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Article

Dynamic modeling of electromagnetic
suspension system

Nam H Kim and Long Ge

Abstract

Characteristics of magnetic-levitation systems are studied using dynamic models that include motion-dependent lift, drag,

slip, and roll motions. The contact constraint between the vehicle and the track is modeled using a compliant contact

model, and inelastic restitution is modeled using damping. Unknown numerical parameters are identified using an

optimization technique and experimental data. The numerical tests are focused on the damping characteristics, stability

in lifting and slip motions, the lifting efficiency, and the contact behavior with the track. It turns out that the suspension

system does not have any inherent damping in the lifting direction. However, a stable behavior is observed in the traveling

direction. The model also shows that the system has a strong concentric force that stabilizes the vehicle in the slip

motion as well as in the rolling motion.

Keywords

Dynamic model, magnetic levitation, suspension, contact, regression

Received: 30 April 2009; accepted: 10 July 2011

1. Introduction

The maglev (magnetic-levitation) system utilizes mag-
netic fields produced from ground based electrical
power sources to levitate a vehicle above the track.
The vehicle is then accelerated along the track using
high-power electromagnets (Powell and Danby, 1971;
Luerkin, 1994; Kalsi, 1994; Rote and Cai, 2002).
Recently, Post and Ryutov (1996, 2000) proposed a
new concept, Inductrack, that provides a passive
means of levitation. The realization of a stabilized
ride using maglev has been a major hurdle in develop-
ing its feasibility for this purpose. The main scope of
this paper is to examine the feasibility of the Inductrack
magnetic-levitation system, developed at the Lawrence
Livermore National Laboratory, by identifying the
dynamic characteristics of the magnetic-levitation sus-
pension system with computational dynamic analysis.

The maglev system is composed of a vehicle (cradle)
with permanent magnets and a rail with coils in it. The
magnets and the coils produce an electromagnetic field,
and once the cradle starts moving, the change in the
magnetic field results in an electromagnetic force.
A moving cradle with a special configuration of high-
strength permanent magnets generates passive magnetic

levitation when it moves over multi-loops of wire
embedded in the track underneath. This system is con-
figured so that the resulting electromagnetic forces are
decomposed into driving forces and lifting forces.
Compared with other maglev systems, the Inductrack
system can provide levitation forces with simpler and
less expensive equipment.

The early stages of development of the maglev
system have focused on how to generate enough lifting
force using a special array of magnets. It has been dem-
onstrated by Post and Ryutov (2000) that the
Inductrack concept can be used to build a simpler
and less expensive system using a Halbach array
(Halbach, 1985) of permanent magnets, which induces
repelling currents in a close-packed array of shorted
conducting circuits in the track. Basing their study on
lumped-circuit analysis, they showed that the maximum
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levitation capacity was up to 40 tons per square meter
of magnets. As shown in Figure 1, permanent magnets
with a direction of magnetization that is rotated by 90�

with respect to adjacent magnets produce a sinusoidal
variation of a magnetic field at a constant distance from
the bottom of the array. This array maximizes the mag-
netic field below the array, while cancelling out the field
above it. When the array of magnets moves over the
inductively loaded circuit track, the track induces repel-
ling currents that levitate the magnet, or the cradle
attached to it. Conceptually the system is stable because
the levitation force is only generated when the cradle is
moving and it settles on the track when the speed is
reduced below a threshold.

However, the practical application of the maglev
system requires stability and reliability of the system
under various operating conditions (Matsue et al.,
2001; Boeij et al., 2005). Motion-based magnetic
forces are important because they can induce various
types of instability in the maglev system (Dill and
Meeker, 2000). In addition, the periodic structure of
the magnetic forces may also induce parametric and
combination resonances, especially because the lifting
force is inversely proportional to the exponential dis-
tance between the permanent magnet and the track. A
small perturbation of the cradle position can cause a
large variation in the lifting force, which is then related
to the stability and ride quality of the system. Thus, it is
essential to model the dynamic system when the body
force field is coupled with the kinematics of the system.

In this paper, a new dynamic system modeling tech-
nique is proposed to consider the highly nonlinear effect
of the electromagnetic force field that is changed in the
pattern of the sinusoidal wave along the track. The
coupled mechanical and magnetic system is governed
by a nonlinear system of differential equations. The
dynamic behavior of the mechanical system depends

on the force generated by the magnetic field, while the
magnetic force depends on the location and velocity of
the structure.

2. Review of magnetic suspension
system modeling

2.1. Magnetic suspension modeling

The theoretical study of the magnetic levitation force
has been performed in depth by Post and Ryutov
(2000) using the lumped-circuit analysis. In this section,
the theory of the magnetic suspension that can be used
in the dynamic analysis in the following sections is
presented.

