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The remaining useful life of a system can be predicted from available data and/or physical models, which is

commonly known as prognosis. In this paper, the remaining useful life (e.g., the number of cycles to failure) of a

system experiencing fatigue crack growth is estimated using a simple physical model. This paper shows that a simple

model, such as the Parismodel with an assumed analytical stress-intensity factor, can be used for complex geometries

by compensating for the error in the assumed stress-intensity factor by adjustingmodel parameters. The adjustment

is done automatically by a process of Bayesian identification. True damage growth is simulated using the extended

finite-element method tomodel the effects of crack location and geometry on the relationship between crack size and

stress-intensity factor. The detection process of crack size using structural health monitoring systems is modeled by

adding random noise and a deterministic bias to the simulated damage growth. Equivalent model parameters are

then identified using the Bayesian inference, fromwhich the remaining useful life is estimated. Using three examples

of damage geometries, it is shown that the remaininguseful life estimates are accurate evenwith the use of an assumed

analytical stress-intensity factor.

Nomenclature

a = current crack length
aC = critical crack length
ai = crack length at cycle N
ao = initial crack length
b = bias applied to crack size data
C = Paris law constant
�K = stress-intensity factor range
KIC = critical mode I stress-intensity factor
m = Paris law exponent

I. Introduction

F OR the last two decades, structural health monitoring (SHM)
technology has been significantly developed such that it is

feasible not only to detect damage but also to characterize the
significance of damage [1,2]. In the case of structural damage due to
cracks, SHM systems can now continuously monitor the growth of
cracks during the lifecycle of an aircraft. When the data obtained
from SHM results are incorporated with crack growth models, it is
possible to predict the future behavior of damage. This is called
model-based prognosis [3–5], which gives valuable information in
terms of providing safety of aircraft and estimating appropriate
maintenance schedules.

Although the model-based prognosis can be a powerful
technology, it has the drawback that it often requires expensive
computations. For example, Paris and Erdogan’s model [6] describes
the rate of crack growth as a function of stress-intensity factor. The
stress-intensity factor is a complicated function of applied loading,

boundary conditions, crack position, and geometry. Except for
simple geometries, numerical techniques such as finite-element
analysis are required to calculate accurate stress-intensity factor
[7–9]. This can cause a significant computational difficulty, because
the statistical nature of prognosis requires evaluations of stress-
intensity factor for numerous damage sizes.

The objective of this paper is to demonstrate that one can use
simple models to predict the remaining useful life (RUL) even if the
model has substantial errors. This is accomplished through the
identification of an equivalent damage growth parameter that
compensates for the difference between the simple model and the
true stress-intensity factor. Thus, even if the actual crack growth
behavior is different from the one obtained with the analytical stress-
intensity factor, Bayesian inference can identify equivalent damage
growth parameters, different from the true ones, such that the model
accurately predicts future damage growth behavior. In this paper, we
consider a horizontal crack growth in a thin plate under mode I
loading condition. Inclined cracks or mixed-mode loading condition
will be considered in the future.

The damage growth is simulated using the extended finite-element
method (XFEM) for calculating ‘true’ stress-intensity factors, and
the Paris model is used to grow the crack. XFEM [10] and allows for
discontinuities to be modeled independently of the finite-element
mesh, which avoids costly remeshing as the crack grows. The stress-
intensity factors, which are the driving force for crack growth, are
calculatedwithin theXFEMframework using the domain formof the
contour integrals [11].

In practice, the actual damage sizes are measured using SHM
systems in which onboard sensors and actuators are used to detect
damage location and size. It is noted that estimating damage size is
still in the active research area (see, for example, An et al. [12]). In
this paper, instead of using actual measurement data, synthetic data
are generated using random noise and deterministic bias. Although
there are some SHM data available, synthetic data are valuable in a
sense that various statistical analyses, such as confidence interval of
RUL, can be performed. First, truevalues of themodel parameters are
assumed. Then, the true crackwill grow according to the givenmodel
parameters, prescribed operating, and loading conditions by XFEM
simulations. Thus, the true crack size at every measurement time is
known. With the true crack size, the true remaining useful life is
defined when the crack size reaches the critical crack size, which is
predetermined. It is assumed that the measurement instruments may
have a deterministic bias and random noise. These bias and noise are
added to the true crack sizes, to generate the syntheticmeasured crack
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sizes. Then, these data are used to predict the equivalent damage
growth parameters and thus the RUL. In this way, it is possible to
evaluate the accuracy of prognosis method.

