue crack growth curve at measurement N, and k is a parameter that describes the function spread. (Recall that
crack size actually denotes the half-crack size.)

l ¼ e
�ða�ameasÞ2

k ð8Þ

Fig. 4. Prior cdf of crack size at 1000 cycles (top left), 2000 cycles (top right), and 3000 cycles (bottom left).

Fig. 5. Prior probability of the crack size being less than the critical crack size as a function of the number of cycles.
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The likelihood function is expressed as a non-normalized normal distribution, where the parameter k = 2r2 and r is the
standard deviation of crack size (due to measurement, material, and model uncertainty). The value of k is estimated by the
user based on his/her beliefs. The likelihood function describes how likely it is that each sample path is the true crack growth
curve based on the measured value. If the fatigue crack growth curve value is near the measurement result, then the like-
lihood value is high. Otherwise, it is low. The likelihood function defined in Eq. (8) does not reject sample paths which differ

Fig. 6. Prior cdf of crack size at 1000 cycles.

Fig. 7. Prior cdf of crack size.

Fig. 8. Prior probability that the crack size is less than the critical crack size as a function of N.
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significantly from the measurement result; it simply assigns them a small weighting factor. To demonstrate, again consider
the 10 possible {m,C} pairs listed in Table 2. Assume that a crack size measurement of 16.2 mm was obtained at 1000 cycles.
Each sample fatigue crack growth curve has a crack size value that depends on the {m,C} pair used to generate the sample
path (see Table 2). The likelihood function can be interpreted as assigning weights from zero to unity for these sample paths,
where zero indicates that the combination is not likely at all and unity identifies the most likely combination. The likelihood
for each sample fatigue crack growth curve was calculated using Eq. (8). The likelihood can also be modified to incorporate
the presence of a bias in the measured crack size in addition to uncertainty; see Eq. (9), where b1 and b2 define the bias in the
measured crack size as estimated by the user.

l ¼
e
�ða�ðameas�b1 ÞÞ

2

k a < ameas � b1

1 ameas � b1 6 a 6 ameas þ b2

e
�ða�ðameasþb2 ÞÞ

2

k a > ameas þ b2

8>><
>>:

ð9Þ

The value of r (or k) in the likelihood function is estimated by the user based on his/her beliefs about the model uncer-
tainty and the presence of noise and bias in the sensor measurement. If the user believes a positive or negative bias may
exist, the values of b1 and b2 in Eq. (9) are selected accordingly. For example, if the user estimates a negative bias in the sen-
sor measurement, the value of b2 would be assigned by the user and b1 would be 0. For a positive bias, the value of b1 would
be assigned by the user and b2 would be 0. Table 3 lists the likelihood values for the 10 possible {m,C} pairs with a measured

Table 3
Likelihood probabilities for sample {m, C} pairs given a measured crack size of 16.2 mm at 1000 cycles.

Sample {m,C} Crack size (mm) Nf Prior Likelihood

1000 cycles 2000 cycles 3000 cycles

1 {3.5, 1 � 10�10} 11.1 12.4 14.1 9021 0.10 2.46 � 10�6

2 {3.5, 2 � 10�10} 12.4 16.2 22.4 4510 0.10 9.19 � 10�4

3 {3.5, 3 � 10�10} 14.1 22.4 46.1 3007 0.10 0.113
4 {3.5, 4 � 10�10} 16.2 34.7 >46.3 2255 0.10 1.000
5 {3.5, 5 � 10�10} 18.9 >46.3 >46.3 1804 0.10 0.027
6 {3.6, 1 � 10�10} 11.5 13.4 16.1 6720 0.10 1.60 � 10�5

7 {3.6, 2 � 10�10} 13.4 19.8 34.8 3360 0.10 0.022
8 {3.6, 3 � 10�10} 16.1 34.8 >46.3 2240 0.10 0.992
9 {3.6, 4 � 10�10} 19.8 >46.3 >46.3 1680 0.10 0.001