Consider a Halbach array of magnets, as shown in
Figure 1, with width w, wavelength �, and peak strength
B0 of the magnetic field at the surface. The cradle is
attached on top of the magnets, and the coils are
winded on the outer surface of the window-frame
track. The coordinate system is established such that
the origin is on the top surface of the track, the cradle
is traveling in the z-coordinate direction, and it is levi-
tated in the y-coordinate direction. Let the array be
moving in the z-direction with velocity vz, and the gap
between the bottom surface of the magnets and the coils
be g. Thewave number of theHalbach array is k ¼ 2�=�,
and the angular frequency of themagnetic field due to the
motion of the cradle is ! ¼ kvz. Then, the magnetic field
from the array can be approximated by

Bzð yÞ ¼ B0 sinð!tÞe
�kð g�yÞ

Byð yÞ ¼ B0 cosð!tÞe
�kð g�yÞ ð1Þ

where Bzð yÞ and Byð yÞ are, respectively, the longitudi-
nal and vertical components of the magnetic field at the

……
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Figure 1. Passive magnetic levitation using a Halbach array of magnets. The horizontally polarized magnets concentrate the flux

on one side of the array and help to form the sinusoidal flux shape. Driving coils generate synchronous pulses to provide thrust in the

z-direction.
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distance y from the coils. The magnetic field is an expo-
nential function of distance y and shows a sinusoidal
behavior as it moves along the track. With the strength
of B0 ¼ 1:0 Tesla, for example, a square-meter-sized
magnet can levitate about 40,000 kg (Post and
Ryutov, 1996).

From the assumption that the coils in the track have
negligible thickness, the induced flux can be obtained
by integrating Bz over the upper and lower legs of the
coils, as

� ¼ �0 sinð!tÞ ¼
wB0

k
expð�kgÞ sinð!tÞ, ð2Þ

where �0 is the peak flux enclosed by the circuit, which
depends on the gap g. The contribution from the coils
in the lower legs is ignored in Equation (2) because their
contribution is less than 0.2% when the height of the
track is the same as the wavelength of the magnets.

The moving magnets over the closed circuit induce
currents, which are governed by the following circuit
equation:

L
dI

dt
þ RI ¼ !�0 cosð!tÞ, ð3Þ

where IðtÞ is the induced current, L the inductance, and
R the resistance of the circuit. The flux varies with
sinð!tÞ, and the voltage is proportional to the rate of
change of the flux through the circuit. The induced cur-
rent in the steady-state can be obtained by solving
Equation (3) as

IðtÞ ¼
�0
L

1

1þ ðR=!LÞ2
sinð!tÞ þ

R

!L
cosð!tÞ

� �
, ð4Þ

where the peak flux �0 is available from Eq. (2).
The induced current interacts with the magnetic field

to produce the following levitation (lift) and drag
forces:

Flift ¼ IBzw

Fdrag ¼ IByw, ð5Þ

where w is the width of the magnets. As the speed of the
cradle increases, the ratio R=!L becomes smaller. In
such a case, the cosð!tÞ term in Equation (4) can be
negligible, and the induced current IðtÞ is in phase
with the flux BzðtÞ in Equation (1), which yields the
maximum levitation force. The forces in Equation (5)
vary along the wavelength of the magnets. Using the
relation of !t ¼ kz and averaging Equation (5) over the
wavelength of the magnets, the averaged levitation and
drag forces, respectively, can be obtained as

Fliftðv, gÞ
� �

¼
B2
0w

2

2kL

1

1þ R=!Lð Þ
2
e�2kg, ð6Þ

Fdragðv, gÞ
� �

¼
B2
0w

2

2kL

R=!Lð Þ

1þ R=!Lð Þ
2
e�2kg: ð7Þ

These forces are exerted by a single circuit. In the fol-
lowing derivations, all forces are averaged over the
wavelength of the array, and the angled brackets<>
will be dropped for notational simplicity.

The efficiency of the magnetic suspension system is
often measured as the life/drag ratio. From Equations
(6) and (7), this ratio becomes

Flift

Fdrag
¼
!L

R
¼

2�vz
�

L

R
: ð8Þ

As the velocity increases, the ratio increases linearly;
thus, the system becomes more efficient at high velocity.
For the estimated operating velocity of the cradle
(40m/s), the ratio can reach up to 200 : 1. Figure 2
shows the normalized levitation and drag forces as a
function of the ratio !L=R. The levitation force, Flift,
increases quickly at low speed and eventually converges
to its maximum value, while the drag force, Fdrag,
reaches its maximum value at the transition velocity
! ¼ R=L and then reduces gradually. Note that themax-
imum value of the drag is half of the maximum levitation
force.

The magnetic suspension model described in
Equations (6) and (7) has several distinguished charac-
teristics compared to the traditional spring–damper sus-
pension system. First, the levitation force is an
exponential function of the gap g. It can be considered
as a nonlinear spring. It also depends on the velocity of
the cradle.When the velocity is increased above a thresh-
old, the moving magnet array induces enough currents
in the coils and thereby levitates the cradle. On the other
hand, when the driving force is less than the drag force,

0 2 4 6 8 10
wL/R

Fdrag

Flift

Figure 2. The normalized levitation and drag forces as a

function of speed.

