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a b s t r a c t

This paper is to provide practical options for prognostics so that beginners can select appropriate
methods for their fields of application. To achieve this goal, several popular algorithms are first reviewed
in the data-driven and physics-based prognostics methods. Each algorithm’s attributes and pros and
cons are analyzed in terms of model definition, model parameter estimation and ability to handle noise
and bias in data. Fatigue crack growth examples are then used to illustrate the characteristics of different
algorithms. In order to suggest a suitable algorithm, several studies are made based on the number of
data sets, the level of noise and bias, availability of loading and physical models, and complexity of the
damage growth behavior. Based on the study, it is concluded that the Gaussian process is easy and fast to
implement, but works well only when the covariance function is properly defined. The neural network
has the advantage in the case of large noise and complex models but only with many training data sets.
The particle filter and Bayesian method are superior to the former methods because they are less
affected by noise and model complexity, but work only when physical model and loading conditions are
available.
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1. Introduction

Condition-based maintenance (CBM), as illustrated in Fig. 1, is a
cost-effective maintenance strategy in which maintenance sche-
dules are predicted based on the results provided from diagnostics
and prognostics. Diagnostics characterizes the status of damage
through detection, isolation and identification using collected data
from structural health monitoring. Based on the diagnostics
information, prognostics predicts the future behavior of damage
and the remaining useful life (RUL), which is the remaining time/
cycles before requiring maintenance. The collected data that are
important for both diagnostics and prognostics can be classified
into two types; (1) event data or run-to-failure data and (2) con-
dition monitoring (CM) data, which provide information on
damage, such as wear volume, crack size, vibration signal, oil
debris and thermography, to name a few. Some CM data are direct,
such as crack size, while others are indirect, such as oil debris.
In the case of indirect CM data, a damage quantification process is
required for diagnostics and prognostics.

There are several reviews on diagnostics methods [1–3] as well
as a large number of publications on diagnostics [4–8], signal
processing and damage quantification [9,10]. For example, Jardine
et al. [1] provided an overall review on diagnostics and prognostics
in terms of implementing CBM and decision making. There
are also other references for CBM [11,12]. On the other hand,
a relatively small number of reviews on prognostics are available
[13–17]. Most of them provide a simple comparison of different
methods for a specific application only. In addition, most review
papers focus on an algorithm itself, rather than interpreting the
algorithms in the context of prognostics. Therefore, the goal of this
paper is to provide a practical review of prognostic methods so
that beginners can select appropriate methods for their fields of
application. To achieve this goal, this paper introduces not only
prognostics algorithms, but also their attributes and pros and cons
in terms of model definition, model parameter estimation and
ability to handle noise and bias in data.

In general, prognostics methods can be categorized into data-
driven, physics-based and hybrid approaches, as illustrated in

Fig. 2. Data-driven approaches use information from previously
collected data (training data) to identify the characteristics of the
currently measured damage state and to predict the future trend.
Physics-based approaches assume that a physical model describ-
ing the behavior of damage is available and combine the physical
model with measured data to identify model parameters and to
predict future behavior. There are two main differences between
data-driven and physics-based approaches; (1) availability of a
physical model and (2) use of training data to identify the
characteristics of the damage state. Hybrid approaches combine
the abovementioned methods to improve the prediction perfor-
mance [18–20]. The last approach, however, is not mature yet and
will not be discussed in this paper.

Data-driven and physics-based approaches have different prop-
erties that contribute to the preference of each algorithm. Provid-
ing a standard to select the best algorithm for different conditions
is important for users. In this paper, therefore, the following
conditions will be considered: the number of data sets, the level
of noise and bias in data, availability of loading conditions and
physical models and model complexity. Typical prognostics algo-
rithms are tested under such conditions to show the influence of
each algorithm’s attributes as well as the pros and cons of the
results. A fatigue crack growth example is used for this purpose
because a physical model is available, which enables comparison
between different methods in prognostics. However, the conclu-
sions in this paper are not limited to the crack growth problem
and can be interpreted in a general context.

The paper is organized as follows: in Sections 2 and 3, reviews
on the data-driven and physics-based approaches are presented,
respectively. In Section 4, several case studies are presented, in
which the attributes of different prognostics methods are analyzed
in order to help select an appropriate method, followed by
conclusions in Section 5.

Fig. 1. Building-block of condition-based maintenance. Fig. 2. Categorization and definition of prognostics methods.
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2. Reviews on data-driven approaches

Data-driven approaches use information from observed data to
identify the characteristics of damage progress and predict the
future state without using any particular physical model. Instead,
mathematical models and/or weight parameters are employed,
which are determined based on the training data that are obtained
under various usage conditions. Since the data-driven approaches
depend on the trend of data, which often show a distinct
characteristic near the end of life, they are powerful in predicting
near-future behaviors, especially toward the end of life.