10 {3.6, 5 � 10�10} 25.4 >46.3 >46.3 1344 0.10 3.18 � 10�19

Fig. 9. Example likelihood functions for a crack size measurement of 16.2 mm after 1000 cycles.
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crack size of 16.2 mm at 1000 cycles. For the likelihood calculation, the value of r, b1, and b2 were taken as 1 mm, 0 mm, and
0 mm, respectively. The likelihood values listed in Table 3 show that {3.5, 4 � 10�10} was most likely to be the correct {m,C}
combination, while {3.6, 5 � 10�10} was the least likely. Fig. 9 shows the likelihood function for ameas = 16.2 mm at 1000
cycles for different r, b1, and b2 values. As seen in the figure, increased uncertainty (higher r and/or b1 or b2) broadens
the likelihood function so that comparatively higher weights are assigned to sample curves further from the experimental
result. Subsequently, larger uncertainty yields a conservative estimate of crack size and, therefore, RUL. The effect of
estimated values of r, b1, and b2 on the RUL is discussed in Section 5. Although the values for r, b1, and b2 are considered
constant in this study, they could also be expressed as a function of N.

5. Bayesian updating

The posterior distribution is obtained by a (normalized) multiplication of the prior and likelihood functions. The prior
probability of each sample path in this study was 1 � 10�4. The likelihood probability was calculated using Eq. (8). The pos-
terior probability for 10 sample paths is provided in Table 4. Recall that in the illustration example, the initial crack size was
assumed to be 10 mm. For this first update, the measured crack size was 16.2 mm at 1000 cycles. For the likelihood calcu-
lation, the value of r, b1, and b2 were taken as 1 mm, 0 mm, and 0 mm, respectively. For each N, the updated probabilities of
sample fatigue curves provide an updated crack size distribution. Therefore, a crack size measurement at a selected cycle
updates the crack size distribution at all cycles. Fig. 10 displays updated posterior crack size distributions at 1000, 2000,
and 3000 cycles given the crack size measurement of 16.2 mm at 1000 cycles (solid lines). Fig. 10 also includes the prior
crack size cdfs for comparison (dashed lines). Fig. 11 shows the posterior probability that the crack size will be less than
the critical crack size as a function of N. Note that for the posterior cdf calculation, the updated probabilities, or weights,
of the sample paths must be considered. From Fig. 11, it is seen that there was an improvement in the posterior probability
of the crack size reaching the critical crack size.

The Bayesian updating procedure was repeated for all 1 � 104 sample paths. Fig. 12 shows a comparison between prior
and posterior cdf of crack size at 1000 cycles. From the posterior cdf, the probability that the crack size is less than the critical
crack size (46.3 mm) is 1 at 1000 cycles. Fig. 13 shows the updated posterior distribution given ameas = 16.2 mm at 1000
cycles. Fig. 14 shows a comparison between the prior and posterior probability that the crack size will be less than critical
crack size as a function of N. It is observed that there is a 0.05 probability that the crack size will exceed the critical crack size
at 1704 cycles. Since the measurement is at 1000 cycles, the RUL at 1000 cycles was 704 cycles. Therefore, the RUL estimate
was updated using a measurement result.

In certain cases, the posterior distribution for the uncertain parameters may be required because these distributions can
be used to generate the prior for another group of fuselage panels. Recall that each sample fatigue crack growth curve was
generated using a sample of {m, C, a0}. For the prior, each sample fatigue crack growth curve was assumed to equally likely to
be the true curve; this implies that each {m, C, a0} combination used to generate the sample curve was equally likely to be the
true combination. The updated probability of each sample curve gives the updated probability of the underlying {m, C, a0}
sample to be the true combination. The mean, standard deviation, and correlation coefficient of the parameters can be deter-
mined from the posterior probabilities using the following relations:

lm ¼
X

mPðmÞ ¼ 3:801 ð10aÞ

lC ¼
X

CPðCÞ ¼ 2:68� 10�10 ð10bÞ

rm ¼
X
ðm� lmÞ

2PðmÞ ¼ 0:286 ð10cÞ

rC ¼
X
ðC � lCÞ

2PðCÞ ¼ 1:28� 10�10 ð10dÞ

Table 4
Posterior probabilities for sample {m,C} pairs after the first update.