Note that the drag force reduces after the transition speed

w¼ R/L.
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the cradle simply slows down and comes to rest on the
track using auxiliary wheels. Second, there is no damp-
ing mechanism in the suspension system. This character-
istic has not been discussed in the literature, but it is very
important to the stability of the system. Based on linear
perturbation theory, Post and Ryutov (1996) showed
that the magnetic suspension system has negative damp-
ing, even if its magnitude is reduced as the velocity
increases. If a fluctuation occurs due to a flaw in the
coils or an external excitation, the cradle will vibrate
continuously. The only available damping is from the
aerodynamic drag and structural damping, whose
effect was not studied previously.

2.2. Thrust mechanism

Even if the levitation can be achieved without requiring
external power sources, it is always accompanied with
the unwanted drag force, as can be seen in Equation
(8). In order to overcome the drag, an external thrust
force must be provided to the system. In practice, driv-
ing coils are implemented between lifting coils in the
track, so that impulsive currents are provided according
to the position of the cradle to produce the thrust force
(see Figure 1). In order to achieve the maximum thrust,
the impulsive current is provided when the peak of the
magnetic field By is present. From Equation (1), the
peak of By occurs when the position of the magnets is
an integer times the wavelength, i.e. z ¼ n�, where n is a
positive integer. At that location, the maximum mag-
netic field becomes

By, max ¼ B0e
�kg: ð9Þ

When the magnetic field reaches its maximum value in
the position of the driving coil, an impulsive current ID
is provided to generate a thrust force to the magnets.
The peak of the thrust force from the circuit, which
depends on the drive current, is given by

Fp ¼ IDBy, maxw: ð10Þ

When the drive current is delivered in half sine-wave
pulses with a pulse length of �, the incremental moment
per pulse can be found by integrating the thrust force
over the pulse length, as

m�v ¼ Fp

Z �

0

sin
�t

�

� �
dt ¼ Fp

�

�
: ð11Þ

For the given Halbach array in Figure 1, the pulse of
the current can be provided at every half-wavelength.
Thus, the frequency of the pulse is

fp ¼ 2v=�: ð12Þ

Then, the averaged thrust force Fdrive over the wave-
length of the array becomes

Fdrive ¼ fpm�v ¼
2v

�

�

�
IDB0e

�kgw: ð13Þ

The thrust force increases proportionally to the velocity
of the cradle. However, the length of the pulse � needs
to be decreased at high velocity. The above thrust force
can also be used to decelerate the cradle.

2.3. Aerodynamic drag

As the cradle moves with a high speed, the drag force
caused by air can affect the motion of the cradle. This
drag force is different from that of magnetic drag
described in Equation (7). It is necessary to compare
the magnitude of this drag force with the drag force
caused by magnetic levitation in the previous section.
The Reynolds number is first defined as

Re ¼
�vl

�
, ð14Þ

where � is the density of the fluid, l the length of the
cradle, and � the absolute viscosity. For standard air at
room temperature, the following data can be used:
� ¼ 1:29 kg=m3 and � ¼ 1:862� 10�5 kg=m � s. When
the cradle is moving with a velocity of 40 m=s, the
Reynolds number is larger than 106. Thus, it is assumed
that the flow condition is turbulent and the following
drag coefficient is used:

CF ¼
0:455

ðlog10 ReÞ2:58
: ð15Þ

The drag force can be obtained by

FD ¼ CF
1

2
�V2

� 	
Swettedð Þ ð16Þ

Based on the current speed and geometry of the
cradle, the expected drag force is about 2.5N.
Considering that each Halbach array can produce lev-
itation and drag forces larger than 1000N, the contri-
bution from the aerodynamic drag force can be
negligible.

In addition to the drag force, the pressure force can
affect the dynamic behavior of the cradle. In the longi-
tudinal direction, the cradle can be approximated by a
thin plate. Thus, the pressure difference between the
front and rear surfaces can be ignored. In the levitation
direction, the cradle can be considered as a bluff body,
which produces a large pressure difference. However,
the velocity in the longitudinal direction is less than

4 Journal of Vibration and Control 0(0)
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0.1m/s for the expected operating condition. In addi-
tion, the motion of the cradle is oscillatory. Thus, the
effect of the pressure force can also be ignored in the
levitation direction.