Of the many methods available for parameter identification,
Bayesian inference [13] is used to identify damage growth
parameters. This method is used to identify a probability distribution
for model parameters. The identified distribution of damage growth
parameters can then be used to predict the distribution of RUL.

The paper is organized into the following sections. In Sec. II, the
crack growthmodel is introduced along with the notion of equivalent
model parameter. In Sec. III, the model for measurement uncertainty
that is used in this paper is explained. The Bayesian method is
summarized in Sec. IV. Three numerical examples with increasing
difference between the simple and true stress-intensity factor models
are presented in Sec. V, followed by concluding remarks and future
work in Sec. VI.

II. Crack Growth Model

A crack in a plate can grow due to repeated application of stress.
For example, a crack in a fuselage panel of aircraft can grow due to
repeated pressurization cycles. In this paper, the original Paris model
[6] is used to predict the crack growth in an infinite plate. In this
model, the range of stress-intensity factor �K is the main factor
driving the crack growth with two parameters, C and m, as

da

dN
� C��K�m (1)

wherea is the characteristic crack size, andN is the number of fatigue
loading cycles. The range of stress-intensity factor is calculated by
the difference between maximum and minimum stress-intensity
factors (i.e., �K � Kmax � Kmin). Although the number of cycles is
an integer, it is considered a real number as the crack grows over a
great number of cycles. The two parameters, C and m, are usually
estimated from experiments. When a log–log scale plot is made for
the growth rate versus the stress-intensity factor, the slope
corresponds to m, whereas the y intercept at �K � 1 corresponds
to C.

The simplest form of the stress-intensity factor is for mode I
propagation in an infinite plate. In this case, the ‘analytical’ stress-
intensity factor can be calculated as

�K ���
������
�a
p

(2)

where�� is the range of applied nominal stress (i.e., stress far from
the crack tip). By substituting Eq. (2) into Eq. (1), the differential
equation can be solved for the crack size as a function of the number
of cycles Ni as

ai �
�
NiC

�
1 �m

2

�
���

����
�
p
�m � a1�

m
2

0

� 2
2�m

(3)

where a0 is the initial crack size. Note that the initial crack size does
not have to be the size of the initial micro-crack in the pristine plate.
When an SHM system is used, a0 can be the size of crack that is
initially detected. Then, Eq. (3) can be used to predict the crack size
ai afterNi cycles, starting from a crackwith sizea0, assuming that the
parameters C and m are known.

Considering Eq. (3) can calculate the crack size for any given
number of cycles, it is also possible to calculate the required number
of cycles for a crack to grow to a certain size. It is important to
estimate howmany cycles remain before failure. In general, a critical
crack size aC is defined in which the crack grows rapidly and
becomes unstable. Then, starting from the current crack size (let us
say that it is ai), the remaining cycles until the crack grows to the
critical crack size can be calculated by

Nf �
a
1�m2
C � a1�

m
2

i

C�1 � m
2
����

����
�
p
� (4)

In SHM, Eq. (4) can be used to predict the RUL before the crack
needs to be repaired. Again, the prediction process requires the two
Paris parameters.

In general, the accuracy of Eq. (2) depends on geometrical effects,
boundary conditions, crack shape, and crack location. A more
general expression [7,8] of the range of stress-intensity factor can be
written as

�K0 � Y�K (5)

where Y is the correction factor, given as the ratio of the true stress-
intensity factor to the value predicted by Eq. (2). The correction
factor depends on the geometry of the crack and plate and the loading
conditions. Examples of the dependence of the correction factor on
the crack size are shown in Fig. 1 for a center crack in an infinite plate,
a center crack in a finite plate, and an edge crack in a finite plate [7,8].
Many advancedmodels are also available that can consider the effect
of crack tip plasticity as well as the effect of crack closure [14–16].
The advancedmodels normally comewithmore parameters that need
to be identified.