The data-driven approaches are generally divided into two
categories: (1) the artificial intelligence approaches that include
neural network (NN) [21–23] and fuzzy logic [24,25]; and (2) the
statistical approaches that include the Gaussian process (GP)
regression [26,27], relevance/support vector machine [28,29], least
squares regression [30], the gamma process [31], the Wiener
processes [32], hidden Markov model [33], etc. Among these
algorithms, NN and GP are most commonly used for prognostics,
and thus, will be discussed in this paper.

2.1. Neural network (NN)

The Neural Network algorithm is a representative data-driven
method in which a network model learns a way to produce a
desired output, such as the level of degradation or lifespan, by
reacting to given inputs, such as time and usage conditions. Once
the network model learns enough about the relationship between
inputs and output, it can be used for the purpose of diagnosis and
prognosis. A typical architecture, feed-forward neural network
(FFNN) [34], is illustrated in Fig. 3, in which circles represent nodes
(also called a neuron or unit) and each set of nodes in the same
column is called a layer. The nodes in the input and output layer
represent the input and output variables, respectively. The number
of nodes in the hidden layer should be determined to properly
express the mechanism between the input and output, by receiv-
ing signals from the input layer and forwarding them to the output
layer. The learning process is equivalent to determining weight
parameters such that the network model accurately represents the
relationship between inputs and outputs. Once the network model
learns enough, the model is functionalized using transfer functions
and weight parameters. The transfer functions characterize the
relationship between two adjacent layers, where several types of
transfer functions are available, such as the sigmoid, inverse and
linear functions [35]. The weight parameters include weights and
biases [36,37]. The weights, shown as rectangles in Fig. 3, are
usually multiplied with the value at the previous nodes, and then
the biases shown as ellipses are added to the sum of the results to
be an input to the transfer function. The process of finding the
optimal weight parameters is called training, or learning, and
requires many sets of training data.

The FFNN is often called the back-propagation neural network
(BPNN) because the weight parameters are determined through a
learning/optimization algorithm by the backward propagation of
errors between the training data and the output from the network
model [38]. In other words, FFNN and BPNN are used, respectively,
to calculate the response forward and to update the weight
parameters backward, based on the response. Recurrent NN
(RNN) [39] is the second most common architecture; its concept
is not much different from the FFNN, except that it has local
feedback connections between the input and hidden/output
nodes. Since the Levenberg–Marquardt back-propagation algo-
rithm [40] is usually employed for the RNN’s learning algorithm,
RNN and Levenberg–Marquardt neural networks are sometimes
used interchangeably. In addition to the FFNN and RNN, there are
other neural networks, such as fuzzy-neural [41], wavelet [42],
associative-memory [43], modular [44] and hybrid [45,46] neural
networks.

In the following, three important issues are discussed for NN-
based prognostics. It is important that users are aware of these
issues in order to use the algorithm properly.

2.1.1. Issue 1: Network model definition (the number of nodes and
layers)

The first issue is the definition of the network model, which
includes selecting the number of hidden nodes, hidden layers and
input nodes. Although there is no general selection procedure for
the number of hidden nodes, Lawrence et al. [47] investigated the
usage of mean square errors in order to find the optimal number of
hidden nodes. Gómez et al. [48] used the idea of measuring
complexity of function to determine the number of nodes and
showed that the results were close to the optimum. More studies
on number of hidden nodes are summarized in Ref. [49]. While
one or two hidden layers are commonly used, Ostafe [50]
presented a method using pattern recognition to determine the
number of hidden layers.

The problem of determining the number of input nodes always
exists in the data-driven approach since all available information,
such as time, loading conditions, and damage data can be
considered as inputs. It is natural to use damage data as inputs,
but Chakraborty et al. [21] concluded that it was unclear how
many past values should be used as inputs. Chang and Hsieh [51]
explored the optimal number of input nodes using particle swarm
optimization. In conclusion, there is no universal procedure to
establish a proper NN model, which may be difficult for new users
without much experience. In recent years, there have been efforts
to find proper model/method for each application rather than a
study of selecting number of nodes and layers [52–54].

2.1.2. Issue 2: Finding optimal parameters (weights and biases)
Once a network model is defined, the next issue is to find the

weight parameters that are related with the model using a
learning/optimization algorithm. In NN, no matter how complex
the relationship between the input and output layer is, it is
possible to express the relationship by augmenting the number
of hidden layers and hidden nodes. However, more complex NN
model ends up with more unknown parameters, which requires
more training data. When the BPNN algorithm is used especially,
the following problems occur: (1) the global optimum is extremely
difficult to find in the case of many parameters and (2) the
convergence rate is very low and depends on the initial estimates.
For these reasons, there have been many efforts to improve the
drawbacks of the BPNN algorithm, such as a dynamic self-
adaptation algorithm [55] a simulated annealing algorithm [56]
combined genetic and differential evolution algorithm [57], and
a technique combining the conjugate gradient optimizationFig. 3. Illustration of a typical network model: feed-forward neural network.
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algorithm with the BPNN algorithm [58]. There are many ensem-
ble techniques to improve the performance of algorithms [59–64],
as well as other efforts in Refs. [40,55,58].

