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Abstract This paper investigates an effective test strategy
for structural failure criterion characterization. The goals
include identification of potential failure modes and a better
approximation of failure boundary, e.g., failure load map-
ping with respect to geometry and load conditions. We
typically replicate and test the same structural configura-
tion several times in order to deal with noisy observation.
However, our study shows that replication is not necessar-
ily needed, because of the smoothing effect of surrogate
models, and we show that exploring with as many different
configurations as possible is more important. We illustrate
the failure criterion characterization with two structural
examples with various surrogate models, including poly-
nomial response surface (PRS), support vector regression
(SVR) and Gaussian process regression (GPR). We also
examine the treatment of replicated test data for surrogate
fitting. While fitting to all replicated test data works well
for GPR, fitting only to the mean values of the replicated
data helps a not-well-tuned surrogate (SVR in this paper)
by compensating for the proneness to overfitting. When
the noise level is significant as compared to the error due
to surrogate modeling, a denser matrix might be prone to
overfitting for GPR and SVR.
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1 Introduction

For structural design, appropriate characterization of failure
criteria is critical. The main objectives of failure crite-
rion characterization are (1) identifying underlying failure
modes and (2) constructing an accurate design allowable
chart for each failure mode, e.g., failure load map with
respect to geometry and load conditions. Inaccurate char-
acterization may lead to structural designs that would
experience unexpected failure modes and suffer large errors.

Using analytical failure theories, such as Tsai-Wu and
von-Mises, is a reasonable approach for well-known mate-
rials and structures. However, analytical theories may not
be reliable enough for newly introduced materials, e.g.,
composite materials (Ilcewicz and Murphy 2005), and for
structural elements due to lack of knowledge. Therefore,
failure criterion characterization often relies on experimen-
tal approaches.

In experimental approaches, we typically conduct a series
of tests for a structural element for a particular use. To
discover potential failure modes, it is important to explore
within the design space with as many different struc-
tural configurations as possible. At the same time, failure
boundary mapping, e.g., failure load, is carried out by
fitting a surrogate to the observed test data (Department
of Defense 2002a, b). Because the test results are noisy
due to variability in material properties, test conditions,
and errors in measurement devices, we often replicate the
same structural configurations for statistical analysis of the
observations.

Since tests are costly, these processes need to be
accomplished under a budgetary constraint, i.e., a lim-
ited number of tests. Then there arises a resource allo-
cation problem between exploration and replication. This
paper studies effective resource allocation of tests for
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failure criteria characterization. We are particularly inter-
ested in the question of whether we can take advantage
of the smoothing effect of surrogate techniques, equiva-
lent to a noise filter by replication. The same problem
of exploration versus replication is also encountered in
fitting surrogates to noisy simulations, such as the prob-
ability calculated from Monte Carlo simulations. So in
the next section we review the pertinent literature in this
field too.

In this paper, we illustrate the failure criterion char-
acterization using two example structural elements. Each
structural element has two potential failure modes, one of
which dominates the design space. The less dominant fail-
ure mode is considered as an un-modeled failure mode when
it is missed by the test matrix. The failure load map of the
dominant mode is assumed to be approximated by using test
data and surrogate models.

With the help of the examples, we will discuss effec-
tive test matrix strategies from the following perspectives:
(1) exploration or replication, (2) the use of replicated data;
that is, using the mean value for fitting or not, (3) the
effect of nonlinearity of the failure load surface, and (4) the
effect of noise level. To do that, one of the structural exam-
ples has a simple failure load surface, and the other has a
highly nonlinear surface. For both examples, the observed
data is subjected to uncertainty due to material properties
and geometry. We test different types of surrogate models,
including polynomial response surface, Gaussian process
regression, and support vector regression.

This paper is organized as follows. Section 2 discusses
the use of surrogate models for noisy data including lit-
erature review and test strategy for failure criterion char-
acterization. Section 3 briefly describes the formulations
of the surrogate models. Section 4 illustrates the exam-
ple structural problems, followed by the results discussed
in Section 5. Finally, concluding remarks are addressed in
Section 6.

2 Fitting noisy observations and test strategy

2.1 Surrogate models for noisy observations

Surrogate models have been widely used as an alterna-
tive of expensive computer simulations and experiments in
engineering design. Their usefulness has extensively been
studied and proven by a variety of applications, such as
design optimization (Queipo et al. 2005; Jin et al. 2003;
Simpson et al. 2004; Forrester and Keane 2009) and uncer-
tainty quantification (Giunta et al. 2006; Eldred et al. 2002;
Kim and Choi 2008). They have also been used for exper-
imental optimization (Chaudhuri et al. 2013; Viana et al.
2011). In fact, response surface techniques were originally

developed in order to optimize crop yields by changing
inputs such as water and nutrients, based on measured crop
yields in subplots with different inputs.

Fitting surrogate models to noisy data is important
for engineering applications because of their capability
on reducing underlying uncertainty Computational mod-
els may suffer from noise due to discretization errors and
incomplete convergence of iterative simulation such as opti-
mization and Monte Carlo simulation. Experimental obser-
vations vary due to variability in material properties and
geometry of test specimens and variability in test conditions,
e.g., boundary conditions. There are studies on surrogate
models dealing with noisy data from various aspects, such
as performance of approximation and design optimization
(Giunta et al. 1994; Papila and Haftka 2000). However,
limited research has been done on sampling strategy, also
known as design of experiments (DOE), for noisy data espe-
cially on the effects of repeated observations, which is the
scope of this paper.

Studies on optimal DOE for PRS to noisy observations
date back to the middle of the 20th century (Elfving 1952;
Kiefer 1961; St. John and Draper 1975). Early studies
focused only on simple polynomial regression and sought
for an appropriate allocation of samples considering repe-
titions according to optimality criteria; e.g., D-optimality.
Later, an empirical investigation into optimal allocation
with Kriging is conducted (Picheny 2009). Picheny’s study
found that, for a two-dimensional function with uniformly
distributed noise over the space, having a large number
of observations from high-noise simulations provided a
better result in terms of the prediction variance (Myers
and Montgomery 1995) than a small number of obser-
vations from a low-noise simulation. More recently, an
adaptive design strategy for Kriging-based design optimiza-
tion against noisy data has been investigated (Picheny et al.
2013a, b).