By comparing Eqs. (1), (2), and (5), an interesting and critically
important observation can bemade. For example, it is possible to use
the range of stress-intensity factor in Eq. (2) instead of the one in
Eq. (5) for the crack in a finite plate (i.e., it is possible to move the
correction factor into the two Paris parameters). In such a case, the
crack growth model in Eq. (1) can be modified as

da

dN
� C��K0�m � C0��K�m0 (6)

where C0 and m0 are ‘equivalent’ Paris parameters for using the
stress-intensity factor in Eq. (2). In the viewpoint of Eq. (6), it is
possible to interpret the two Paris parameters as curve-fitting
parameters, not material properties. This observation is consistent
with the fact that the Paris parameters become different when the load
ratio R� Kmin=Kmax varies even if�K is the same [17]. The critical
advantage of this viewpoint is that instead of using more complex
models for crack growth for SHM prognosis, the simple model in
Eq. (6) can be used as long as the equivalent parameters can be
identified. In the numerical example section, this concept will be
tested using various examples. From now on, notation has been
changed such thatC andm are used for equivalent parameters (C0 and
m0), while Ctrue and mtrue are used for the original Paris model
parameters.

For complex geometries with combined loadings, analytical
expressions as given in Eqs. (2) and (5) may not be sufficient. For
example, when a crack changes its path, the analytical growth rate
equations cannot predict the correct path and growth of the crack. In
such a case, a numerical method can be used to calculate the stress-
intensity factor as well as the direction of crack growth. In this paper,
XFEM is used to calculate the stress-intensity factor�K for complex
geometry and loadings, and Eq. (6) is used to numerically integrate
the crack size as a function of the number of cycles, which is
explained in the Appendix.
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III. Measurement Uncertainty Model

The crack growth model in the previous section can be a powerful
tool in maintaining the safety of a system and optimizing the
maintenance schedule. However, the usefulness of the method
depends on the accuracy of the parameters. For example, a 10% error
in the exponent, m, can cause more than 100% difference in the
predicted RUL from Eq. (4). Therefore, it is critical to accurately
estimate these parameters. However, challenges exist when these
parameters are measured from laboratory experiments: 1) the
variability in different batches of materials is too large to make
accurate and useful predictions, and 2) different loading and
boundary conditions of practical panels affect these parameters. The
premise of SHM is that frequently measured crack sizes can be used
to identify ‘panel-specific’ damage growth parameters under given
loading and boundary conditions, which is the main purpose of this
paper. Then, these parameters can be used to predict the RUL before
which the crack should be repaired.

Although there are some SHM data available, synthetic data
are valuable in a sense that various statistical analyses, such as
confidence interval of RUL, can be performed. In synthetic data,
crack sizes are simulated and assumed to have been measured by
SHM. In general, the crack sizes measured from SHM systems
include the effect of bias and noise of sensor signals. The former is
deterministic and represents a systematic departure caused by
calibration error, while the latter is random and represents a noise in
the signal. The synthetic measurement data are generated by
1) assuming that the true parameters, mtrue and Ctrue, are known;
2) calculating the true crack growth, atruei , using the crack growth
model in the previous section for a given Ni; and 3) adding a
deterministic bias and random noise.

Let atruei be the true half-crack size at cycleNi, b be the bias, and v
be the noise. The measured half-crack size ameas

i is then generated
from

2ameas
i � 2atruei � b� v (7)

For subsequent measurements, the bias b remains constant, whereas
the noise v is assumed to be normally distributed with mean 0 and
standard deviation V, i.e., v� N�0; V�. It is noted that the current
assumption on bias and noise is for convenience. In general, it is
possible that the bias can vary as a function of time. Under the given
models of bias and noise, the measured half-crack sizes are normally
distributed as

ameas
i � N

�
atruei �

b

2
;
V

2

�
(8)

Once the synthetic measurement data are generated, the true half-
crack size atruei is not used any further, nor are the true values of
parameters mtrue and Ctrue. The questions that need to be addressed
are as follows.