While the aforementioned methods are to find the weight
parameters in a deterministic sense, there have been probabilistic
approaches based on the Bayesian learning technique [65,66], in
which the weight parameters are obtained by using a sampling
method. Even though probabilistic approaches can resolve the
local optimal problem, the sampling error grows as the number
of weight parameters increases. Therefore, finding optimal
weight parameters is still challenging, and the performance of
the NN algorithm quickly deteriorates with local optimal weight
parameters.

2.1.3. Issue 3: Uncertainty in data and optimization process
Last but not the least, uncertainty caused by bias and noise in

the data is an important issue in the NN, as it has a significant
effect on the solution of weight parameters. The bias here is
different from the bias in weight parameters in NN; here, the bias
in the data is the measurement error caused by sensors, such as a
calibration error. Unfortunately, this bias cannot be handled with
data-driven approaches because there are no parameters related
to it, which is one of the drawbacks of this approach.

In the case of noise, it is common to provide confidence bounds
based on nonlinear regression and/or the error between NN
outputs and training data [67–70]. Bootstrapping [71,72] is also
employed, which can easily be implemented by running Matlab
NN toolbox several times because Matlab uses different subsets of
the training data to obtain weight parameters. Furthermore, this
process can relieve the concern related to selecting initial weight
parameters for optimization because the process automatically
selects different initial parameters. For example, Liu et al. [36] used
this method with 50 attempts to predict a battery’s RUL with
uncertainty. Actually, a systematic method to handle the uncertainty
in NN is the probabilistic neural network (PNN) [73] using the Parzen
estimator [74]. However, most papers employ the PNN for classifica-
tion or risk diagnosis [75,76], and the PNN for prognosis is rarely
found, except for the study by Khawaja et al. [77]. They introduced a
way to obtain not only confidence bounds but also confidence
distributions based on PNN to predict a crack on a planetary gear
plate. Khosravi et al. [78] reviewed aforementioned methods, and
considered combined intervals from the methods.

In conclusion, although there have been a few attempts in NN
algorithms to account for the uncertainty in the prediction
process, they are not good enough at dealing with the noise and
bias in the data.

2.2. Gaussian process (GP) regression

The GP is a commonly used method among regression-based
data-driven approaches for prognostics, whose concept is illu-
strated in Fig. 4. The GP regression model is composed of a global
model and its local departure. An outstanding feature of GP is that
the simulated output, denoted by the blue dashed curve in Fig. 4,
passes through the set of measured data (training data) ½x1:n; y1:n�.
When the prediction point (a new input), xn, is at a measure-
ment point (e.g., point A), xi i¼ 1;2;…;nð Þ, the magnitude of
departure is the same as the difference between measured data,
yi i¼ 1;2;…;nð Þ and the global model; hence, the prediction output
yn becomes measured data, yi. When the prediction point deviates
from a measurement point (e.g., point B), the magnitude of
departure is changed based on the correlation between B and
the measurement points. As a result, if the prediction point is in
between measurement points, the simulated output smoothly
interpolates the measured data. If, however, the prediction point

moves out of measurement points, which is extrapolation, the
influence of this departure is reduced as correlation decreases and
the GP becomes closer to the global model. Therefore, the case of
extrapolation is not so different from an ordinary least-squares
regression [30]. For interpolation, correlation between data points
is an important factor to characterize GP’s attribute, which is
determined by selecting an appropriate type of covariance function
and estimating its scale parameters (or hyperparameters). The scale
parameters are usually determined using an optimization algorithm
based on the measured data (training data).

GP regression can also be described in stochastic terms to
account for the uncertainty in prediction by assuming that the
measured output follows multivariate normal distribution with
the mean and its covariance being the global model and its
departure, respectively. One can obtain the GP model as the mean
(composed of a global model and departure) and the variance
found in Refs. [79,80] which is used to represent uncertainty in
simulated GP outputs. In the following, similar issues to those of
the NN-based prognostics are discussed in order to facilitate its
appropriate use.