Note that the performance metrics used for these stud-
ies on DOE are associated with the level of confidence of
the prediction models, such as D-optimality and prediction
variance. The confidence level of prediction does not neces-
sarily represent the error against the true function, in which
the designers working on failure criterion characterization
are primarily interested. In fact, a DOE that is optimized
by a particular criterion might poorly perform for other per-
formance measures (Goel et al. 2008). For example, Goel
et al. showed that D-optimal design, which minimizes the
maximum of variance of coefficients, may have a large
bias error.

In this paper, we extend the previous work and empir-
ically investigate the effective test matrix for a practical
and specific engineering application, i.e., structural failure
boundary characterization using surrogate models. In prac-
tical engineering applications, the magnitude of noise in
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observation may not be constant over the range of design
space because it may depend on geometry etc. In terms of
the performance of surrogate models, the error in a failure
load prediction directly corresponds to the error in design
allowable of a structure. Therefore, we focus on the accu-
racy of surrogate models to the true functions rather than the
confidence level of surrogate prediction. Furthermore, we
investigate the treatment of replicated data for fitting; that is
whether we fit a surrogate model to all replicated data or fit
to the mean values of repeated data. Finally, for surrogate
models to be examined we include support vector regres-
sion (SVR) as well as PRS and Gaussian process regression
(GPR).

2.2 Test strategy for failure criterion characterization

A major role of characterizing tests is to refine fail-
ure criteria of structural elements, which will be used
to determine design allowables. The process is con-
ducted at an early stage of design process as part
of so-called buildingblock testing approach (Marshall
Rouse et al. 2005). The test specimens limit to lower
complexity structures, such as structural joints and
composite laminate plates. Lower level of complexity
allows the designers to easily analyze observed data,
understand failure mechanisms, and construct prediction
models.

The expected variations in design parameters, such as
external conditions and geometry of a structure need to be
taken into account to determine the test configuration. A
matrix of tests is usually deployed in order to cover the
entire design space and evaluate the effects of all possible
combinations of the design parameters. A matrix of tests is
also called a full factorial design (Forrester et al. 2008).

It is obvious that increasing the density of matrix (level
of factorial design) is more likely to locate underlying
failure modes, allowing the designers to investigate and
obtain insights into the failure mechanisms. For example, a
design handbook for composite materials issued by the U.S.
Department of Defense (DoD) addresses the importance of
selection of structural configurations, quoted, “it is impor-
tant to carefully select the correct test specimens that will
simulate the desired failure modes. Special attention should
be given to matrix sensitive failure modes” (Department
of Defense 2002b). In addition, the handbook recommends
replicating tests for statistical data analysis.

A key question is how we should allocate the lim-
ited number of tests whether to replication or exploration.
Figure 1 illustrates a tradeoff for up to 50 tests. If the
designer more cares about the noise rather than about miss-
ing failure modes, 4 × 4 matrix with three replications
would be an option. 7 × 7 matrix without any replication
is an alternative in search of underlying potential failure

modes. Since it is obvious that exploration is important
for failure mode identification, our main interest is how
replication contributes to reducing the error in failure load
approximation.

3 Surrogate models

In this section, we summarize the formulations of surro-
gate models, including polynomial response surface (PRS),
Gaussian process regression (GPR), and support vector
regression (SVR).

3.1 Polynomial response surface (PRS)

Polynomial response surface uses polynomial functions and
the least squares fit to approximate a true function. Let a
prediction of output y be ŷ, and x∗ be a location where
we predict y. ŷ is expressed as a linear combination of
polynomial functions as

ŷ(x∗) =
k∑

i=1

βiξi(x∗) (1)

where ξi(x) are basis functions, typically monomials βi

represent coefficients, and k is the number of coefficients
(Myers and Montgomery 1995).

As the true function is represented by y = ŷ + ε,
where ε is the error, PRS smoothens the noise (Giunta and
Watson 1998; Jin et al. 2001). PRS is also known for its
computational tractability. Because of polynomial functions
being applied, it may cause a problem when being fitted to
functions not approximated well by polynomials.

Since the basis function is typically unknown and we
need to choose an appropriate one, we will also discuss the
selection of the basis function using some metrics, such as
the standard error and cross validation error, i.e., leave-one-
out cross validation called PRESS (prediction of residual
error sum of square). We used the Surrogate Tool Box
(Viana 2010) which refers to the Matlab ‘regress’ routine for
the fitting (MATLAB and Statistics Toolbox Release 2012).

3.2 Gaussian process regression (GPR)

Gaussian process regression is originally developed as a
method of the spatial statistics (Rasmussen and Williams
2005). A special type of GPR is also known as Kriging
(Sacks et al. 1989). GPR views a set of data points as a
collection of random variables that follow some rule of cor-
relation, called random process, defined by (2). The name
of Gaussian process originates from the form of random
process using multivariate normal (Gaussian) distribution:

y ∼ GP(m(x), k(xi , xj )) (2)
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Fig. 1 Tradeoff between
replication and exploration
given up to 50 tests

where m (x) is the mean function of Gaussian process,, and
k(xi , xj ) represents the correlation between points. In this
paper, we use a linear model for the mean function and the
Gaussian correlation model, which is the most commonly
used for engineering applications, expressed as

k(xi , xj ) = σ 2exp

⎛

⎜⎝−
d∑

l=1

∣∣∣xl
i − xl

j

∣∣∣
2

2θ2
l

⎞

⎟⎠ (3)

where σ 2 is the process variance with zero mean and θl is the
scaling parameter of the l-th component of x in d dimension
which determines the correlation between two points.