3. Dynamic models of a maglev system

3.1. Inductrack model

Even if the magnetic suspension model in the previous
section shows the feasibility of passive levitation, a
practical system needs to consider various situations
including stability, ride–control, etc. A small-scale
Inductrack model has been built by Lawrence
Livermore National Laboratory, sponsored by
NASA, with a 20-meter long track and a cradle of
9.3 kg, as shown in Figure 3. The proof-of-the-concept
cradle includes six Halbach arrays, and each array is
composed of five NdFeB magnets with 1 cm thickness,
as shown in Figure 1. Three arrays are positioned in the
front and the other three in the rear. The width of the
arrays on the top is 12 cm, while the arrays on the side
have a width of 8 cm. The role of the array on the top is
mainly to provide levitation force, while the two arrays
on the side provide stability through the strong concen-
tric force. However, the levitation forces are compen-
sated between top and side magnets, whereas the drag
forces are accumulated for both magnets. This unex-
pected effect was not discussed in the original report
because the theory is based on the flat magnets over
the window-frame track. The properties of the perma-
nent magnets are summarized in Table 1.

The 20-meter long track is built on top of the steel
box beam, and coils are wound on the track. A coil
assembly consists of 13 turns of levitation coils and
one turn of driving coil. The levitation coil is made of
a #10 square insulated magnetic wire and the drive coil
is made of a #6 square insulated magnet wire. The
thickness of the coil assembly is 5 cm. The track detects
the position of the cradle using photo diode detectors
and triggers the drive coil to produce a pulse of 7 kA
current during a 600 ms time period. Since the magnetic
field By changes its sign, the direction of current must
switch to provide a forward thrust force. The parame-
ters of the drive coil are also summarized in Table 1.

The cradle is 65 cm long and is made of carbon-fiber
composite material. The weight of the cradle is 3.8 kg
without magnets and 9.3 kg with magnets. Four auxil-
iary wheels are attached at the lower corners of the
cradle in order to provide smooth landing when the
speed is reduced below the threshold and to prevent
the magnet from touching the coils.

In addition to the thrust force from the drive coil, a
mechanical launcher is used to generate the initial
speed. The mechanical launcher consists of six bungee

cords and an aluminum sliding cage. The current design
can generate an initial velocity of 9m/s.

3.2. One-degree-of-freedom model

For most mechanical systems, the force is prescribed as
a function of time. However, in the Inductrack system
the magnetic force depends on the position and motion
of the cradle. From the modeling perspective, this is
equivalent to adding a nonlinear spring. The only dif-
ference is that the stiffness of the spring is not only a
function of the position, but also a function of the
motion. Using this analogy, an exponentially varying
nonlinear spring can be attached to the bottom of the
permanent magnets. However, this spring component
needs to be modeled carefully, since the force changes
according to the motion and location of the cradle.

As a first numerical study, a one-degree-of-freedom
(1-DOF) model is considered. The cradle is modeled as
a lumped mass and it is only allowed to move in the
vertical direction. The longitudinal speed vz of the
cradle is assumed to be constant. Even if this model is
the simplest one, the fundamental characteristics of the
model, such as damping property and stability, can be
obtained.

30.83 cm
15 cm

 

Track

x

y

θ

Coils

Magnets

y

z

65 cm 

Cradle

Magnets

Figure 3. Inductrack proof-of-concept model. Six magnet

arrays are located in the front and rear. The two top arrays

provide the lift force, while four side arrays provide concentric

force.
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Let the gap between the top magnets and coils be g1
and the gap between side magnets and coils be g2. Since
only vertical motion is allowed, these two gaps have the
following relation: g2 ¼ g0 � ð g1 � g0Þ cos 45

�, where g0
is the initial gap for all three magnets. When these three
magnets move along the track, they induce the flux in
the coils. The induced flux in Equation (2) comes from
the assumption that the flat magnets move over the
box-frame track that has the same width as the mag-
nets. Since the track geometry of the Inductrack model
is not a box shape and the magnets are not a single
piece, however, Equation (2) cannot be used directly.
In order to consider the effect of non-regular track
geometry, a shape parameter � is introduced to express
the peak flux, as

�0 ¼
�B0

k
wtope

�kg1 þ 2wsidee
�kg2


 �
: ð17Þ

In the following section, an optimization technique
will be employed to identify the shape parameter by
comparing the simulation results with those from the
experiment.

For the cradle model described in the previous sec-
tion, the averaged levitation force can be written as

Fliftðvz, g1Þ ¼ 2Nc
B0�0
2L

1

1þ ðR=!LÞ2

� wtope
�kg1 �

ffiffiffi
2
p

wsidee
�kg2

h i
: ð18Þ

The scalar value 2Nc is multiplied because there are
Nc lifting coils in the wavelength of the magnets and
two sets of arrays, one in front and the other in rear.
The arrays on the top produce a positive levitation
force, while the arrays on the side reduce it. In the
case of the one-DOF model, the longitudinal speed is
fixed; thus, only g1 is a variable.