Sample {m,C} Prior Likelihood Posterior (non-normalized) Posterior (normalized)

1 {3.5, 1 � 10�10} 0.10 2.46 � 10�6 2.46 � 10�7 1.14 � 10�6

2 {3.5, 2 � 10�10} 0.10 9.19 � 10�4 9.19 � 10�5 4.26 � 10�6

3 {3.5, 3 � 10�10} 0.10 0.113 0.0113 0.052
4 {3.5, 4 � 10�10} 0.10 1.000 0.1 0.464
5 {3.5, 5 � 10�10} 0.10 0.027 0.0027 0.012
6 {3.6, 1 � 10�10} 0.10 1.60 � 10�5 1.60 � 10�6 7.42 � 10�6

7 {3.6, 2 � 10�10} 0.10 0.022 0.0022 0.010
8 {3.6, 3 � 10�10} 0.10 0.992 0.0992 0.460
9 {3.6, 4 � 10�10} 0.10 0.001 0.0001 4.64 � 10�4

10 {3.6, 5 � 10�10} 0.10 3.18 � 10�19 3.18 � 10�20 1.48 � 10�19

R = 0.215 R = 1.00
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qm;C ¼
P

mCPðm;CÞ � lmlC

rmrC
¼ 0:0541 ð10eÞ

In these equations, the summations were carried out over all n samples, where P(m), P(C), and P(m,C) are the posterior
probabilities for m, C, and the {m,C} pairs, respectively; lm and lC are the mean values of m and C, respectively; rm and
rC are the standard deviations of m and C, respectively; and qm,C is the correlation coefficient between m and C. The terms
P(m), P(C), and P(m,C) are equal to the posterior probabilities of the sample curves. For the numerical study provided here,

Fig. 10. Posterior cdf of crack size at 1000 (top left), 2000 (top right), and 3000 cycles (bottom left) using a measured crack size of 16.2 mm at 1000 cycles.

Fig. 11. Posterior probability that the crack size is less than the critical crack size as a function of N.
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the mean value of m was close to the true value, while the mean value of C was not. This is because the value of C is very
sensitive to the value of the exponent m. As a result, the standard deviation of C was high. The true value of C was within one
standard deviation of the mean value. Eqs. (10a)–(10e) can also be modified to determine the mean and standard deviation
of a0 and its correlation coefficients with m and C, respectively.

Fig. 12. Prior and posterior cdfs of crack size at 1000 cycles.

Fig. 13. Posterior cdf of crack size as a function of N.

Fig. 14. Posterior and prior probability that the crack size is less than the critical crack size as a function of N.
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6. Prediction of RUL

The posterior probabilities of the sample paths after each update were used to predict the RUL. The crack size measure-
ment values were calculated using the true parameter values listed in Table 1. It was assumed that the crack size measure-
ments were performed at 100 cycle intervals, which resulted in 24 total measurements and subsequent updating of the crack
size distribution. A 95% RUL was used in this study, where there is a 0.05 probability of the crack size reaching the critical
crack size at the 95% RUL value. The 95% RUL was then compared with the true RUL (see Fig. 2). To simulate real measure-
ment conditions and incorporate the model uncertainty, a bias, B, and standard normal random noise were added to the true
crack size. The uncertainty was described using N (M, S2), where N denotes a normal distribution, M is the mean, and S is the
standard deviation. In the first analysis, no bias or noise was added to the simulated crack size measurement values
(B = 0, S = 0). The crack size value was calculated at 100 cycle intervals and used to update the crack size distribution. The
value of r, as estimated by the user in the likelihood function (Eq. (8)), was 1 mm. The 95% RUL after 2400 cycles was
calculated as 67 cycles using the procedure described in Section 4; the true RUL was 88 cycles. The result was conserva-
tive because uncertainty in the measured crack size values was considered in the likelihood function. The mean and stan-
dard deviation for the posterior {m, C, a0} distributions were {3.82, 0.28} for m, {2.52 � 10�10, 1.46 � 10�10} for C, and
{10.0, 9.5 � 10�4} mm for a0. The correlation coefficients were �0.567 between m and C, 0.62 between m and a0, and
�0.46 between a0 and C. The Paris’ law parameters show a strong correlation, as expected [31,32].