The prediction ŷ at a new location x∗ is assumed to be
a realization of the random process that is identified by
given N observations, y = (y1, y2, ..., yN)T and X =
{x1, x2, ..., xN }, and is obtained by the following function.

ŷ = m(x∗)|y, X = m(x∗) + K(x∗, X)

×
(
K(X, X) + �σ 2

n

)−1
(y − m(x∗)1) (4)

with K(x∗, X) = [k(x∗, x1) k(x∗, x2) ... k(x∗, xN )], and
(i,j) component of K(X, X) is k(xi , xj ). 1 is an N × 1 vec-
tor of ones. �σ 2

n
is a diagonal matrix of diagonal terms σ 2

n .

Noise variance σ 2
n with zero mean is assumed to be inde-

pendent of σ and enables us to deal with replicated data.
The hyperparameters, (x), θl , σ , and σn are selected such
that the likelihood of observing y is maximum. In anal-
ogy with PRS, this process corresponds to the selection of
monomials.

Equation (4) is equivalent to determine N coefficients
of the radial basis functions K(x∗, X). In case there exists
replication, the total number of coefficients is reduced by
a factor of the number of replications because the radial
basis functions corresponding to the replicated points are
the same. The advantage of GPR is the flexibility of fit-
ting to nonlinear functions. However, the fitting process
of GPR is time consuming due to the optimization of the
hyperparameters.

We use the Gaussian Process Regression and Classifica-
tion Toolbox version 3.2. (Rasmussen and Williams 2005)

for the implementation. Since the toolbox deploys a line-
search method for the optimization of the hyperparameters,
the optimal solution tends to depend on starting points of
the search. To avoid ending up with a local optimum, we
use multiple starting points [1, 0.1, 0.01, 0.001, 0.0001,
0.00001] for both σ and σn in the normalized output space
(36 combinations of the starting points). We also select the

starting point of θ such that exp

(
− ∑d

l=1

∣∣∣x(l)
i −x

(l)
j

∣∣∣
2

2θ2
l

)
=

0.9 for the closest two points among the training points
assuming that the nearby points should be highly correlated.
After fitting with all the combinations of starting point, we
select the best model based on the maximum likelihood.

3.3 Support vector regression (SVR)

Support vector regression evolved from a machine learning
algorithm (Smola and Scholkopf 2004; Clarke et al. 2005;
Vapnik 1998). SVR balances the flatness of the approx-
imated function and the residual error by a user-define
parameter called regularization parameter C. A unique
aspect of SVR is an explicit treatment of noise by a user sup-
plied error tolerance ε. That is, only differences between the
fit and the data that are larger than ε are minimized. Figure 2
illustrates one of the most common models for the error tol-
erance, so-called ε-insensitive loss function. When the error
(= ŷi − yi) is within the tolerance ±ε, the loss (ξ ) is zero,
otherwise the loss is proportionally increased with the error.
We use the ε-insensitive loss function for the study.

Fig. 2 ε-sensitive loss function for SVR
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The prediction model at a new location x∗ can be
expressed by using the Lagrange multipliers, αi and α∗

i of
the two constraints in (5) as

ŷ(x∗) =
N∑

i=1

(αi − α∗
i )xT

i x∗ + b (5)

where xi represents the i-th training point.
There potentially are N parameters to be optimized (N

sets of Lagrange multipliers). In case we have replica-
tion, since all the replicated points have the same term
xT

i
x∗, the number of parameters to be optimized essen-

tially reduced by a factor of the number of replications, like
GPR. Furthermore, the prediction model is only determined
by the training points corresponding to non-zero Lagrange
multipliers, called support vectors. When ε-insensitive loss
function is used, support vectors correspond to the training
points being located outside of the error tolerance.

For the implementation, we use the Surrogate Tool Box
(Viana 2010), which uses the MATLAB code offered by
Gunn (1998). One of the challenges of SVR is to select an
appropriate set of parameters. In general, for regularization
parameter, substantially large C is suggested (Jordaan and
Smits 2002) and the exact selection of C “is not overly crit-
ical” (Forrester et al. 2008) and “has only negligible effect
on the generalization performance” (Cherkassky and Ma
2004). Based on some experiments seeking accurate fitting
for the example problems, we use infinity for C. For the
kernel function, we use Gaussian model as shown in (6),
which is commonly used, with θ being also a user-defined
parameter.

k(x, x′) = exp

(
−|x − x′|2

2θ2

)
(6)

In the same manner discussed for GPR, because nearby
points should be smoothly connected, and after some exper-
imentation, we selected θ such that k = 0.9 for the closest
two points. For ε, which is suggested to be close to the level
of noise (Cherkassky and Mulier 2006), we use the average
standard deviation of the observed data from 7 × 7 matrix
with 7 replications. We consider it a practical assumption
because the designer can get some idea about the noise level
from the observation.

For the selection of hyperparameters, i.e., C, ε, and θ ,
using cross validation is suggested (Forrester et al. 2008;
Smola and Scholkopf 2004; Basudhar 2012). However,
identifying the best hyperparameters is out of the scope
of this paper and testing a number of combinations of
the hyperparameters is computationally intractable. Instead
we will discuss how the parameter selection affects the
performance of the approximation.

4 Example problems

In order to illustrate practical failure criterion characteri-
zation, we chose two simple examples for clarity and to
allow exhaustive study of a large number of strategies. The
examples are a support bracket and a composite laminate
plate. Each structure has two underlying failure modes; one
is dominant in the design space and the other is rare, rep-
resenting an un-modeled mode that might be missed. The
composite laminate plate has a high order of nonlinear-
ity of the failure load surface, while the support bracket
has a smooth and almost linear surface. The following
subsections describe the example structures, test matrix,
treatment of the replicated data for approximation, and error
evaluation for analyzing the results.

4.1 Support bracket

A simple support bracket mounted on a base structure is
shown in Fig. 3. The load is applied to the handle and the
expected operational load angle α is 0 to 110 deg in the x-
z plane. It is also assumed that the height l and length a of
the bracket are fixed due to space constraints. The diameter
d of the cylindrical part is considered as a design parame-
ter. Table 1 shows the geometry and its variabillity of the
structure.