1) Is it possible to accurately estimate the two parameters using the
synthetic data that have bias and noise?

2) What happens if different geometry or boundary conditions are
used for the actual panel?

Figure 2 shows themeasured crack sizes at every 100 cycles with a
deterministic bias of b��2:0 mm and normally distributed noise
with mean 0 and standard deviation V � 1:0 mm. Note that, due to
the bias, the trend of data is shifted from the true crack growth curve.

IV. Bayesian Method

Bayesian inference (e.g., Gelman et al. [18]) is often used for
identifying unknown model parameters from data; it progressively
improves the knowledge on the parameters using data, starting from
the initial knowledge. Bayesian inference is able to incorporate the
initial knowledge of the parameters and statistically identifies model
parameters.

In estimating the RUL, the statistical information of parameters is
important because a conservative estimate is required for the
maintenance schedule. Bayesian inference is used to estimate the
distribution of Parismodel parameters, fromwhich the distribution of
the RUL is estimated.

Bayesian inference is based on Bayes’s theorem on conditional
probability [19]. It is used to obtain the updated (also called
posterior) probability of a random variable by using new
information. In this paper, it is used to improve the statistical
distribution of unknown parameter m using SHM measured crack
size a; indeed, this is the same as ameas

N in Eq. (8). Therefore, the
Bayes theorem is extended to the continuous probability distribution
with probability density function (PDF), which is more appropriate
for the purpose of the present paper. Let fX�m� be a PDF of Paris
model parameter X�m. The measured crack size Y � a is also
random due to the noise, whose PDF is denoted by fY�a�. Then, the
joint PDF of X and Y can be written in terms of fX and fY , as

fXY�m; a� � fX�mjY � a�fY�a� � fY�ajX �m�fX�m� (9)

When X and Y are independent, the joint PDF can be written as
fXY�m; a� � fX�m� � fY�a�, and Bayesian inference cannot be used
to improve fX�m�. Using the aforementioned identity, the original
Bayes theorem can be extended to the PDF form as [20,21]

fX�mjY � a� �
fY�ajX �m�fX�m�

fY�a�
(10)

Because the integral of fX�mjY � a� should be 1, the denominator in
Eq. (10) can be considered as a normalizing constant. In Eq. (10),
fX�mjY � a� is the posterior PDF of Paris model parameter given
measured crack size Y � a, and fY�ajX�m� is the likelihood
function or the PDFvalue of obtaining themeasured crack sizea for a
given parameter value of X �m.

When the analytical expressions of the likelihood function
fY�ajX �m� and the prior PDF fX�m� are available, the posterior
PDF in Eq. (10) can be obtained through simple calculation. The
likelihood function is designed to integrate the information obtained
from SHM measurement to the knowledge about the distribution of
m. Instead of assuming an analytical form of the likelihood function,
uncertainty in measured crack sizes is propagated and estimated
using the Monte Carlo simulation (MCS). Although this process is
computationally expensive, it will provide accurate information for
the posterior distribution. The derivation of the likelihood function
can be found in Coppe et al. [4].

An important advantage of Bayes’s theorem over other parameter
identification methods, such as the least square method and
maximum likelihood estimate, is its capability to estimate the
uncertainty structure of the identified parameters. These uncertainty
structures depend on that of the prior distribution and likelihood
function. Accordingly, the accuracy of posterior distribution is
directly related to that of likelihood and prior distribution. Thus, the
uncertainty in posterior distribution must be interpreted in that
context.
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Although the two parametersC andm need to be identified, in this
paper it is assumed that the value of Ctrue is given, and m is the only
unknown for the sake of simplicity in explanation. Bayesian
inference for updating joint PDFofmultiple parameters can be found
in An et al. [22]. Bayesian inference uses data at every 100 cycles to
make the interval coincidewith A-checks of the airplane (i.e., a small
maintenance task carried out overnight at the airliner’s hub hangars).
In addition, too-frequent measurement may not obtain valuable
information because cracks grow slowly.