Using the levitation force in Equation (18), the
second-order ordinary differential equation (ODE)
can be written as

may ¼ Fliftðvz, g1Þ �mag, ð19Þ

where ag is the gravitational acceleration that is applied
to the negative y-coordinate direction. Aerodynamic
damping is not considered. The above second-order
ODE is converted to a system of first-order ODEs, as

_q ¼
_y1
_vy

 �
¼

vy
Flift=m� ag

 �
, ð20Þ

where the generalized coordinate is defined as
q ¼ fy1, vyg

T. The initial condition is given as
q0 ¼ f1cm, 0gT, i.e. the initial gap is 1 cm.

The above ODE is solved using the ‘ode15s ’ func-
tion in MATLAB, which uses a variable order solver
based on numerical differentiation formulas. When the
problem is ‘stiff’, it uses the backward differentiation
method.

Since the system does not have any damping, it will
continuously oscillate when the initial condition is not
in equilibrium. Figure 4 shows the phase portrait of the
system (Strogatz, 1994). The amplitude of the velocity
is about 0.2m/s, while that of the displacement is
0.3 cm. The phase portrait does not show any spiral
behavior, which means that the system does not have
any damping. The center of the ellipse corresponds to
the equilibrium configuration. For a different initial
position, the radius of the ellipse will be changed.
This observation is different from that of Post and
Ryutov (1996), who showed that the system has nega-
tive damping-based linear perturbation. However, the
numerical result in Figure 4 shows that the system does
not have any energy-dissipating mechanism and is neu-
trally stable.

Theoretically, the levitation force can be increased
proportionally to the velocity of the cradle. However,
in practice, the levitation force is always limited by the
weight of the cradle. When the velocity of the cradle is
increased, the gap g1 is also increased, so that the lev-
itation force remains in the same magnitude. In addi-
tion, the gap will not increase continuously because the
two side arrays generate a large counter-balance force
in such a case. Figure 5 shows the levitation force and
gap as a function of velocity of the cradle. From the

Table 1. Parameters of the Inductrack system

Parameter Value Note

B0 0.52 T Amplitude of the magnetic field

k k ¼ 2�=� ¼ 20� Wave number of the Halbach

Array

L 1.8� 10�6 H Lumped self-inductance

R 1.5� 10�3 � Resistance of the single circuit of

track

! ! ¼ kv ¼ 20�v Frequency of the magnetic field

variations

m 9.3 kg Mass of the cradle

� 0.1 m Wave length

� 600ms Impulse length

ID 7000 A Drive current

Nc 13 Number of lifting coil per

wavelength

wtop 12 cm Width of magnet array on the

top

wside 8 cm Width of magnet array on the

side

6 Journal of Vibration and Control 0(0)
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figure, it can be concluded that the cradle shows a
stable behavior in high velocity.

3.3. 2-DOF model

A 2-DOF model consists of the vertical and the longi-
tudinal motions of the cradle. The cradle is considered
as a lumped mass. The main purposes of this model are
(1) to identify the unknown parameters, (2) to study the
effect of magnetic drag force and the behavior of
the cradle under variable velocities, and (3) to model
the contact conditions between the track and the cradle
using the compliant contact model with inelastic resti-
tution as damping.

The configuration of the cradle is the same as with
the 1-DOF model. Accordingly, the levitation force in
Equation (18) can be used. In addition to Fy, there

exists a drag force due to the motion of the cradle,
which can be obtained from Equation (7) and the con-
figuration of the cradle in Figure 3, as

Fdrag ¼ 2Nc
B0�0
2L

R=!L

1þ ðR=!LÞ2

� wtope
�kg1 þ 2wsidee

�kg2
� �

: ð21Þ

By comparing Equation (21) with Equation (18), it
can be easily found that the two side magnets compen-
sate the levitation force, while they are accumulated
directly to the drag force. Thus, the system has more
drag and less levitation than that designed based on the
flat magnets on the box-frame track, which is consistent
with the experimental observation (Tung et al., 2001).

In order to overcome the drag force, a thrust force is
applied to the cradle by providing the drive coils with
impulsive current that is synchronized with the position
of the cradle. In practice, three adjacent coils are simul-
taneously excited per magnet array in order to increase
the thrust force. The thrust force in Equation (13) is
obtained assuming that a single coil is excited when the
magnetic field reaches its maximum value. A scalar var-
iable 	 is included in order to consider the effect of
three coils. Accordingly, the thrust force of the cradle
in Figure 3 is given as

Fdrive ¼ 2	 wtope
�kg1 þ 2wsidee

�kg2
� � 2vz

�

�

�
IDB0: ð22Þ

The thrust force is linearly proportional to the lon-
gitudinal velocity, whereas the drag force in Equation
(21) is decreased once it reaches the maximum value at
the transient velocity ! ¼ R=L. Thus, it is possible to
find the velocity that makes the drag and thrust be in
equilibrium. At that speed, the cradle will move with
the constant speed.