The combination of loading and geometry generates
multi-axial states of stress due to axial, bending, torsion, and
torsional shear stresses. Figure 4 illustrates the critical fail-
ure modes of the structure. Because of the additive effect of
the torsion and transverse shear stresses or bending and axial
stresses, the stress at point D is likely to exceed the strength.

Fig. 3 Support bracket

Author's personal copy



28 T. Matsumura et al.

Table 1 Properties of support bracket

Property Quantity Variability

l [inch] 2 N/A

a [inch] 4.6 N/A

d [inch] [1, 3] N/A

α [deg] [0, 110] N/A

Yield strength [psi] 43,000 Normal, 10 % COV

However, point A can be a critical point under some condi-
tions as shown in Fig. 4. If the designer fails to locate the
failure mode initiated at point A, the design allowable will
be underestimated.

It is assumed that the yield strength of the material is
normally distributed, and the geometry of test specimens
varies within the tolerances of manufacturing, which are
the sources of the noise in test observations. The failure is
predicted by the von-Mises criterion ignoring stress con-
centrations. The tests seek to allow designers to predict
the mean failure loads due to the dominant mode at point
D. Figure 5 depicts the failure load surface corresponding
to point D, which will be approximated by the surrogate
models.

4.2 Composite laminate plate

For the second example, intended to have a more complex
failure load surface, a symmetric composite laminate with
three ply angles [0◦/ − θ/ + θ ]s is considered (Fig. 6).
The laminate is subject to mechanical loading along x and

Fig. 4 Critical failure modes of support bracket. A blue circle indi-
cates that failure initiates at point D, while a cross indicates initial
failure at point A

Fig. 5 Failure load surface of support bracket initiated at point D

y directions defined by the load ratio α, such that Nx =
(1−α)F and Ny = αF . As design parameters for the failure
load identification, the ply angle θ and the loading condi-
tion α are selected. The range of the parameters are set as [0,
90] deg for θ and [0, 0.5] for α. Table 2 shows the material
properties and strain allowables, including strain allowable
along fiber direction ε1allow, transverse direction ε2allow, and
shear γ12allow. All the properties are assumed to be normally
distributed and the sources of noise in test observations. The
strains are predicted by the Classical Lamination Theory
(CLT).

Figure 7 shows the mapping of the critical failure modes,
one due to the ply axial strain, which is dominant, and the
other due to ply shear strain, which is rare. The designer
is assumed to conduct a series of tests in order to con-
struct an accurate approximation of the failure load map
of the dominant mode as well as to spot the less dominant
mode. Figure 8 is the failure load surface due to ply axial
strain.

4.3 Test matrix and fitting strategy

Our test matrices range from 4 × 4 to 7 × 7 with evenly
spaced test points in order to investigate the effect of the
density of matrix on the accuracy of approximation. For

Fig. 6 Composite laminate plate
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Table 2 Properties of composite laminate plate

Property Quantity

Mean CV

E1 [GPa] 150 5 %

E2 [GPa] 9 5 %

ν12 0.34 5 %

G12 [GPa] 4.6 5 %

Thickness of ply [μm] 125 N/A

ε1allow ±0.01 6 %

ε2allow ±0.01 6 %

γ12allow ±0.015 6 %

each test matrix, we replicate the same test configuration up
to seven times. Table 3 shows the total number of tests for
the matrices. For both structural examples, 5 × 5 test matrix
or denser ones will detect the less dominant failure modes;
therefore obviously 4 × 4 matrix is not a desirable option.
We compare the following two strategies for fitting the sur-
rogate models. Note that both strategies provide the same
result for PRS.

(1) All-at-once fitting strategy
The surrogate models are fitted to all test data includ-
ing the replicated ones.

(2) Mean fitting strategy
The mean values of the replicated data are taken first at
each location in the design space. Then, the surrogate
models are fitted to the means

Fig. 7 Critical failure modes of composite laminate plate. A solid cir-
cle indicates the failure due to strain along fiber direction ε1 or strain
transverse along fiber direction ε2, while an empty circle indicates the
failure due to shear strain γ12

Fig. 8 Failure load surface of composite laminate plate due to axial
strain

4.4 Error evaluation

In order to evaluate the accuracy of the failure load mapping,
we compare the surrogate predictions with the true values
from 20 × 20 matrix of test points (in total 400 points). We
define the true values of the failure load as the mean of infi-
nite number of test observations. For the support bracket,
this corresponds to the mean value of the material yield
strength (only uncertainty in the problem and linear relation-
ship of the failure load). For the composite laminate plate,
since multiple sources of uncertainty are involved, we esti-
mate the true mean values from 10,000 random samples.
The standard errors of the sample means is less than 0.5 %
of the range of the failure load, which is small compared to
the surrogate errors.

To measure overall accuracy, we use the root mean square
error normalized by the range of failure loads (NRMSE)
calculated by (7). We also evaluate the normalized maxi-
mum absolute error calculated by (8) in order to examine
the robustness of the surrogate models.

(a) Normalized root mean square error (NRMSE)

NRMSE = 1

range of y

√√√√ 1

400

400∑

i=1

(ŷi − yi)
2 (7)

(b) Normalized maximum absolute error (NMAE)

NMAE = 1

range of y
max(|ŷ1 − y1|, |ŷ2 − y2|, ..., |ŷ400 − y400|) (8)

We first produce the failure loads corresponding to a
set of randomly generated input structural and geometri-
cal properties for a particular matrix of experiments Then,
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30 T. Matsumura et al.

Table 3 Test matrix and total
number of tests Matrix Number of replications

1 2 3 4 5 6 7

4 × 4 16 32 48 64 80 96 112

5 × 5 25 50 75 100 125 150 175

6 × 6 36 72 108 144 180 216 252

7 × 7 49 98 147 196 245 294 343

we fit the surrogate models to the failure loads, and evalu-
ate NRMSE and NMAE. We repeat this fitting process 100
times, each with a different set of the random inputs, failure
loads and failure load approximation.