Next, noise with S = 1 mm was added to the true crack size. The value of r was again 1 mm. Fig. 15 shows the true crack
growth curve and the simulated values for a single set of measurements. After each update, the 95% RUL value was calcu-
lated. The RUL prediction may vary with different samples of the simulated crack size values since random noise was added
to the simulated crack size values. The process was repeated for 100 sets of 24 measurements. Fig. 16 shows the 95% RUL
prediction for all 100 sets of measurements. It is seen that there was a gradual improvement in the RUL prediction with each
measurement. The prior uncertainty in the values of m, C, and a0, (m = U (3.3, 4.3), C = U (5 � 10�11, 5 � 10�10) and a0 = U
(8, 12) mm), was large which resulted in a conservative prediction at the start. Fig. 17 shows the histogram of the predicted
RUL from the 100 sets of measurements at 2400 cycles, which was the last update, and the true RUL. Since the assumed like-
lihood uncertainty was equal to the true uncertainty (S = r = 1 mm), a 95% RUL prediction resulted in a 5% non-conservative
prediction of RUL. Fig. 17 shows that the RUL prediction was non-conservative for six of the 100 measurement sets. Fig. 18
shows the 99% RUL for all 100 sets of measurement (left) and the histogram of 99% RUL (right). A 99% RUL prescribes that
there is a 0.01 probability that the crack size will reach the critical crack size. As expected, the 99% RUL leads to a conser-
vative estimate as compared to the 95% RUL.

In practice, the true value of S is unknown to the user. It is estimated in the likelihood calculation (r) based on his/her
beliefs. The values estimated by the user can therefore be different than the true value, which affects the RUL predictions.
This was evaluated by considering the three cases in Table 5. For Case 1, the estimated uncertainty was equal to the true
uncertainty (S = r = 1 mm). For Case 2, the uncertainty estimated by the user (r = 3 mm) was higher than the true value
of noise (S = 1 mm). For Case 3, the uncertainty estimated by the user (r = 1 mm) was lower than the true value
(S = 3 mm). The Case 2 and 3 results were compared to Case 1 (see Fig. 16). Fig. 19 shows the 95% RUL prediction for Case
2 (left) and Case 3 (right). Fig. 20 shows the histogram of RUL at 2400 cycles for Case 2 (left) and Case 3 (right). As expected, a
higher estimate of the uncertainty (Case 2) results in a more conservative RUL prediction, while a lower estimate (Case 3)
results in a non-conservative prediction of RUL.

Next, the effect of bias in the crack size measurements on the RUL prediction was evaluated. Two cases were considered.
First, a bias of 1 mm (B = 1 mm) was added to the true crack size along with a noise standard deviation equal to 1 mm
(S = 1 mm). The likelihood standard deviation was also taken as 1 mm and the bias was zero (b1 = b2 = 0 in Eq. (9)). Second,

Fig. 15. True crack growth curve and the simulated values used for updating using a single set of measurements.
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Fig. 16. 95% RUL prediction for all 100 sets of measurements.

Fig. 17. Histogram of the predicted 95% RUL at 2400 cycles.

Fig. 18. 99% RUL prediction for all 100 sets of measurements (left) and histogram of the predicted 99% RUL at 2400 cycles (right).
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a bias of �1 mm (B = �1 mm) was added to the true crack size. Fig. 21 shows the histogram of RUL at 2400 cycles for
B = 1 mm (left) and B = �1 mm (right). A positive bias along with noise in the measurement leads to a conservative predic-
tion of RUL, while a negative bias leads to a non-conservative prediction.

As noted, a bias can be incorporated in the likelihood function using two parameters, b1 and b2. A negative bias should be
accounted for as it leads to a non-conservative prediction of RUL. Two cases were considered to incorporate bias in the like-
lihood. In the first case, the uncertainty in the likelihood was 1 mm (r = 1 mm) and the bias was 1 mm (b1 = 1 mm and
b2 = 1 mm). The values of S and B were 1 mm and �1 mm, respectively. A comparison of the right panel of Fig. 21 (no bias
in the likelihood) and the left panel of Fig. 22 (bias included) shows that incorporating the bias yields a more conservative
result. In the second case, an uncertainty of 3 mm was assumed in the likelihood (r = 3 mm) and bias was not considered
(b1 = 0 and b2 = 0). The values of S and B were again 1 mm and �1 mm, respectively. By comparing the right panel of
Fig. 21 (r = 1 mm) and the right panel of Fig. 22 (r = 3 mm), it is seen that the RUL prediction was conservative for the

Table 5
Three cases to evaluate the effect of uncertainty estimate.

Case S (mm) r (mm)

1 1 1
2 1 3
3 3 1

Fig. 19. 95% RUL prediction for all 100 sets of measurements for Case 2 (left) and Case 3 (right).