Before presenting the differential equation for the
2-DOF model, the method of imposing the contact con-
straint is first discussed. The magnetic arrays are not
allowed to penetrate the track, which can be imposed
using the following contact constraints:

g1ðtÞ � 0

g2ðtÞ � 0:
ð23Þ

A Lagrange multiplier or a penalty method can be
used to impose the unilateral boundary condition in the
differential equation (Haug, 1989). When the Lagrange
multiplier method is applied to the variational princi-
ple, the governing equation becomes a differential-
algebraic equation, and an additional variable is
added to the system. The advantage of this method is
that it can impose the contact constraint exactly, and

6 7 8 9 10 11

x 10
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−0.05
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V
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Figure 4. Phase portrait of the 1-DOF model between g1

and vy. The system is neutrally stable.
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the Lagrange multiplier corresponds to the contact
force. When the penalty method is used, however, no
additional variable is added to the original differential
equation. If the contact condition is violated, then it is
penalized using a large penalty parameter.

In practice, the contact interface between two flexi-
ble bodies shows compliant behavior due to the
local deformation (Hunt and Crossley, 1975). In addi-
tion, the restitution is not fully elastic. In this
paper, the compliant contact model with inelastic
restitution as damping is used to impose the
contact condition. The differential equation of the
dynamic problem with the penalized contact constraint
becomes

may ¼ Fliftðvz,g1Þ �Fcontðg1, _g1Þ �
ffiffiffi
2
p

Fcontðg2, _g2Þ �mag

maz ¼ Fdriveðvz,g1Þ �Fdragðvz,g1Þ,

ð24Þ

where Fcontð g, _gÞ is defined as

Fcontð g, _gÞ ¼
kgþ b _g if g5 0

0 otherwise


, ð25Þ

where k and b are, respectively, the stiffness and damp-
ing coefficients of the contact interface. The contact
force for the two side arrays is applied in the direction
normal to the 45� inclined surface, and only the vertical
component is considered. The above ordinary differen-
tial equation is solved with the following initial
conditions:

yð0Þ ¼ y0, vyð0Þ ¼ vy0

zð0Þ ¼ z0, vzð0Þ ¼ vz0 :
ð26Þ

The second-order differential equations can now be
converted to the system of first-order differential equa-
tions, as

_q ¼

_y

_vy

_z

_vz

8>>><
>>>:

9>>>=
>>>;
¼

vy

½Flift � Fcontð g1, _g1Þ

�
ffiffiffi
2
p

Fcontð g2, _g2Þ�=m� ag

vz

Fdrive � Fdrag


 �
=m

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð27Þ

Before the numerical simulation of the 2-DOF
model, the unknown parameters, � and 	, need to be
identified. For that purpose, the test results performed
by Tung et al. (2001) are utilized. The maximum trav-
eling distances for different initial velocities are first
measured. The difference between these distances and
those from the dynamic analysis is minimized by

changing the two parameters. The design identification
problem can then be written as

Minimize f ð�,	Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

dtesti � d simulation
i


 �2
vuut : ð28Þ

The above minimization problem is solved using
MATLAB ‘fminsearch’ function. The initial values
are chosen from their ideal cases. Table 2 shows the
initial and optimum values of the parameters. As
expected, the shape parameter � is reduced from its
ideal values, while 	 is increased. At the optimized
values of the parameters, the error function f ð�,	Þ is
reduced significantly.

Figure 6 shows the traveling distance during the first
2 seconds with respect to various initial velocities. For
comparison purposes, the travel distance with constant
velocity is also plotted. When the initial velocity is less
than the critical velocity (v0¼ 16.2m/s), the velocity
decreases and the cradle eventually stops. At the critical
velocity, the cradle moves with a constant velocity. The

Table 2. Results from the parameter identification. The

shape parameter is reduced from its ideal value, while the

equivalent thrust parameter is increased

Parameters Initial value

Optimum

value

� 1 0.7295

	 3 3.9298

f ð�,	Þ 1.5622 0.0427

Figure 6. Travel distance for the first 2 seconds with respect to

the initial velocity. The velocity increases after the critical

velocity 18.5 m/s.
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velocity increases exponentially when the initial velocity
is above the critical value.

In order to evaluate the performance of the contact
condition and the effect of the drag force, the two-DOF
model is tested with the initial velocity v0¼ 15.5m/s.
The initial velocity is chosen to be less than the critical
velocity, so that the cradle touches the track as the
velocity is reduced. Figure 7(a) shows the vertical posi-
tion and velocity of the cradle. The vertical velocity
shows a small oscillatory behavior, while the vertical
position shows a stable behavior. The cradle touches
the track at time¼ 1.19 seconds and slides on the
track. Since the compliant contact force in Equation
(25) is applied when the vertical position is negative,
the vertical position shows a small penetration of
0.01mm when the cradle stays on the track. The
amount of penetration will be reduced as the contact
stiffness is increased.