2.2.1. Issue 1: Model definition (global model and covariance
function)

In GP, the performance largely depends on the selection of the
global model and covariance function. The global model often
takes the form of constant or polynomials, while the covariance
function includes radial basis (or squared exponential), rational
quadratic, neural network, Matern, periodic, constant and linear
functions [81,82]. Mohanty et al. [83] compared the prediction
results of crack length under variable amplitude loading using the
radial basis function (RBF) and NN-based covariance function, and
showed that RBF-based GP model outperformed one that was
NN-based in their application. A few articles have also introduced
non-stationary covariance function, which adapts to variable
smoothness by adding or multiplying simple covariance functions.
Paciorek and Schervish [84] showed that the results by non-
stationary covariance functions are better than those by the
stationary GP, but pointed out the loss of simplicity of the
algorithm, as the non-stationary GP requires more parameters.
Belhouari and Bermak [85] employed non-stationary GP to predict
respiration signals and compared them with those from an
exponential covariance function. Liu et al. [86] used the combina-
tion of three covariance functions to predict lithium-ion battery
degradation.

Fig. 4. Illustration of Gaussian process regression. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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Since GP has usually been employed in interpolation, a con-
stant function has often been employed for the global model, and
it has been considered as less important than the covariance
function. In prognostics, which is equivalent to extrapolation, the
global model in GP is more important than the covariance
function. However, there is not much literature on selecting or
updating the global model to improve the prediction capability in
the extrapolation region.

2.2.2. Issue 2: Finding optimal parameters (scale parameters)
Determining the scale parameters in the covariance function is

also important, since they determine the smoothness of the GP
model. In general, the parameters are determined via an optimiza-
tion algorithm by minimizing a likelihood function corresponding
to the error between a global model and data [87]. Finding optimal
parameters, however, is not guaranteed, and even if they are
found, they are not always the best selection [88]. Since the scale
parameters are seriously affected by the magnitudes of input and
output values, a common practice is to normalize the input and
output variables. Mohanty et al. [83] studied the performance of
predicting crack growth according to three different types of
scaling: logarithmic, normalized and log-normalized scaling. Neal
[89] considered the scale parameters as distributions rather than
deterministic values, and An and Choi [88] found that the result
with distributions outperforms the one by deterministic values.

2.2.3. Issue 3: Number of data and uncertainty in data
Even though a large number of training data is usually good for

increasing the accuracy of prediction results, it is not always true
for GP because it also increases computational cost to calculate the
inverse of the covariance matrix and may cause singularity as well.
The direct matrix inversion may become computationally prohi-
bitive when the number of data is greater than 1000 [90].
To relieve this problem, only a portion of the whole data sets
can be used [91,92]. Melkumyan and Ramos [93] also suggested a
new covariance function based on the cosine function that
inherently provides a sparse covariance matrix. Sang and Huang
[94] proposed an approximation method of a covariance function
for both large and small number of training data based on a
reduced rack covariance.

Prediction uncertainty is expressed with Gaussian noise, as
mentioned before. Mohanty et al. [18] and Liu et al. [86] calculated
the predictive confidence interval of crack length and degradation
of a lithium-ion battery, respectively, using standard deviation
from the results of stochastic GP. Also, the nugget effect represent-
ing the noise in data is sometimes considered by adding a value
greater than zero to the diagonal terms of the covariance matrix,
so that the simulated outputs do not pass noisy data points
[95,96]. Even though the value of the nugget effect is also found
via optimization along with the scale parameters, the value cannot
be determined uniquely due to the coupling with scale para-
meters. In addition, in the case of small data, it is inherently
difficult to figure out how much noise exists in the data.

3. Reviews on physics-based approaches

Physics-based approaches combine a physical damage model
with measured data to predict future behavior of degradation or
damage and to predict the RUL, as illustrated in Fig. 5. The
behavior of a physical model depends on the model parameters
that are obtained from laboratory test, or estimated in real time
based on measured data up to the current time. Finally, the RUL is
predicted by progressing the damage state until it reaches a
threshold as indicated by the dashed curves in Fig. 5. Physics-
based approaches have issues similar to data-driven approaches,

but the individual algorithms of physics-based approaches are not
as different from each other as we observed in the data-driven
approaches. Therefore, the following subsections are presented in
terms of issues in physics-based approaches, rather than their
algorithms.

3.1. Issue 1: Physical model adequacy

Since physics-based approaches employ a physical model
describing the behavior of damage, they have advantages in
predicting long-term behaviors of damage. However, model vali-
dation should be carried out first, since most models contain
assumptions and approximations. There has been much literature
on model validation using statistical methods, such as the hypoth-
esis test and the Bayesian method [97–100]. In general, as the
model complexity increases, the number of model parameters
increases, and estimation of parameters becomes more difficult.
Recently, Coppe et al. [101] showed that the issue of model
accuracy can be relieved by identifying equivalent parameters
from a simpler model. A simple Paris model was used with an
assumed stress intensity factor to predict crack growth of complex
geometries in which the model parameters were adjusted to
compensate for the error in the stress intensity factor. Although
this is limited to the case of a similar damage behavior between
the simple and complex model, additional efforts to validate
model accuracy can be avoided.

