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Abstract 
 
Neural network (NN) is a representative data-driven method, which is one of prognostics approaches that is to predict future dam-

age/degradation and the remaining useful life of in-service systems based on the damage data measured at previous usage conditions. 
Even though NN has a wide range of applications, there are a relatively small number of literature on prognostics compared to the usage 
in other fields such as diagnostics and pattern recognition. Especially, it is difficult to find studies on statistical aspects of NN for the 
purpose of prognostics. Therefore, this paper presents the aspects of statistical characteristics of NN that are presumable in practical us-
ages, which arise from measurement data, weight parameters related to the neural network model, and loading conditions. The Bayesian 
framework and Johnson distribution are employed to handle uncertainties, and crack growth problem is addressed as an example.  
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1. Introduction 

Prognostics illustrated in Fig. 1 is to predict future dam-
age/degradation and the remaining useful life (RUL) of in-
service systems based on the damage data obtained at previ-
ous usage conditions, which facilitate condition-based mainte-
nance known as cost effective maintenance strategy in com-
pany with diagnostics. Once a damage model (Black solid 
curve) is determined based on damage data at previous times 
under a given usage condition (Black dots) or under the vari-
ous usage conditions (Grey dots), RUL which is remaining 
time/cycles before required maintenance can be predicted by 
progressing the damage state until it reaches the threshold. In 
general, prognostics methods can be categorized into data-
driven [1], physics-based [2], and hybrid [3] approaches, 
based on the usage of information. Data-driven approaches 
use information from collected data to identify the characteris-
tics of damage state without using any specific physical mod-
el; physics-based ones combine the physical model describing 
the behavior of damage with measured data; and hybrid ones 
integrate the other two methods to improve the prediction 
performance. 

Since the physical model describing the behavior of damage 
rarely exists, data-driven approaches have a wide range of 
applications. It includes neural network (NN) [4, 5], Gaussian 

process regression [6, 7], relevance vector machine [8], least 
square regression [9], etc. Among these algorithms, NN is a 
representative data-driven method, in which a network model 
learns a way to produce a desired output such as future dam-
age level reacting to given inputs such as previous damage 
level and usage conditions instead of physical model. The 
learning process is the same as finding weight parameters 
associated with the network model by minimizing the mean 
square error between measurement data and network outputs, 
which is called training process, and the data used for training 
expressed as dotted markers in Fig. 1 is called training data. 

In general, weight parameters are obtained as deterministic 
values by using an optimization process, and prediction uncer-
tainties are added with confidence bounds based on nonlinear 
regression and/or the error between NN outputs and training 
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Fig. 1. Illustration of prognostics. 
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data [10-13]. It, however, is difficult to find global optimum of 
parameters due to measurement noise, a small number of data 
compared to the number of parameters, and the complexity of 
damage growth, which can yield a significant error in predic-
tion results. On the other hand, Bayesian NN (BNN) [14, 15] 
has been proposed to resolve local optimum problem, which 
provides distribution of prediction results caused by measure-
ment error and uncertainty in parameters that are identified as 
distributions based on Bayes’ theorem instead of deterministic 
values given by an optimization process. There are no litera-
tures that employ BNN for the purpose of prognostics, though. 
Liu et al. [16] repeated NN process 50 times to predict bat-
tery’s RUL, which is similar to BNN in a sense of employing 
randomness of weight parameters. 

In addition to general statistical aspects mentioned in the 
previous paragraph, additional issues that are presumable in 
practical usages are also addressed. Data used for input vari-
ables have mostly been considered as deterministic values, but 
they can be distributed. In such a case, there are no clear dam-
age indicators, many number of damage data are given at the 
same usage conditions from the same system, and usage con-
ditions such as loading conditions can also have uncertainties 
and need to be considered as distributions. This case as well as 
general statistical aspects will be considered with a crack 
growth example. 

The paper is organized as follows: in Sec. 2, the process of 
NN is explained for the purpose of prognostics with a crack 
growth example; and in Sec. 3, statistical aspects are consid-
ered based on the understanding of NN, followed by discus-
sions and conclusions in Sec. 4. 