Figure 7(b) shows the traveling distance and velocity
of the cradle. Since the initial velocity is less than the

critical velocity, the velocity is reduced monotonically
until the cradle stops. At time¼ 2 seconds, the cradle is
still moving on the track, even if it slows down. The
cradle eventually stops at time¼ 3 seconds.

Figure 7(c) shows the drag, lift, and thrust forces. As
explained in the 1-DOF model, the lift force remains
almost constant in the lifting region. The drag force is
about three times larger than the lift force in the most
lifting regions, and it is slightly increased even if the
velocity is reduced. This is different from Figure 2,
where the lift force is larger than the drag force. This
is due to the effect of side arrays that compensate the
lift force. Once the cradle touches the track, the drag
and lift forces are reduced quickly. The drive force
shows a similar trend with that of the velocity.

In general, the 2-DOF model shows a stable behav-
ior. When the velocity is above the critical velocity, the
vehicle is continuously lifted and the velocity is
increased. In practice, the velocity can be controlled
by changing the impulsive current in the drive coils.

(a) (b) 

(c) 
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Figure 7. Dynamic analysis results for the 2-DOF model. (a) Vertical position (cm) and velocity (cm/s). (b) Traveling distance (m)

and velocity (m/s). (c) Drag, lift, and thrust forces (N).
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When the velocity is reduced, the vehicle lands on the
track and eventually stops.

3.4. 4-DOF model

In 1- and 2-DOF models, the cradle is assumed to be
a lumped mass structure. The purpose of the 4-DOF
model is to evaluate the rigid body behavior of the
system. The cradle can move in the z-direction
(thrust), y-direction (lift), x-direction (slip), and
rotate in the z-direction (roll). Figure 8 shows the
computational model with coordinate systems. The
global coordinate X–Y is fixed on the track, while
the local coordinate X’–Y’ is fixed on the cradle.
Both local and global coordinates have the same
origin when the three magnets have the same gap
(1.0 cm) with respect to the track. In order to simplify
the contact calculation, the geometry of the magnets is
represented by a point. In addition, it is assumed that
the direction of the lift force is always normal to the
track, not to the magnets. The effect of this assump-
tion is not significant because the roll angle 
 is sup-
posed to be small.

The magnetic force depends on the gap between the
magnets and the induced coils. The location of the mag-
nets is calculated based on the local-to-global coordi-
nate transformation. When the local coordinate of the
magnet array i is given as r0i, the global coordinate can
be obtained from

ri ¼ r0 þ Að
Þ � r0i, i ¼ 1, 2, 3, ð29Þ

where r0 ¼ ðx, yÞ is the position of the origin of the local
coordinate, and Að
Þ is the rotational transformation
matrix defined as

Að
Þ ¼
cos 
 � sin 

sin 
 cos 


� �
: ð30Þ

First, the locations of three magnets are calculated
from the geometry of the cradle in the local coordinate,
and then, their global coordinates are calculated from
Equation (29).

After calculating the global coordinate of the mag-
nets, the gap between the magnets and the track can be
calculated from the geometric relation. In order to
make the procedure general, a concept from solid
mechanics is adopted (Kim et al., 2000). Let ri be the
location of the magnet array i, and a1i and a2i be the
coordinates of two end points of the track (see
Figure 9). The segment of the track below the magnets
is a straight line. The two end points are ordered such
that the magnets should be on the left side when we
go from a1i to a2i . If the magnets are on the right side,
it is considered that they penetrate the track and the
contact force is applied to push them out. First, the unit
tangent and normal vector to the track can be obtained
by

ti ¼
a2i � a1i

ka2i � a1i k
, ni ¼ e3 � ti, ð31Þ

where e3 is the unit vector in the z-coordinate, i.e.
(0, 0, 1). Then, the gap between magnets and track
can be calculated from

gi ¼ ri � a1i

 �

� ni � 0: ð32Þ

In addition, the rate of gap distance can be
calculated by differentiating the relation in
Equation (29) and using the property that the track is
fixed, as

_gi ¼ v0 þ _Að
Þ � r0i

� �
� ni, ð33Þ

where

_Að
Þ ¼ !z
� sin 
 � cos 

cos 
 � sin 


� �
: ð34Þ

X, X'

Y, Y'

θ

Track with Coils

F1

F2 F3

g1

g2 g3

Figure 8. Four-DOF Inductrack dynamic model. The X–Y

coordinate is fixed on the track, while the X’–Y’ coordinate is

fixed on the cradle.
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Figure 9. Contact condition between magnets and track.