3.2. Issue 2: Estimating parameters (physical model parameters
under noise and bias)

3.2.1. Physics-based algorithms
Once a physical model is available, model parameter identifica-

tion becomes the most important issue, which is performed by an
estimation algorithm based on measured data. There are several
algorithms such as the Kalman filter (KF) [102], the extended
Kalman filter (EKF) [103], the particle filter (PF) [104], and the
Bayesian method (BM) [105]. These algorithms are all based on
Bayesian inference [106], in which measured data are used to
estimate and update unknown parameters in the form of a
probability density function (PDF). The prior distribution, which
is prior knowledge or information of the unknown parameters, is
multiplied by the likelihood function, which is the PDF value of
measured data conditional on the given values of parameters, to
obtain the updated PDF, known as the posterior distribution.

Among the aforementioned algorithms, KF, EKF and PF are
based on the filtering technique that updates parameters recur-
sively by taking one measurement data at a time. Since PF is
readily applicable for a nonlinear system with non-Gaussian noise
compared to KF and EKF, PF is mainly used. Orchard and Vachtse-
vanos [107] estimated the crack closure effect using PF for RUL

Fig. 5. Illustration of physics-based prognostics.
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prediction of a planetary carrier plate based on a vibration-based
feature. Daigle and Goebel [108] used PF to estimate wear
coefficients by considering multiple damage mechanisms in cen-
trifugal pumps. On the other hand, the Bayesian method is used to
implement batch estimation using all the measurement data up to
the current time. An et al. [109] estimated wear coefficients to
predict the joint wear volume of a slider-crank mechanism using
this method. In this study, the PF, which is one of the three
filtering methods, and the BM are discussed in the following.

3.2.1.1. Particle filter (PF). PF [104,110] is the most commonly used
algorithm in the prognostics field, in which the posterior
distribution of model parameters is expressed as a number of
particles (or samples) and their weights, as shown in Fig. 6. There
are three steps in PF process: (1) prediction—the posterior
distribution of model parameters Θ at the previous ðk�1Þth step
are used as a prior at the current kth step, and the damage state at
the current step is obtained by progressing from the previous one
based on the physical model; (2) updating—model parameters and
damage state are updated (i.e., corrected) based on the likelihood
from measured data x at the current step; and (3) resampling—
particles at the updated distribution are resampled based on their
weights expressed as vertical bars in Fig. 6 by duplicating or
eliminating samples with high or low weights, respectively. The
resampled result corresponds to the posterior distribution at the
current step and is also used as a prior distribution at the next
ðkþ1Þth step, which means that the Bayesian update is processed
sequentially in PF. More detail is found in Ref. [110].

In PF, several issues need to be addressed in estimating
parameter distributions, such as the accuracy of initial distribution
and accumulated sampling error. In the latter, a particle depletion
problem can occur since those particles with a low weight are
eliminated, while those with a high weight are duplicated.
A common practice to avoid particle depletion is to add random
samples from an arbitrary distribution during the prediction step
so that identical particles are not generated [108,111–113]. This
method, however, can change probabilistic characteristics of
parameters and can increase the variance of parameters. Gilks
and Berzuini [114] proposed a resample-move algorithm based on
the PF and Markov Chain Monte Carlo (MCMC) method [115]. Kim
and Park [116] introduced the maximum entropy particle filter and
demonstrated its effectiveness by applying it to highly nonlinear
dynamical systems. Other efforts are found in Refs. [117,118].

3.2.1.2. Bayesian method (BM). In BM, Bayesian update is processed
simultaneously; that is, the posterior distribution of parameters at
the current step is obtained by a single equation, in which all the
likelihood functions of measured data up to the current step are
multiplied. Once the expression of the posterior distribution is
available, a sampling method can be used to draw samples from
the posterior distribution. The Markov chain Monte Carlo (MCMC)

method [115] is usually employed, which is based on a Markov
chain model in random walk as shown in Fig. 7. It starts from an
arbitrary initial sample (old sample) and a new sample is drawn
from an arbitrary proposal distribution centered at the old sample.
The two samples are compared with each other based on an
acceptance criterion, from which either one is selected. In Fig. 7,
two circles with dashed lines mean that these new samples are not
selected according to the criterion, while the old one is selected
again. This process is repeated as many times as necessary until a
sufficient number of particles are obtained.

In BM, there is no accumulated sampling error as opposed to
PF. But there still exists some issues due to random walk. The
location of the initial sample, the proposal distribution to draw a
new sample and the acceptance ratio to the old sample can have
an effect on the sampling results; improper settings or inadequate
selection may lead to a convergence failure or show a stationary
chain where the old sample is selected repeatedly. In Ref.
[119,120], the marginal density function is recommended for the
proposal distribution in order to reduce these effects. Gelfand and
Sahu [121] presented two distinct adaptive strategies to accelerate
the convergence of the MCMC algorithm. More literature can be
found in Ref. [115].