 
2. Neural network 

2.1 Network model 

A typical architecture of NN is feed-forward neural network 
(FFNN) [17], which is illustrated in Fig. 2. In the figure, cir-
cles represent nodes (Also called neuron or unit), and a set of 
nodes in the same column is called a layer. The nodes in the 
input and output layer, respectively, represent input variables 
and response variable. Since the given information for data-
driven approaches are only measurement data, previous dam-
age data and the current damage data are, respectively, usually 

employed for input and output variables. And then, the num-
ber of nodes in the hidden layer can be adjusted to properly 
express the mechanism between input and output by receiving 
signals from input layers and forwarding them to the output 
layer. Even though the network model that includes selecting 
the number of hidden nodes, hidden layers and input nodes 
has an effect on the prediction results, it is not considered here 
because the network problem is a different issue from statisti-
cal ones as well as trial-and-error methods are often used to 
determine a suitable network model. 

Once the network model is determined, the model is func-
tionalized using transfer functions and weight parameters. 
Transfer functions characterize the relationship between layers, 
and several types of transfer function are available such as 
sigmoid, inverse, and linear function [18]. Usually, the tangent 
sigmoid and pure linear functions are employed as a common 
practice. Weight parameters include weights for the intercon-
nected nodes and biases that are added to inputs of transfer 
functions [16, 19], which are shown as rectangles and ellipses 
in Fig. 2, respectively. The process of finding the weight pa-
rameters is called training or learning, and to accomplish that, 
usually many sets of training data are required. 

In general, FFNN is often called a back-propagation neural 
network (BPNN) because weight parameters are obtained 
through the learning/optimization algorithm [20] that adjusts 
weight parameters through backward propagation of errors 
between actual output (Training data) and the one from the 
network model based on gradient descent optimization meth-
ods. In other words, FFNN and BPNN are, respectively, to 
calculate the response forward and to update weight parame-
ters based on the response backward. Once the network model 
learns enough the relationship between inputs and output, it 
can be used for the purpose of prognosis. In the following, the 
process of NN-based prognostics becomes specified with 
crack growth example. 

 
2.2 The process of NN with a crack growth example 

Fig. 3 shows an example of NN-based prognostics for a 
crack growth problem. The star markers are assumed as crack 
growth data measured at every 100 cycles in a fuselage panel 
under repeated pressurization loadings, which are generated 

 
 
Fig. 2. Illustration of typical network model: FFNN. 
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Fig. 3. Example of NN-based prognostics with crack growth example. 
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based on Paris model [21] with true damage growth parame-
ters true 3.8m = , 10

true 1.5 10C -= ´ , the initial half crack size 
0 10 mm,a =  load magnitude sD = 80 MPa, and random 

noise that is uniformly distributed between 1.0- mm and 
1.0+ mm. Note that the true values of parameters are used 

only for the purpose of generating measurement data in this 
paper. 

The network model is constructed based on aforementioned 
FFNN with two input nodes, one hidden layer with one node; 
and thus, the number of total weight parameters become 5 
including three weights ( 2 1 1 1´ + ´ ) and two biases (1+1). 
For input variables, damage data ( 2 1,k kx x- - ) at the previous 
two 100 cycles are used, and the current damage data ( kx ) 
becomes the output, k  is the current time index. If 16k =  
(The current cycle is 1500 cycles), 14 sets of input and output 
data are available, which are the training data used to obtain 
weight parameters via optimization process. Then future dam-
ages ( 1 2 3, , ,...p p p

k k kx x x+ + + ) are predicted based on the obtained 
weight parameters and the previous damage data, i.e., input 
variables. According to the previous damage data used as 
inputs, prediction methods can be divided into short term pre-
diction and long term prediction. Short term prediction is one-
step ahead prediction since it uses only measured data for 
input, e.g., 1 2,k kx x+ +  are inputs to predict 3

p
kx + . On the other 

hand, long term prediction is multi-step ahead prediction since 
it utilizes predicted results as inputs, e.g., 1 2,p p

k kx x+ +  are in-
puts to predict 3

p
kx + .  