The errors discussed in the following section are the
mean values over 100 fits. The standard errors of the mean
values over 100 runs are, on average, less than 0.1 % for
NRMSE and less than 0.4 % for NMAE, which means that
only differences between surrogate models that are sub-
stantially larger than these standard errors are statistically
significant.

5 Results

5.1 Support bracket

We first discuss the results of surrogate models fitted to
the almost linear surface of failure load of support bracket
(Fig. 5) For PRS, 1st, 2nd, and 3rd order polynomial func-
tions were fitted, and then, 2nd order PRS was selected
as the best ones based on the leave-one-out cross valida-
tion, PRESS. PRESS predicted well the best polynomial

functions that offer smallest NRMSE except for the cases
of 7 × 7 matrix with 6 and 7 replications. In other words,
PRESS properly warned that 3rd and 4th order PRSs over-
fitted noise. For SVR, the error tolerance ε is selected at 936
lb as the average of the noise level (one standard deviation)
from 87 lb to 2421 lb Note that 936 lb corresponds to 4.1 %
of the range of failure load.

To examine the resource allocation (replication vs. explo-
ration), Figs. 9 and 10 show NRMSE and NMAE of the
three surrogate models with respect to the total number of
tests when the all-at-once fitting strategy is applied (for the
details of test matrix, see Table 3). For PRS and GPR, all
four curves corresponding to the densities of matrix (from
4 × 4 matrix to 7 × 7 matrix) form a single curve in
NRMSE. This means that replication and exploration con-
tribute equally to improving the accuracy of approximation.

For PRS, this trend is supported by the behavior of the
standard error predicted by PRS, which represents the unbi-
ased estimator of noise variance Fig. 11 shows the boxplot
of standard errors of the various test strategies with given
about 50 tests, including 7 × 7 matrix without replication,
5×5 matrix with 2 replications and 4×4 with 3 replications.
It can be seen that the medians and variations of the standard

Fig. 9 Error comparison for support bracket: NRMSE for all-at-once
fitting strategy. Markers of each line correspond to one replication
through seven replications from left to right (see Table 3 for details

on the numbers of tests). The average standard errors of the means of
NRMSE are 0.05 % (PRS), 0.06 % (GPR) and 0.05 % (SVR)
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Accurate predictions from noisy data 31

Fig. 10 Error comparison for support bracket: NMAE for all-at-once fitting strategy. Markers of each line correspond to one replication through
seven replications from left to right. The average standard errors of the means of NRMSE are 0.18 % (PRS), 0.25 % (GPR) and 0.30 % (SVR)

errors were almost the same, indicating that whether it is
replication or exploration did not matter from the standpoint
of noise prediction.

In order to identify the causes of error, Table 4 compares
the errors fitted to noise-free data and that to noisy data
with 7 × 7 matrix. NRMSE for noise-free data purely rep-
resents the modeling error of surrogate. For example, PRS
has a 0.6 % error for noise-free data, but the error increased
to 1.7 % when the noise is introduced. Similarly, for other
surrogate models, most of the errors are due to noise rather
than the modeling error.

From these observations, for PRS and GPR there was
no significant advantage of replication over exploration in
terms of the accuracy of approximation. This leads us to
conclude that exploration is more important than replication
for this example in the context of failure criterion character-
ization where we are subjected to search for potential failure
modes.

SVR, on the other hand, shows different trends and
underperforms PRS and GPR. This may reflects the fact
that SVR particularly applied to this problem is less sensi-
tive than PRS to very large errors. While PRS minimizes L2

Fig. 11 Standard errors predicted by PRS for support bracket for
given about 50 tests

error norm (i.e., NRMSE) by the least square method, SVR
with ε-insensitive loss function minimizes L1 error norm.
This loss function does not penalize at all small errors, and
does not emphasize the effect of the largest errors by squar-
ing them In fact, as seen in Table 4 L1 norm considering the
error tolerance, defined by the following equation, of SVR
(0.6 %) is substantially smaller than those of others (more
than 4 %):

ε sensitive error = 1

(range of y)

1

N

∑

ŷi−yobs
i >ε

×
∣∣∣
(
ŷi − yobs

i

)
− ε

∣∣∣ (9)

where N is the number of test points in which
ŷi − yobs

i > ε. Note that ε of SVR is set to be zero when
SVR was fitted to noise-free data.

It is also observed that the accuracy of SVR deteriorates
as the test matrix becomes denser both in NRMSE (Fig. 9)
and NMAE (Fig. 10). GPR showed a similar trend in NMAE

Table 4 Errors fitted to noise-free data and sensitive errors (support
bracket)

Noise-free data Noisy data

7 × 7 matrix 7 × 7 matrix

with no replication

NRMSE PRS 0.6 % 1.7 %

GPR 0.0 % 1.9 %

SVR 0.1 % 4.8 %

ε sensitive error PRS – 4.3 %

GPR – 4.0 %

SVR – 0.6 %

Author's personal copy



32 T. Matsumura et al.

(Fig. 10), but it was not as significant as that of SVR. This
is explained mainly by the ratio of the number of training
points and the number of parameters that determine the pre-
diction model—it is called ‘parameter ratio’ in this paper.
If the parameter ratio is small, i.e. the number of parame-
ters to be tuned is larger than the number of training points,
the regression model has a danger of overfitting (Hawkins
2004).

Table 5 shows the numbers of parameters and the param-
eter ratios of all the surrogate models fitted to for given
about 50 tests. For example, 2nd order PRS for two input
variables has six coefficients regardless of the test matrix If
it is fitted to 4 × 4 matrix with 3 replications (48 points),
the ratio is 8 (= 48/6). For GPR, as discussed earlier,
the number of parameters is the same as the number of
training points, leading to the parameter to be 3, which is
substantially smaller than that of PRS. In case of replica-
tion, where the total number of parameters is reduced by
a factor of the number of replications, the parameter ratio
becomes even smaller and is 1. Similarly, SVR, for which
the number of support vectors determines the parameters,
has the smaller parameters. These ratios account for the
accuracy deterioration of GPR and SVR with respect to
matrix density.