3.2.2. Correlation between model parameters
One of the most challenging aspects of model parameter

identification is correlation between parameters. Without properly
identifying the correlation, the predicted RUL can be significantly
different from the reality. An et al. [122] identified the correlation
between parameters in a crack growth problem. They showed that
even if the accurate value of each parameter was not identified
under a high level of noise, the prediction results of damage
growth and RUL were reliable since all combinations of the
correlated parameters can yield the same prediction results.

3.3. Issue 3: Uncertainty in data (noise and bias)

In order to estimate model parameters of system in service,
structural health monitoring (SHM) data are often used for the
purpose of prognosis. SHM data could include a high level of noise
and bias due to the sensor equipment, and much research
addresses the noise and bias in SHM data. Gu et al. [123] presented
a prognostics approach that detects the performance degradation
of multilayer ceramic capacitors under temperature-humidity-bias
conditions. Coppe et al. [124] showed that the uncertainty in
structure-specific damage growth parameters can be progressively
reduced, in spite of noise and bias in sensor measurements. Guan
et al. [125] considered various uncertainties from measurements,
modeling and parameter estimations to describe the stochastic
process of fatigue damage accumulation based on a maximum
entropy-based general framework. It was found that large noise
induces slow convergence, and bias shifts RUL distribution.

Fig. 6. Illustration of particle filter process.
Fig. 7. Illustration of Bayesian Method process with Markov-Chain Monte Carlo.
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Noise in sensor signals hinders the detection of degradation
features, which adversely affect the prognostic capability in both
the physics-based and data-driven approaches. To relieve this, de-
noising is usually conducted in signal processing. Zhang et al. [126]
proposed a de-noising scheme for improving the signal-to-noise
ratio (SNR) and applied it to vibration signals obtained from a
helicopter gearbox test-bed. Qiu et al. [127] introduced an
enhanced robust method for bearing prognostics, which includes
a wavelet filter-based method for extraction of a weak fault feature
from vibration signals and a self-organizing map based method for
bearing degradation assessment. Abouel-Seoud et al. [128] intro-
duced a robust prognostics concept based on an optimal wavelet
filter for fault identification of a gear tooth crack by acoustic
emission.

4. Case study to compare different methods

In this section, prognostics algorithms of NN, GP, PF and BM are
compared, which the authors believe are the most popular in
prognostics applications. The goal is to provide guidelines so that
engineers can choose an appropriate algorithm for their field of
application. Since there are many variations of each algorithm, as
mentioned in the review section, the most common and basic ones
are employed to understand each algorithm’s attributes. Each
algorithm is tested using crack growth problems, including simple
and complex damage behaviors. Their attributes, pros and cons are
discussed based on the logic of their algorithms. The choice of the
crack growth problem is because the damage growth model is
available, and hence, it enables comparison of all the algorithms.
The discussions are not limited to this problem and can be
interpreted in a general context, since the results are caused by
the algorithms’ inherent attributes.

4.1. Problem definition

In this section, two different physical models, the Paris model
[129] and Huang’s model [130], are employed to describe the crack
growth behavior under ten different constant and variable ampli-
tude loading conditions, respectively, as shown in Fig. 8. The Paris
model is defined as

da
dN

¼ C ΔK
� �m

where a is the crack size, N the loading cycle, ΔK the stress
intensity factor, and m and C are mode parameters. This model
assumes that mode-I loading in an infinite plate. On the other
hand, Huang’s model is defined as

da
dN

¼ C ΔKeq β;n;σY
� �� �m� ΔKth

� �m
h i

where m, C, ΔKth, β, n, and σY are model parameters. In Huang’s
model, the equivalent stress intensity factor, ΔKeq, considers the
effect of crack tip plasticity as well as crack closure after over-
loading. For detailed explanation of Huang’s model, readers are
referred to Reference [130].

In order to implement prognostics, synthetic measured data are
generated by adding random noise and deterministic bias from the
model generated using the following true parameters:

Paris model parameters : m¼ 3:8; C ¼ 1:5e�10

Huang’s model parameters : m¼ 3:1; C ¼ 5:5e�11;
ΔKth ¼ 5:2; β¼ 0:2; n¼ 2:8; σy ¼ 580