There are different ways of representing the posterior distribution
from Bayesian inference, such as Markov-chain Monte Carlo or
the grid method. In this paper, the latter is employed. The prior
distribution of m is assumed to be uniform between 3.3 and 4.3
initially. This range is then divided into 200 intervals, and the values
of PDF in Eq. (10) are evaluated at each interval; the PDF is
approximated by piecewise linear polynomial.

Once the distribution ofm is identified at a given cycleNi, it can be
used to calculate the distribution of RUL Nf using Eq. (4). The
distribution of RUL represents the possibility of remaining cycles
before the crack size becomes the critical one. In this paper, the
critical crack size is defined as aC � 24 mm. This is different from
the conventional definition of critical crack size, which depends on
the fracture toughness. Rather, it is a threshold of crack size that an
airline company may want to repair the crack.

Because the updated distribution of m does not follow any
analytical distribution, MCS is used to estimate the distribution of
RUL. In addition, the measured crack size is also randomly
distributed according to Eq. (8). From the RUL distribution, the fifth
percentile is used as a conservative estimate of RUL. Therefore, the
estimated RULwill be less than the true RULwith a 95% confidence.

An important advantage of using synthetic data is that it allows
predicting the statistical characteristic of predicted results. In this
paper, random noises are added to the true crack sizes. Due to this
randomness, different RUL distributions are expected if another set
of synthetic data is used. The same will happen during actual
experiments. Therefore, to cover actual experimental variability, the
process of identifying damage parameters and predicting the
conservative RUL is repeated 100 times with different sets of
synthetic data. In the numerical examples, 68% confidence interval
of fifth percentiles is plotted, which corresponds to mean	 one
standard deviation.

V. Numerical Examples

In this section, three numerical examples are presented in the order
of increasing difference between the true and assumed stress-
intensity factor model. For all examples, an aluminum 7075 square
platewith dimension of 0:2 
 0:2 m and thickness of 248mm is used
with Young’s modulus E� 71:7 GPa, Poisson’s ratio �� 0:33, and
Paris model parameters Ctrue � 1:5 
 10�10 andmtrue � 3:8. Mode I

fatigue loading is applied to the plate with the range of stress
�� � 78:6 MPa ��max � 78:6; �min � 0�, which corresponds to the
case of fuselage pressurization loading. The relatively large initial
crack sizea0 � 10 mm is chosen becausemanySHMsensors cannot
detect small cracks. In addition, there is no significant crack growth
when the size is small. This size of crack is still too small to threaten
the safety of aircraft.

‘True’ crack growth data were calculated using XFEM
simulations, which were performed on a structured mesh of square
linear quadrilateral elementswith characteristic length of 1mm.Each
cycle of fatigue crack growth was modeled until the half-crack size
reaches a threshold size of 24 mm (i.e., the crack will be repaired
beyond this size). Synthetic measurement data are then generated by
adding a deterministic bias and random noise to the true crack size
according to Eq. (8). The crack size at each iteration was then used to
identify the equivalent Paris model exponent through the use of the
Bayesian inference with the simplified stress-intensity formula in
Eq. (2). Last, the RUL is estimated as the number of remaining cycles
that the current crack size reaches the threshold one.

A. Center Crack in a Finite Plate

The first example considered is that of a center crack in a finite
plate, as shown in Fig. 3a. Only the right half of the plate was
modeled with XFEM through the use of symmetry. The
corresponding curve of the correction factor Y for the center crack
in a finite plate is given in Fig. 3b. The accuracy of the correction
factor calculated from XFEM is presented in the Appendix. In this
example, it is clear that the effect of the correction factor is less than
5%. Therefore, it is expected that the identification of damage growth
parameter will be close to the true one.