Future damage prediction results are shown in Fig. 3. In the 
figure, thick dotted curve and thick dashed curve are, respec-
tively, the median of short term prediction and long term pre-
diction obtained by repeating NN 30 times, and their thin 
curves mean 90% confidence intervals. The wide range of 
long term prediction interval means that the results become 
significantly different whenever the NN process is performed 
due to the local optimum problem, even though the training 
simulation results shown as circles are close to the training 
data shown as gray star makers. Nevertheless, NN can be used 
for the purpose of prognostics by employing proper statistical 
methods. Although repeating the process to obtain statistical 
distribution can be a way, a more logical method is introduced 
in the next section. 

 
3. Statistical aspects in NN 

In the following subsections, different statistical aspects that 
are presumable in practical usages are considered according to 
given information. 

 
3.1 Uncertainty in prognostics results 

The first case is a common condition caused by noise in 
measurement data and parameter identification, and it is to 
identify the weight parameters as distribution based on Bayes-
ian framework. Bayesian inference is a statistical method in 
which observations are used to estimate and update unknown 

parameters such as weight parameters in the form of a prob-
ability density function (PDF). Bayesian inference is based on 
the following Bayes’ theorem [22]:  

 
( ) ( ) ( )| |z zp L pµq q q                            (1) 

 
where q  is a vector of unknown parameters, z  a vector of 
observed data, ( )|zL q  the likelihood, ( )p q  the prior PDF 
of q , and ( )| zp q  the posterior PDF of q  conditional on 
z . The likelihood is the PDF value of z  conditional on 
given q , and the prior information can be given, assumed, or 
not considered. The reliability of posterior PDF increases as 
more data are used, which gives more accurate and precise 
prediction results of damage and RUL. 

Fig. 4 shows the comparison between repeating NN (RNN) 
and Bayesian NN (BNN). Figs. 4(a) and (b) are the same con-
dition as the previous example in Sec. 2.2 but with a larger 
level of noise, ± 5 mm. Figs. 4(c) and (d) are also crack 
growth problem, but they are based on Huang’s model [23] 
that express crack growth under variable amplitude loading 
condition, which is employed to show the case of complex 
damage model. Although the actual crack size cannot be re-
duced, the measured crack size can be reduced due to the ran-
dom nature of noise. In both cases of large noise and complex 
model, BNN outperforms RNN in terms of accuracy and pre-
cision of future damage prediction. The two cases means se-
vere prediction conditions, but such conditions are more likely 
to be in real damage data. If the damage data have small level 
of noise and the damage growth increase monotonically, it 
will be more efficient to use RNN as in Ref. [16]. This can be 
explained by the following two reasons: (1) the results ob-
tained by repeating NN more than 30 times do not change 
much with other attempts, which gives more reliable results 
compared to use NN just one time with confidence bounds, 
and (2) since it is hard to identify the distributions of weight 
parameters as the number of parameters depending on net-
work model increases, the performance of BNN is deterio-
rated in constructing network model. 

 
3.2 Distribution-type data 

Input variables of NN are composed of damage data and 
usage conditions that are considered as deterministic values, 
and never considered as distributions. However, input vari-
ables can be distributed in such cases: many number of dam-
age data are given at the same usage conditions from the same 
system, usage conditions such as loading conditions are uncer-
tain, and there are no clear damage indicators. Johnson distri-
bution [24] having four parameters, four quantiles correspond-
ing to probabilities of 0.0668, 0.3085, 0.6915 and 0.9332, is 
employed to predict future damage distribution. Fig. 5 shows 
examples of Johnson distribution in cases of normal and beta 
distribution. The black solid curves are exact probability den-
sity function (PDF) from each distribution, and the bars are 
the results from Johnson distribution using four quantiles rep-
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resented as red star markers. Johnson distribution can express 
any other distribution types when the four quantiles are cor-
rectly given. 

The same crack growth example as in the previous one is 
again employed to demonstrate the case of random input vari-
able. Distributed synthetic data are generated from the pertur-

bation of Paris model parameter m with a deterministic load 
magnitude, and then a small level of noise is added: ~m  

(3.8 0.027,3.8 0.027),U - + 78 MPa ,sD = ~ ( 1, 1)noise U - +  
mm whose result is shown in Fig. 6. Each cycle has 5000 
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(a) Standard normal distribution 
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(b) Beta distribution with α = 2, β = 5 

 
Fig. 5. Example of Johnson distribution. 
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(a) Measured data at every 100 cycles 
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(b) Distribution of measured data 