For the Paris model (simple model), true crack growth data are
generated with an interval of 100 cycles under ten different
loading cases, of which the stress range is gradually increased

from 65 MPa to 83 MPa with 2 MPa increments. Results are given
in Fig. 8(a), in which the 26 data points are available in a set until
the end of 2500 cycles, and ten sets are available with the set ID
denoted by the number in a circle. For Huang’s model (complex
model), ten data sets are given in Fig. 8(b), which exhibit crack
retardation and acceleration due to complex loadings as defined
by Fig. 9. In the figure, a loading block is composed of the
minimum load fixed at a constant of 5 MPa and two maximum
loads (we call these nominal load and overload, respectively)
varying in terms of cycles. The loading block is applied with five
different scenarios in terms of the cycles as specified in the table,
each lasting over the period of 5000 cycles. In each of the
scenarios, load ranges are given, all with the width of 10 MPa,
which represent the values of ten loading cases with increment of
unit MPa. For example, the first loading case consists of a loading
block of the nominal load 65 MPa and overload 125 MPa lasting

Fig. 8. Ten data sets for crack growth from two different models. (a) simple Paris
model with 2 parameters and (b) complex Huang’s model with 6 parameters.

Fig. 9. Variable load amplitude spectrum for Huang’s model.
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5 and 45 cycles, respectively, during the period of 0 to 5000 cycles.
This is applied the same way, as indicated in the table, over the
rest of the period until it reaches 25,000 cycles. Other loading
cases are made by increasing the load magnitude with 1 MPa
increments in each of the scenarios, which makes ten loading sets,
and yields the crack growth results in Fig. 8(b). In order to simulate
measured crack size data, different levels of noise and bias are
added to the true crack sizes that are calculated from the model
with true parameters. A deterministic bias of �3 mm is added
first, after which random noise is uniformly distributed between
�umm and þumm, where u of 0, 1 and 5 mm are considered.

4.2. Data-driven approach

4.2.1. Practical considerations
In NN, the network model is constructed based on FFNN with

three input nodes and one hidden layer with two nodes (refer to
Fig. 3). Then, the total number of weight parameters becomes 11:
eight weights ð3� 2þ2� 1Þ and three biases (2þ1). Since there is
one hidden layer, two transfer functions are required, in which the
tangent sigmoid and pure linear functions are employed. In GP, the
polynomial function is employed for the global model, and the
following one-parameter radial basis covariance function is
employed:

R xi; xj
� �

¼ exp �ðd=hÞ2
h i

; d¼ jxi�xjj; i; j¼ 1;…;n

where h is a scale parameter to be identified, xi;xj are vectors of
input variables, and n is the total number of training data.
Regarding uncertainty, GP accounts for noise in training data as
a part of the process. In NN, samples of solutions obtained by
repeating 30 times with different initial values and different
subsets of the training data represent uncertainty in the same
way as Liu et al. [36] applied bootstrapping [71] to the battery
problem.

There are some typical features in data-driven approaches. The
first is that not only training data sets but also the data in the
prediction data set up to the current cycle are used for training. For
example, if sets #2 and #6 are used for training and set #8 for
prediction, the earlier data of set #8 before the current cycle are
included for training. The second is the way of assigning inputs
and output for training: several recent damage data are used as
input variables, while the damage data at the current cycle is used
as the output. In the crack growth problem, we have 26 data
points in a single data set. If we use past three data points as
inputs, for example, we have 26�3¼ 23 training data, in which
xk�3; xk�2; xk�1 are used as inputs and xk as the output. The third
feature is about the method of prediction. Depending on how to
predict the future damage state, prediction methods are divided
into short-term and long-term predictions. Short-term prediction
is a one-step-ahead prediction; i.e., the three most recent data
xkþ1; xkþ2; xkþ3 are used to predict one step ahead xpkþ4. On the
other hand, long-term prediction is multi-step prediction; i.e., the
predicted data xpkþ1; x

p
kþ2; x

p
kþ3 are used as inputs to predict the

next xpkþ4. This enables prediction into the far future. If loading
conditions are available, they can also be included in the input
variables.

4.2.2. Prognosis results
Fig. 10 shows the comparison between NN and GP under

different levels of noise. In Fig. 10, blue star markers and circles
are, respectively, training data to the current cycle (1500 cycles)
and simulation results. The thick dotted curve and the thick
dashed curve are, respectively, the medians of short-term and
long-term predictions; corresponding thin curves represent 90%
confidence intervals. Lastly, the black solid curve and green

horizontal line are the true damage growth and damage threshold,
respectively.

Fig. 10(a) and (b) are the results of NN and GP, respectively,
under low noise (u¼1 mm) with a single data set #5. GP shows
very accurate and more precise prediction results than NN. Note
that even with only one set of data for prediction, the result is
good. In this case, GP prediction is just to extrapolate the model, in
which the choice of a global model is important and may affect the
accuracy of prediction significantly. It should be noted however
that, unlike the conventional GP, which employs the cycles as the
input and crack data as the output, the GP here employs crack data
for both the input and output. The reason for the lower perfor-
mance of NN compared to GP is that NN has a local optimum as
the network model has 11 parameters.