The crack growth went up to 1600 cycles, and the crack size at
1700 cycles becomes larger than the threshold size. Figure 4a shows
the updated distribution ofm usingBayesian inference at 1600 cycles
using a single set of measurements. The initial distribution was
assumed to be uniformly distributed (i.e., m� U�3:3; 4:3�). The
standard deviation at the final update turns out to be about 0.015,
which is significantly reduced from the initial value of 0.29. For
comparison, the true value, mtrue, is also shown as a vertical dashed
line. Although the true crack grows according to the range of stress-
intensity factor in Eq. (5), Bayesian inference assumes that it is given
in Eq. (2). The maximum likelihood value, 3.85, slightly
overestimates the true one to compensate for the error in �K. This
is expected because the correction factor is slightly larger than one,
whichmakes the crack grow faster than it would if it was in an infinite
plate. Figure 4b shows the 68% confidence interval of crack size
obtained using the identified parameter m. The 68% confidence
interval of m (e.g., 3.83 and 3.86 in Fig. 4a) is used as an input into
Eq. (3) to calculate the confidence interval of crack lengths to the
cycle of the last Bayesian identification. For comparison, the true
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crack sizes calculated from XFEM is plotted with a solid curve. It is
noted that the true crack sizes (black line) fall within the bounds of the
Bayesian identification (gray region).

Figure 5a shows the fifth-percentile conservative estimates of
RUL. The black solid line represents the true RUL; it starts with 1600
because the crack will grow to the threshold size after 1600 cycles
from the first detection. The true RUL is calculated using the range of
stress-intensity factor in Eq. (5). In the same plot, the dashed line is
the estimated RUL when the correction factor is assumed to be
Y � 1; i.e., the range of stress-intensity factor is calculated using
Eq. (2). Due to the slight underestimate of correction factor, the
dashed RUL is also slightly higher than the true one, which is an
unconservative estimate. However, both RULs eventually meet
toward the end of life. Both lines use the information of true
parameter mtrue. The gray area in Fig. 5a represents the 68%
confidence interval (mean	 standard deviation) of the estimated
RULusingBayesian inference. It can be observed that the estimate of
RUL converges to the trueRUL from the conservative side. It is noted
that, even if Eq. (2) is used, the error in the stress-intensity factor is
compensated by identifying equivalent parameter m that is slightly
larger than the true one.

Figure 5b shows the 68% confidence interval of the relative
accuracy (RA) [23] of themaximumestimation of the estimatedRUL
distribution Nmax

f with respect to the true RUL Ntrue
f , defined as

RA f �
jNtrue

f � Nmax
f j

Ntrue
f

(11)

It can be observed the relative error gradually decreases due to better
identification as more data are used in the Bayesian process.

However, the relative error increases at the last cycle because the
denominator in Eq. (11) becomes small.

B. Edge Crack in a Finite Plate

Next, an edge crack in a finite plate is considered as shown in
Fig. 6a. For this case, the boundary conditions were fixing the lower
right-hand corner and allowing the top-right corner to only move in
the vertical direction. It was found that the threshold crack size was
reached at 955 cycles. Therefore, Bayesian inference was applied
only nine times (one at every 100 cycles). The correction factor
corresponding to the finite effect that this edge crack represented is
given in Fig. 6b. In this case, the correction factor can contribute up to
35% to the stress-intensity factor. Therefore, it is expected that the
equivalent damage growth parameter m will overestimate the true
one in proportion.

Figure 7a shows the updated distribution of m using Bayesian
inference at 900 cycles after the first detection. As expected, it
compensates for the error in�K by overestimatingm by 5.5%. It can
be observed that the more the error in �K increases, the more m is
overestimated to compensate for the error. That is, the model error
due to not including the correction factor in �K calculation is
compensated by overestimating m. The standard deviation of the
final distribution ofm is about 0.02, which is wider than the case of a
center crack in an infinite plate. This is probably caused by the
increased difference between the actual and assumed models for the
stress-intensity factor.

As Bayesian inference results in a final distribution of m, the
predicted crack sizes with this distribution are plotted and compared
directly to the XFEM data in Fig. 7b. The XFEM data fall within the
bounds of the Bayesian inference identification. It can be seen that
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the Bayesian process can compensate for the increase in the
correction factor by gradually increasing the Paris model parameter.
In that sense, the Paris model parameters are not considered as
material properties. Rather, they are extrapolation parameters to
match the crack growth trend.