The poor performance of SVR may also be attributed
to not-well-tuned parameters, i.e., ε, C, and θ , unlike GPR
which optimizes all the hyperparameters by the maximum
likelihood estimator. Our numerical experiments showed
that tuning the parameters of SVR improved the accu-
racy and alleviated the accuracy deterioration with a denser
matrix. Figure 12 illustrates that increasing the correlation
coefficient for the nearest two points from 0.9 (original set)
to 0.99 reduced the error. This makes sense because a higher
correlation governs a larger area of the space and makes the
fitting curve flatter and less sensitive to noise In fact, the
optimized correlation coefficients by GPR turned out to be
higher than 0.9. Figure 12 also shows that tuning the reg-
ularization parameter C, which is originally set as infinity,
improved the performance.

Next we investigated the treatment of replicated data for
fitting. Figure 13 compares the all-at-once fitting and the

Fig. 12 Performance of SVR with various combinations of C and R.
C is the regularization parameter, and R is the correlation coefficient
for the closest two points. ‘Max of y’ represents the maximum value
of the failure load

mean fitting for GPR in terms of NRMSE. It is shown that
there was no significant difference between the two fitting
strategies. From the stand point of the parameter ratio, the
mean fitting has a higher risk of overfitting. As shown in
Table 5 the parameter ratio of the mean fitting is always 1
and smaller than the ratios of the all-at-once fitting. On the
other hand, taking the mean values essentially reduces the
noise level, thereby less threat of overfitting. It seems that
these two phenomena cancel out each other.

Figure 14 shows that the mean fitting performed substan-
tially better than the all-at-once fitting for SVR. On top of
the smaller parameter ratio, the hyperparameters of SVR are
not well-tuned. In such a case, reducing the noise by taking
the means was more influential than the proneness to over-
fitting. Note that we adjusted the error tolerance ε when the
mean fitting is applied in order to account for the accuracy
of the estimator of sample mean. For the adjustment, the
original ε was divided by the square root of the number of
replications (εadjusted = ε/

√
Nrep). It is also noteworthy

that using the original ε for the mean fitting offered a poorer
performance than the all-at-once fitting.

Table 5 Ratio between the number of training data points and the number of parameters for given about 50 tests (support bracket)

Fitting strategy Test matrix PRS GPR SVR

All-at-once fitting 4 × 4-3 reps 8.0 (6) 3 (16) 3.4 (13.9)

5 × 5-2 reps 8.3 (6) 2 (25) 2.5 (20.3)

7 × 7-1 rep 8.2 (6) 1 (49) 1.7 (29.1)

Mean fitting 4 × 4-3 reps – 1 (16) 1.5 (8.3)

5 × 5-2 reps – 1 (25) 1.7 (11.4)

The numbers in parentheses represent the number of parameters to be optimized for fitting. All numbers are the mean over 100 fits
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Fig. 13 Comparison of fitting
strategy: NRMSE of GPR for
support bracket. Markers of
each line correspond to one
replication through seven
replications from left to right.
The average standard error of
the means of NRMSE is 0.07 %

5.2 Composite laminate plate

The fitting performance to a complex failure load surface of
the composite laminate plate is discussed in this section For
PRS, various orders of polynomial functions ranging from
2nd order to 8th order were tested and the best models listed
in Table 6 are selected based on NRMSE. For the selection,
we limited the number of coefficients of the polynomial
functions to be smaller than the number of training points
as the least square fit typically assumes (Myers and Mont-
gomery 1995). Since NRMSE is unknown in reality, we will
discuss the selection of best PRS in the next subsection.

Figures 15 and 16 show NRMSE and NMAE of all the
surrogate models with the all-at-once fitting. It can be seen

that the 4×4 matrix did not capture well the failure load sur-
face for all the surrogate models. Once 5×5 or denser matrix
is available, the accuracy was substantially improved. An
important observation from these two figures is that the con-
tribution of replication to reducing the error is miniscule
compared to that of increasing the density of matrix For
example, with PRS, the error of 7 × 7 matrix without repli-
cation (total 49 tests) was smaller than that of 6 × 6 matrix
with 7 replications (total 252 tests).

In terms of the error sources Table 7 compares the errors
of the surrogate models fitted to the noise-free data and
those to the noisy data. Obviously, most of the errors come
from the modeling error rather than the noise for all sur-
rogate models. Even for SVR, the error for noise-free data

Fig. 14 Comparison of fitting
strategy: NRMSE of SVR for
support bracket. Markers of
each line correspond to one
replication through seven
replications from left to right.
The average standard error of
the means of NRMSE is 0.29 %
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Table 6 Best polynomial order
for PRS based on NRMSE for
composite laminate plate

Test matrix Best function Test matrix Best function

4 × 4 1 rep 4th 6 × 6 1 rep 7th

2 rep 4th 2 rep 7th

3 rep 4th 3 rep 7th

4 rep 4th 4 rep 7th

5 rep 4th 5 rep 7th

6 rep 4th 6 rep 7th

7 rep 4th 7 rep 7th

5 × 5 1 rep 5th 7 × 7 1 rep 8th

2 rep 5th 2 rep 8th

3 rep 5th 3 rep 8th

4 rep 5th 4 rep 8th

5 rep 5th 5 rep 8th

6 rep 5th 6 rep 8th

7 rep 5th 7 rep 8th

was worse than the average error over 100 fits to noisy data.
Table 8 shows the parameter ratios for given about 50 tests.
SVR has support vectors, which are located out of the error
tolerance, at almost all test points. For example, with 7 × 7
matrix without replication, there are support vectors at 46.6
locations on average out of 49 locations. This also indicates
that the modeling error is significant.

As a conclusion, it can be said that exploring different
locations was found to be more important than replicating
tests at the same location when modeling error was domi-
nant For PRS, this was also supported by the standard error
which followed the same trend.