Fig. 20. Histogram of the predicted 95% RUL at 2400 cycles for Case 2 (left) and Case 3 (right).
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r = 3 mm case. This follows from the results of Fig. 9 (based on Eq. (9)) that depicts a broader likelihood function with
increasing r. Therefore, a higher likelihood value is assigned to all sample paths.

7. Advantages

Bayesian inference using the random walk method offers many advantages. In the random walk methodology the indi-
vidual damage growth parameter distributions are not updated. Instead, the probability that each sample path is the true
fatigue crack growth curve is updated. In contrast, the joint distributions of parameters and RUL may be updated by Monte
Carlo simulation after each measurement, but this can be computationally expensive. Since the goal is predicting RUL, the
intermediate step of calculating posterior parameter distributions after each update is unnecessary and is eliminated in
the technique described here. In cases where the posterior distributions of the uncertain parameters are required, they
can be determined as shown in Eqs. (10a), (10b), (10c), (10d), (10e). In the random walk method, the prior sample paths,
or sample curves, need to be generated only once and the probability of each curve being the true curve is updated. There-
fore, the method enables uncertainty in input variables, such as the initial crack size, pressure differential, and growth
parameters, to be considered in the prior. Without loss of generality, the same procedure is also applicable for advanced
fatigue crack growth models with additional parameters. The advantages of the method exist for higher reliability RUL prob-
lems. The computation time depends on the time required to generate the sample curves; therefore it might be a factor for
time consuming crack growth analysis using retardation modeling. Note that the prior sample curves need to be generated
only once. Using the approach described here, the effectiveness of different models can be evaluated using reported fatigue
crack growth data [33,34].

Fig. 21. Histogram of the predicted 95% RUL at 2400 cycles for B = 1 mm (left) and B = �1 mm (right). The value of both S and r was 1 mm.

Fig. 22. Histogram of the predicted 95% RUL at 2400 cycles for r = 1 mm, b1 = 1 mm and b2 = 1 mm (left) and r = 3 mm, b1 = 0 mm and b2 = 0 mm (right).
The values of S and B were 1 mm and �1 mm, respectively.
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The presence of a bias in the measurement may cause a shift in the posterior distributions of parameters, which can lead
to over/under estimation of RUL. The likelihood function presented in this work can incorporate the presence of noise and
bias, along with the model uncertainties, and it is straightforward to calculate. The likelihood need not be a standard distri-
bution; it can be defined by the user based on his/her beliefs. Additionally, there is no need to use conjugate distributions. For
Bayesian updating in general, it is preferred to use conjugate distributions for the prior and likelihood, such as normal-
normal and Bernoulli-beta, for convenience in calculations and sampling from the posterior distributions. If conjugate
distributions are not used for the prior and the likelihood, the posterior is not a standard distribution. Sampling from a
non-standard distribution makes the updating procedure computationally expensive or, in some cases, infeasible. Sampling
errors from the posterior distribution would also affect the RUL predictions. However, in the case of updating using the
random walk method, the likelihood can be chosen to be any distribution, such as triangular, stepped, or one-sided. It does
not need to be a conjugate distribution with the prior. The choice of the likelihood function does not affect the updating
procedure. The only consideration is that, since the likelihood is based on the user’s beliefs, the effect of the likelihood spread
on RUL should be evaluated.

8. Conclusions

The application of Bayesian inference to remaining useful life prediction in fatigue-damaged structures was demonstrated
using a random walk approach. In Bayesian inference, a probability distribution is assigned over a range of the variable(s) of
interest and the distribution is updated when new information becomes available. Using this new information, uncertainty
in the prior distribution can be reduced. Bayesian inference therefore provides a way to combine prior data with experimen-
tal results to update beliefs about an uncertain variable. Using the random walk approach, the prior probability of crack size
was generated using sample fatigue crack growth curves, where each path represented the true fatigue crack growth curve
with some probability. This probability was updated using Bayesian inference. A likelihood function was defined to describe
how likely it was that that the sample fatigue crack growth curve represented the correct curve given the measurement re-
sult at a particular cycle number. Bayesian inference can be combined with decision analysis models to assign a dollar value
to information gained from an experiment prior to performing it. This value is referred to as the value of information. For fol-
low-on research, the value of information approach can be used to determine the optimum number of cycles before the
structure is scheduled for maintenance based on the user’s preferences.
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