Figure 8a shows the fifth-percentile conservative estimates of
RUL, similar to Fig. 5a. In this case, there was a large difference
between the trueRULand theRULwithY � 1 assumption. The error
of up to 35% in the correction factor leads to an overestimation in the
RUL of almost 100%. However, both RULs eventually managed to

meet toward the end of life. Even if the RUL with Y � 1 leads to a
large overestimation, the 68% confidence interval of the conservative
estimated RUL using Bayesian inference (gray area) stays in the
conservative side and converges to the true RUL. Again, the large
error in the correction factor has successfully been compensated by
identifying equivalent parameterm that is about 5.5% larger than the
true one.

Figure 8b shows the RA of the maximum likelihood of the
estimated distribution of the RUL with respect to the true RUL. As
observed previously, accuracy increases as more information is
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Fig. 6 Edge crack in a finite-plate model and the correction factor: a) initial crack geometry, and b) correction factor as a function of crack size.
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Fig. 7 Comparison of XFEM crack growth data with crack growth predicted fromBayesian inference for edge crack: a) updated PDF of parameterm

at cycle 900, and b) distribution of identified crack size (68% confidence interval).
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available, the standard deviation decreases as well except for the last
inspection (less than 100 cycles from failure).

C. Center Crack in a Plate with Holes

The final example considers differences between the actual
and predicted model that may be caused by localized stress
concentrations in the plate. Four holes are inserted into the plate, as
shown in Fig. 9a. Only the right half of the plate was modeled with
XFEM through the use of symmetry. Different from the two previous

examples, there is no analytical expression of the correction factor;
therefore, it is obtained from XFEM, as shown in Fig. 9b. The effect
of holes is converted into 30–39% error in the stress-intensity factor.
Due to such a large stress-intensity factor, the crack grew fast and
reached the threshold size at 625 cycles. Therefore, only six updates
were available for the Bayesian inference.

Figure 10a shows the updated distribution of m using Bayesian
inference at cycle 600. As expected, it compensates for the error in
�K by overestimating m by 8.7%. The same conclusion as before
can be drawn: the larger the error in�K, the morem is overestimated
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Fig. 9 Center crack in a finite plate with holes and the correction factor: a) initial crack geometry, and b) correction factor as a function of crack size.
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Fig. 10 Comparison of XFEM crack growth data with crack growth predicted from Bayesian inference for a plate with holes: a) updated PDF of

parameter m at cycle 600, and b) distribution of identified crack size (68% confidence interval).

Fig. 11 Estimated RUL and relative accuracy [Eq. (11)] for a plate with holes: a) 68% confidence interval of fifth-percentile conservative RUL

estimates, and b) 68% confidence interval of RA of the maximum likelihood of the estimated RUL distribution with respect to the true RUL.
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to compensate for it. Due to this error, the standard deviation of m
becomes about 0.024, which is still a significant reduction from the
initial standard deviation of 0.29.

As the Bayesian inference results in a final distribution of m, the
predicted crack lengths for this distribution are plotted and compared
directly to the XFEMdata in Fig. 10b. TheXFEMdata fall within the
bounds of the Bayesian inference identification. The identified crack
size distribution is wider than the previous two examples, which is
because themodel is increasingly far away from the center crack in an
infinite-plate mode. In addition, the fact that only six inspections
have been performed before reaching the threshold may also
contribute to the relatively wide distribution.

Figure 11a shows the fifth-percentile conservative estimates of
RUL, similar to Fig. 5a. Because there is no analytical approximation
of correction factor is available, only the true RUL and the 68%
confidence interval of the conservative estimated RUL using
Bayesian inference (gray area) are plotted. Note that the predicted
RUL stays close to the true one from the conservative side. Again,
the large error in the correction factor has successfully been
compensated by identifying equivalent parameter m that is about
8.7% larger than the true one.

Figure 11b shows the RA of the maximum likelihood of the
estimated distribution of the RUL with respect to the true RUL. As
observed previously, despite the fact that a simplisticmodel is used in
which the range of stress-intensity factor does not account for the
complexity of the geometry, Bayesian inference was able to estimate
the RUL. The accuracy increases as more data is available except in
this case as well for the last inspection. It has to be noted that the
accuracy is similar in amplitude to the previous cases despite the
modeling error being larger.