As for the treatment of replicated data, Fig. 17 com-
pares different fitting strategies for GPR. Unlike the sup-
port bracket problem, the all-at-once fitting clearly outper-
formed the mean fitting. It seems that informing as many
observations including replicated ones (though they suf-
fer from noise) improved the accuracy As discussed in the
Section 2.1, this result is consistent with the previous work
conducted by Picheny (2009) on Kriging by assessing the
prediction variance. He experimentally demonstrated that
having a larger number of different observations from high-
noise simulation provided a smaller prediction variance
than a smaller number of observations from a lower-noise

Fig. 15 Error comparison for composite laminate plate: NRMSE for
all-at-once fitting strategy. Markers of each line correspond to one
replication through seven replications from left to right. The average

standard errors of the mean of NRMSE are 0.05 % (PRS), 0.08 %
(GPR) and 0.07 % (SVR)
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Fig. 16 Error comparison for composite laminate plate: NMAE for
all-at-once fitting strategy. Markers of each line correspond to one
replication through seven replications from left to right. The average

standard errors of the mean of NRMSE are 0.29 % (PRS), 0.34 %
(GPR) and 0.27 % (SVR)

simulation For SVR, Fig. 18 illustrates that the mean fitting
still helped to compensate for the not-well-tuned model as
discussed for the support bracket problem.

Since the errors discussed this section are the average
out of 100 fits, we were interested in whether exploration
always outperforms over replication for each of fitting
iterations. Test strategies for given about 100 tests are exam-
ined, including 7 × 7 matrix with two replications (98
tests), 6 × 6 matrix with three replications (108 tests), and
5 × 5 matrix with four replications (100 tests). Table 9
depicts how many times which test strategy performed bet-
ter than others. Except for the comparison of SVR between
7 × 7 matrix and 6 × 6 matrix, whose performances were
very comparable (Fig. 15), a denser test matrix steadily
provided a more accurate approximation at almost more
than 90 %.

Finally, one might wonder which surrogate model should
be chosen among others. We examined whether the PRESS
predicted the best surrogate for each of the fitting iterations
of 7×7 matrix with 2 replications. Table 10 shows the selec-
tions of PRESS and the correct rate PRESS well predicted

that GPR was better than PRS at the correct rate of 98 %. As
for the comparison to SVR, PRESS seemed to work well.
However, we found that PRESS of SVR was substantially
higher than those of other surrogate models, and that is why
PRESS always predicted that SVR was inferior to others.
This reflects the fact that the SVR used in this paper is very
sensitive to noise.

5.3 Selection of best PRS for composite laminate plate

Finally we discuss the selection of the best polynomial order
of PRS. Table 11 compares the best polynomial order based
on NRMSE, the prediction of the best function by PRESS
and by the standard error (SE). With 4 × 4 matrix, nei-
ther PRESS nor SE predicted properly the best order. With
the denser matrices, they predicted correctly. Nonetheless
PRESS always failed to predict in the case of no replication
and tended to pick up a smaller order of polynomial func-
tion compared to the actual best. As shown in Table 8, PRS
fitted to no-replicated data was prone to overfitting because
of the smaller parameter ratio. This made PRESS of a higher

Table 7 Errors of surrogate
models fitted to noise-free data
(composite laminate plate)

Error

Noise-free data Noisy data Difference

(7 × 7 matrix) (7 × 7 matrix with no replication)

PRS 7.30 % 7.54 % 0.24 %

GPR 7.02 % 7.45 % 0.35 %

SVR 8.00 % 7.75 % 0.25 %
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Table 8 Ratio between the number of training data points and the number of parameters for given about 50 tests (composite laminate plate)

Fitting strategy Test matrix PRS GPR SVR

All-at-once 4 × 4-3 reps 3.2 (15) 3 (16) 3.0 (16.0)

5 × 5-2 reps 2.4 (21) 2 (25) 2.0 (24.9)

7 × 7-1 rep 1.1 (45) 1 (49) 1.1 (46.6)

Mean 4 × 4-3reps – 1 (16) 1 (16)

5 × 5-2 reps – 1 (25) 1 (25)

The numbers in parentheses represent the number of parameters to be optimized for fitting. All numbers are the mean over 100 fits

order of polynomial order larger, and in turn, PRESS pre-
ferred a lower order of polynomial function. SE, on the other
hand, steadily predicted the best orders or at least a reason-
ably higher order of polynomial function even when there
was no replication.

Interestingly, in many cases, we observed that the best
PRS models violated the requirement that the number of
coefficients be smaller than the number of observations.
For example, for 5 × 5 matrix (25 different observations
in the input space), 6th order PRS (28 coefficients, hence
undetermined system) offered the minimum NRMSE. Mat-
lab ‘regress’ function (MATLAB and Statistics Toolbox
Release 2012) handles such undetermined problems by
ignoring linearly dependent column vectors of X by apply-
ing the Householder QR decomposition. The QR decom-
position tends to choose column vectors of X that have a
higher norm as linearly independent columns. As a result,
for the 6th order PRS, after the dependent column vec-
tors being ignored, the highest monomial x6 appeared to
remain, giving some flexibility to the fitting curve and offer-
ing a better accuracy. It should be noted that the selection of
monomials highly depends on how we normalize the input

space. Note that in this paper, we normalized the input vari-
ables from 0 to 1. Another important warning about this
behavior is that it is very hard to identify such best function
for the undetermined problem either by PRESS, standard
error, or R-square In other words, PRESS for undetermined
system might be misleading.

5.4 Effects of dimensionality and noise level on effective
test strategy

An important consideration is the dimensionality of input
space; that is, if the conclusions in the previous section
hold for higher dimension problems. As the dimension
increases, the sampling data become relatively sparse. When
the failure load surface is simple, as discussed in the first
example, there is no clear advantage of investing in repli-
cation over exploration for a sparse data matrix. When
the failure load surface is highly nonlinear, as demon-
strated in the second example, it is obvious that increas-
ing the density of matrix is the choice. Thus, explo-
ration is more effective than replication regardless of
dimensionality.