The magnets are considered as a point. The gap gi must be

non-negative.
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When these three magnets move along the track,
they induce the flux in the coils. In the 4-DOF model,
the peak flux can be obtained by

�0 ¼
�B0

k

X3
i¼1

wie
�kgi : ð35Þ

As with the 2-DOF model, the shape parameter � is
included. Then, the repulsive force at each magnet
array can be written as

Fi ¼ wie
�kgi

B0�0
2L

2Nc

1þ ðR=!LÞ2
� Fcontð gi, _giÞ, i ¼ 1, 2, 3:

ð36Þ

These three repulsive forces, as illustrated in
Figure 8, contribute to the lift and slip force of

the cradle. Since it is assumed that these forces are
applied in the direction normal to the track, the lift
and slip forces can be obtained as

Flift ¼ F1 � ðF2 þ F3Þ cosð45
�Þ

Fslip ¼ ðF3 � F2Þ sinð45
�Þ:

ð37Þ

Different from the lift and slip forces in
Equation (37), the drag force is obtained by adding
the contribution from the three magnet arrays, as

Fdrag ¼
X3
i¼1

wie
�kgi � 2Nc

B0�0
2L

R=!L

1þ ðR=!LÞ2
: ð38Þ

In order to overcome this drag force, the thrust force
is applied to the cradle by providing impulsive current

(a) (b) 

(c) 

Figure 10. Slip and angular motions of the 4–DOF Inductrack model. (a) Moment (N-m) and slip force (N). (b) Lateral

displacement (m) and velocity (m/s). The second magnet array contacts with the track at time¼ 2.5 s. (c) Roll angle (rad) and angular

velocity (rad/s).
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to the driving coils. Similar to the 2-DOF model, the
thrust force can be obtained as

Fdrive ¼ 2	
X3
i¼1

wie
�kgi

2vz
�

�

�
IDB0, ð39Þ

where the parameter 	 is obtained using the optimiza-
tion technique in Equation (28).

The dynamic model of the 4-DOF model includes
lift, slip, thrust, and roll motions:

max ¼ Fslip

may ¼ Flift �mag

maz ¼ Fdrive � Fdrag

Izz _!z ¼Mz, ð40Þ

where Izz is the mass moment of inertia with respect to
the z-coordinate and _!z is the angular acceleration in
the roll motion. Note that the contact forces are
included in the repulsive force in Equation (36).

The above ODE is solved with the following initial
conditions:

xð0Þ ¼ x0, vxð0Þ ¼ vx0
yð0Þ ¼ y0, vyð0Þ ¼ vy0
zð0Þ ¼ z0, vzð0Þ ¼ vz0

ð0Þ ¼ 
0, !zð0Þ ¼ !z0:

ð41Þ

The second-order differential equation can now be
converted to the system of first-order differential equa-
tions, as

_q ¼

_x
_vx
_y
_vy
_z
_vz
_

_!z

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

vx
Fslip=m

vy
Flift=m� ag

vz
ðFdrive � FdragÞ=m

!z

Mz=Izz

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

: ð42Þ

The 4-DOF model is tested using the same initial
conditions as those of the 2-DOF model. Initial condi-
tions in the slip and roll motions are set to be zero, so
that the same results as with the 2-DOF model can be
obtained. The dynamic analysis results turn out to be
identical to those of the 2-DOF model with numerical
precision.

In order to test the response of the system under
the slip and roll motions, a dynamic analysis is per-
formed. The initial conditions are given such that
the vehicle is perturbed in the lateral direction by

x0 ¼ 4mm, vx0 ¼ �0:1m=s, . All other initial conditions
are the same as with 2-DOF model.

Figure 10 shows the slip and angular motions of the
vehicle. The lifting and traveling motions of the vehicle
are similar to those of the two-DOF model. The initial
slip motion generates the lateral force Fslip and rolling
moment Mz (Figure 10(a)). The vehicle contacts with
the track at time¼ 2.5 seconds, when the slip velocity
suddenly changes (Figure 10(b)). The initial slip motion
induces a rolling motion as shown in Figure 10(c).
However, the magnitudes of the rolling angle and the
angular velocity are small.

4. Conclusions and future plans

The dynamic characteristics of an electromagnetic sus-
pension system are evaluated using 1-DOF, 2-DOF,
and 4-DOF numerical models. The dynamic model
includes compliant contact constraints between the
vehicle and the track. The unknown numerical param-
eters are identified using an optimization technique.
Using a 1-DOF model, although the suspension
system does not have any inherent damping in the lift-
ing direction, a stable behavior is observed in the trav-
eling direction; the vehicle is lifted when the velocity is
above the threshold and lands on the track when the
velocity is below the threshold. The 4-DOF model
shows that the system has a strong concentric force
that stabilizes the vehicle in the slip motion as well as
in the rolling motion. Even if the levitation of the
system can be achieved in the passive way, the system
requires a thrust force in order to reach a large enough
initial speed and maintain it against the drag force.

In the practical application of the electromagnetic
suspension system, the vehicle has its own damping
behavior due to the flexibility of the structure. This
may explain the difference between the model test and
the full-scale test. In order to model the damping char-
acteristics of the structure, it is necessary to use the
flexible-body dynamics model.
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