VI. Conclusions

In this paper, equivalent damage growth parameters were
identified, which can compensate for complex geometric effects for
structural health monitoring prognosis. The error in stress-intensity
factor was moved to the equivalent damage growth parameter, such
that the prediction of remaining useful life is accurate. Three
numerical examples showed that the deviation of damage growth
parameter is proportional to the error in stress-intensity factor. All
three examples, however, showed that the estimated conservative
remaining useful life converges to the true one from the safe side.
Therefore, it is concluded that a simple model can be used to predict
the behavior of complex problems by calculating equivalent
parameters.

Bayesian inference was proposed in identifying unknown model
parameters. The method is demonstrated here updating only one
parameter,m of the Paris model; the same idea can be applied to the
parameters m and C together. This should allow for even more
accurate results because it would allow for more flexibility in fitting
the equivalent model.

Appendix: Extended Finite-Element Method

Modeling crack growth in a traditional finite-element framework
is a challenging task because the domain of interest is defined by
the mesh that needs to be continuously modified. At each increment
of crack growth, at least the domain surrounding the crack tipmust be
re-meshed such that the updated crack geometry is accurately
represented. If a large number of cycles are to be considered,
this repeated remeshing can consume a large amount of the
computational time for the analysis.

Extendedfinite-elementmethod (XFEM) allows discontinuities to
be represented independently of the finite-element mesh [10].
Arbitrarily oriented discontinuities can be modeled by enriching
all elements cut by a discontinuity using enrichment functions
satisfying the discontinuous behavior and additional nodal degrees
of freedom. For the case of a domain containing a crack and voids
[24], the approximation takes the following form:

uh�x� � V�x�
X
I

NI�x��uI �H�x�aI �
X
�

���x�b�I � (A1)

where NI�x� are the finite-element shape function; V�x� is the void
enrichment function; H�x� is the Heaviside enrichment function;
���x� are the crack tip enrichment functions; and uI , aI , and b

�
I

are the classical and enriched degrees-of-freedom (DOFs).
Equation (A1) is then used to build the stiffness matrix and solve
for unknown DOFs. To decrease the computational time for the
repeated solutions, an exact reanalysis algorithm [25] is used, which
takes advantage of the large constant portion of the global stiffness
matrix that does not vary according to crack growth.

The mixed-mode stress-intensity factors �KI and �KII for the
given cracked geometry were calculated using the domain form of
the interaction integrals [11]. The direction of crack growth was
calculated using the maximum circumferential stress criterion [26].
The effective stress-intensity factor [27] given as

�Keff �
������������������������������
�K4

I � 8�K4
II

4

q
(A2)

was used to convert the mixed-mode stress-intensity factors into a
single value for used in the Paris model. The crack growth at each
fatigue loading cycle is given as

�a� C��Keff�m (A3)

This is equivalent to the forward Euler method to integrate the
differential Eq. (1). Then, the crack geometry is updated and the
analysis moves on to the next loading cycle.

The implementation of XFEM used here was verified using the
center crack in a finite plate given in Sec. III. For this problem the
theoretical finite correction factor based on the equations of elasticity
for a center crack in a finite plate [7,8] is given as
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Fig. 12 Theoretical and XFEM predictions of correction factor for the center crack of a finite plate with different plate heights.
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where �� a=W, and a andW are the half-crack size and half-plate
width. This model assumes that the plate is finite in the crack
direction and infinite in the loading direction. A comparison of the
crack lengths as a function of the number of cycles was first
performed to ensure the accuracy of the XFEM data provided to the
parameter identification routine. As there is no closed form solution
for the crack size as a function ofN due to the finite correction factor
given in Eq. (5), the forward Euler method with 10,000 steps was
used. This step size represents less than 0.1% change from
1000 steps. A comparison of the results is shown in Fig. 12 in which
the correction factors are plottedwith respect to a=W and the number
of cycles. Because the theoretical correction factor in Eq. (A4)
assumes that the plate isfinite in the crack direction but infinitely long
in the loading direction, the correction factor calculated fromXFEM
converges to the theoretical one when the height of plate increases.
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