Fig. 17 Comparison of fitting
strategy: NRMSE of GPR for
composite laminate plate.
Markers of each line correspond
to one replication through seven
replications from left to right.
The average standard error of
the means of NRMSE is 0.07 %
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Fig. 18 Comparison of fitting
strategy: NRMSE of SVR for
composite laminate plate.
Markers of each line correspond
to one replication through seven
replications from left to right.
The average standard error of
the means of NRMSE is 0.07 %

Another important issue is whether the noise level affects
the selection of test strategy. As shown in the second exam-
ple, when the error due to surrogate modeling is dominant
as compared to the size of noise, the noise plays a very small
role, and exploration is important to improve the accuracy.
On the other hand, when the noise is a dominant source
of the error, as in the first example, GPR and SVR with a
denser test matrix is prone to overfitting because of their
high parameter ratio. So polynomial response surfaces may
be preferable. If SVR or GPR are used, the density of test

matrix should be sufficient enough to capture the surface
but not too high to avoid overfitting. PRS is less sensitive to
noise as long as an appropriate order of polynomial function
is selected, and for that, SE seemed to be better than PRESS.

6 Concluding remarks

We investigated an effective test strategy for failure cri-
terion characterization, focusing on allocation of tests to

Table 9 Performance comparison between test matrices for each fitting iteration for given about 100 tests (Composite laminate plate)

Probability of having better accuracy

7 × 7 matrix 6 × 6 matrix 5 × 5 matrix

(2 replications) (3 replications) (4 replications)

PRS 93 % 7 % –

99 % – 1 %

– 99 % 1 %

GPR with all-at-once fitting 89 % 11 % –

90 % – 10 %

– 86 % 14 %

SVR with mean fitting 69 % 31 % –

93 % – 7 %

– 93 % 7 %

Surrogate models are fitted to 100 sets of random test observation. For each set of the test observation, NRMSEs of the surrogate models are
compared
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Table 10 Surrogate selection by PRESS (Composite laminate plate)

Test Prediction of PRESS and actual result Correct rate

GPR with all-at-once fitting is better than PRS True/Positive 98 98 %

False/Positive 2

False/negative 0

True/Negative 0

PRS is better than SVR with mean fitting True/Positive 72 72 %

False/Positive 28

False/negative 0

True/Negative 0

GPR with all-at-once fitting is better than SVR with mean fitting True/Positive 98 98 %

False/Positive 2

False/negative 0

True/Negative 0

The surrogate models fitted to 7 × 7 matrix with 2 replications are compared

replication or exploration. For approximating the fail-
ure load surfaces, polynomial response surface (PRS),
Gaussian process regression (GPR), and support vec-
tor regression (SVR) were examined. With the illustra-
tion of two structural element examples, we conclude
that replication is not necessarily needed and that explo-
ration is more important both for discovering underly-
ing failure modes and for the accuracy of failure load
approximation.

For the example with almost linear failure load sur-
face the noise in observations was significant compared to

the error in surrogate modeling, and then replication and
exploration contributed equally to reducing the error for
PRS and GPR. Then, the tests should be spent for explo-
ration for the purpose of discovering unexpected failure
modes.

On the other hand, for the example with complicated non-
linear failure load surface, in which the error in surrogate
model is dominant, exploration was clearly more important
for all surrogate models both for capturing the behav-
ior of the surface and for identifying unexpected failure
modes.

Table 11 Best polynomial functions for PRS predicted by PRESS and SE for composite laminate plate

Test matrix Best NRMSE Prediction Test matrix Best NRMSE Prediction

PRESS SE PRESS SE

4 × 4 1 rep 4th 2nd 3rd 6 × 6 1 rep 7th 3rd 5th

2 rep 4th 3rd 3rd 2 rep 7th 7th 7th

3 rep 4th 3rd 4th 3 rep 7th 7th 7th

4 rep 4th 3rd 4th 4 rep 7th 7th 7th

5 rep 4th 4th 4th 5 rep 7th 7th 7th

6 rep 4th 4th 4th 6 rep 7th 7th 7th

7 rep 4th 4th 4th 7 rep 7th 7th 7th

5 × 5 1 rep 5th 2nd 5th 7 × 7 1 rep 8th 5th 8th

2 rep 5th 5th 5th 2 rep 8th 8th 8th

3 rep 5th 5th 5th 3 rep 8th 8th 8th

4 rep 5th 5th 5th 4 rep 8th 8th 8th

5 rep 5th 5th 5th 5 rep 8th 8th 8th

6 rep 5th 5th 5th 6 rep 8th 8th 8th

7 rep 5th 5th 5th 7 rep 8th 8th 8th

Highlighted cells represent that the predictions are wrong

Author's personal copy



Accurate predictions from noisy data 39

High dimensionality in input space can be considered to
be equivalent to sparseness of space filling, which harms
the accuracy of surrogate models and the chance of spot-
ting unknown failure modes. When the failure load surface
is highly nonlinear, exploration is a more effective approach
to tackle high dimensionality than replication. An important
warning here is that exploration may encounter the issue of
overfitting when the noise level is high, as illustrated in the
second example with GPR and SVR. We also examined two
different treatments of replicated data for surrogate fitting:
(1) fitting a surrogate to all replicated data simultaneously
and (2) fitting only to the mean values of replicated data.
While the all-at-once fitting outperformed the mean fitting
for GPR The mean fitting compensated for the proneness of
the not-well-tuned SVR to overfitting by reducing the noise.
We also found that it was important to adjust the error tol-
erance ε for the mean fitting to account for the accuracy of
sample mean estimator.

Finally, we addressed the issue that the least square fit
provided by Matlab might offer a better solution when
the number of coefficients is larger than the number of
test points (undetermined problem). However, the solution
varies depending on how we normalize input space and the
performance metrics, such as PRESS, might not be reliable.
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