 
Fig. 6. Distributed synthetic data. 
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(a) RNN with large noise 
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(b) BNN with large noise 
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(c) RNN with complex model 

 

0 0.5 1 1.5 2 2.5

x 10
4

0

0.01

0.02

0.03

0.04

Cycles

C
ra

ck
 s

iz
e 

(m
)

 

 

Short-Predic.
Long-Predic.
Training data
Trained simul
True
Threshold

 
(d) BNN with complex model 

 
Fig. 4. Comparison example of NN-based prognostics with crack 
growth example. 
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samples as the measurement data, whose distribution at 0, 800, 
1500, and 2200 cycles are shown in Fig. 6(b) with their true 
damage size shown as black squares. It is shown that the 
shape of distributions is changed as cycle increases. Four 
quantiles whose example at 2500 cycles is shown as red star 
markers in Fig. 6(a) are used for input variables. Since there 
were two input variables and one output variable in the previ-
ous study, total numbers of input and output variables become 
eight (2 x 4) and four (1 x 4), respectively. 

Fig. 7 shows damage prediction results from RNN with 
Johnson distribution at 1500 cycles. In Fig. 7(a), the median of 
future damage growth is very close to the true one, and 90% 
confidence interval also covers damage distribution at every 
cycle. Figs. 7(b) and (c) show comparison of damage distribu-
tion between predicted one and measured one at 1600 and 
2400 cycles, and their errors are listed in Table 1. The maxi-
mum magnitude of error is 5.75% at 2400 cycles that is 900 
cycles ahead prediction from 1500 cycles. These results show 
that NN using Johnson distribution is applicable for prediction 

of damage distribution. 
Lastly, Fig. 8 shows real distribution-type measurement da-

ta from the bearing provided by the Center for Intelligent 
Maintenance Systems [25]. Vibration signal is monitored us-
ing accelerometer during one second with 20 kHz sampling 
rate at specific intervals. The distributions in Figs. 8(a) and (b) 
are, respectively, observed from a bearing without failure and 
a bearing with failure. While the distribution of the case with-
out failure does not changes much, the distribution with failure 
becomes wider and its mode shifts to the value greater than 
zero as cycles increase. Even though it has not been fully ex-
plored to consider the change of distribution as the damage 
indicator (There are no clear criteria of damage threshold yet), 
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(a) Damage growth prediction 
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Fig. 7. Damage prediction results. 

 
 

Table 1. Errors between prediction results and measurement at 1500 cycles. 
 

Cycles 1600 1800 2000 2200 2400 

Measurement 0.0186  0.0210  0.0239  0.0276  0.0327  

Prediction 0.0186  0.0210  0.0240  0.0279  0.0332  6.7Q 

Error (%) 0.03  0.02  0.58  0.95  1.82  

Measurement 0.0196  0.0221  0.0253  0.0296  0.0354  

Prediction 0.0197  0.0225  0.0261  0.0308  0.0374  30.9Q 

Error (%) 0.63 1.54  2.89  4.18  5.75  

Measurement 0.0207  0.0237  0.0278  0.0333  0.0413  

Prediction 0.0207  0.0237  0.0276  0.0329  0.0402  69.1Q 

Error (%) 0.10  0.01  0.59  1.35 2.66 

Measurement 0.0218  0.0251  0.0296  0.0363  0.0463  

Prediction 0.0218  0.0253  0.0299  0.0363  0.0453  93.3Q 

Error (%) 0.32 0.82 0.78  0.09  2.20  
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Fig. 8. Real damage data. 
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the results in this section show that this method has a possibil-
ity to be employed for prognosis when there are no clear/de-
terministic damage indicators like this bearing problem. 

 
4. Conclusions 

The goal of this paper is to address the aspects of statistical 
aspects in NN that are presumable in practical usages. As the 
first case, RNN and BNN are compared in terms of prediction 
uncertainty that is general statistical aspect related with noise 
in measurement data and weight parameters in NN model. 
BNN outperforms RNN under severe prediction conditions 
such as large level of noise in data and complex damage 
growth. In another case, random input variables are handled 
by employing Johnson distribution to NN. Future damage 
distribution are well predicted, and the results show that the 
method considering the change of distribution has a possibility 
to be employed for prognosis when there are no clear damage 
indicators. 
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