Fig. 10(c) and (d) are the results under zero noise (u¼0 mm)
with prediction set #8 and training sets #7, 9. Fig. 10(c) and (d) is
the case of interpolation, since the prediction set is in-between
training sets. Due to this, GP outperforms NN based on correlation
with training data.

This, however, is not applicable to a large level of noise
(u¼5 mm), as shown in Fig. 10(e) and (f). Fig. 10(f) shows that
long term prediction using GP fails to follow the true curve, since
input variables fail to show a consistent behavior due to the large
level of noise; thus, the correlation cannot clearly be identified.
In addition, a large number of data adversely affect handling the
covariance matrix. In this case, NN outperforms GP for both short-
and long-term predictions, as shown in Fig. 10(e) because a large
number of data provides more information to fit the transfer
functions to damage growth. Also, a combination of transfer
functions is much less restricted to the level of noise than
constructing the covariance matrix. It is important to consider
types of input variables and transfer functions/global model in
data-driven prognostics.

4.3. Physics-based approach

For physics-based approaches, a normal distribution is
employed for the likelihood function, and the prior distributions
of model parameters, noise and bias are assumed as listed in
Table 1. The distributions of parameters are obtained using 5000
samples in both PF and BM, and future damage growth and RUL
are predicted by applying individual samples to the
physical model.

4.3.1. Physics-based results
As mentioned before, bias in measured data cannot be handled

in data-driven approaches, while physics-based approaches, both
PF and BM, can, as shown in Fig. 11(a) and (b), respectively. In the
figure, measured data up to the current cycle (blue star makers)
are biased by �3 mm, with a low level of noise (u¼1 mm);
measured crack sizes are consistently less than the true sizes.
The medians of prediction (dashed curves), however, are close to
the true sizes, which means that the bias is well-identified and
compensated. Since the physical model describes the behavior of
damage accurately, the constant difference between model and
data can be identified as a bias. Further study for noise and bias
can be found in Ref. [122].

The difference between PF and BM is negligible in terms of
prediction results because the two methods have the same
theoretical foundation with the same physical model. The only
difference is the way of updating distributions and generating
samples. When the damage model is given as a closed form like
the Paris model, BM is faster than PF because the posterior
distribution is given as a single expression and there is no
accumulated sampling error. On the other hand, PF accumulates
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sampling error during the updating process, but is very efficient
when damage degradation is given in the incremental form, like
Huang’s model. From these attributes, PF can handle the case of
fixed model parameters obtained from laboratory tests by updat-
ing damage size only. On the other hand, BM is not practical for
such a case because of tremendous computational costs caused by
propagating damage for every cycle with thousands of samples
separately [114,131,132]. This is a key difference between the two
methods, and more detailed comparison between PF and OBM can
be found in An et al. [131].

Fig. 12 shows different results from the two cases using
parameters obtained from laboratory tests and updating the
parameters. It is assumed that Paris model parameter, m, is given
between 3.7 and 4.3 from laboratory tests, which is biased from its
true value, 3.8, and parameter C is the same as the prior distribu-
tion given in Table 1. It is clear that error in parameters obtained
from laboratory tests produces improper results, as shown in
Fig. 12(a): the uncertainty in prediction is too wide and the median
of prediction greatly differs from the true curve. For the case of
updating parameters, the loading condition from data set #1 is
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Fig. 10. Prognostics results from data-driven approaches for a simple damage growth model. (a) NN under small noise with prediction set #5. (b) GP under small noise with
prediction set #5. (c) NN under perfect data with prediction set #8 and training sets #7, 9. (d) GP under perfect data with prediction set #8 and training sets #7, 9. (e) NN
under large noise with prediction set #8 and training sets #6, 7, 9, 10. (f) GP under large noise with prediction set #8 and training sets #6, 7, 9, 10. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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given to predict data set #10. The loading difference between two
data sets is 18 MPa. Even under incorrect loading conditions, the
prediction result from updated parameters shows good results, as
indicated in Fig. 12(b). Since the parameters from laboratory tests
can be different from those in service due to environmental
conditions, model parameters should be updated along with
measurement data.

4.4. Comparison between NN and PF

In this section, the data-driven and physics-based approaches
are compared in terms of the damage growth by Huang’s model
(complex model). In the data-driven approaches, NN is chosen

because GP is the same as the global model (a polynomial
function) at the extrapolation cycles, while different combinations
of transfer functions of NN cam predict better than a polynomial
function. Since BM is less advisable in a complex model due to its
expensive computational costs, only PF is considered in the
physics-based approaches. To understand how many data sets
for NN are required to yield comparable results with PF, different
numbers of training sets are randomly selected among the ten
data sets, whose result is presented in Fig. 13(a). Based on three
training data sets (for visibility, training data and trained simula-
tion are not shown in the figure), short-term prediction by NN
successfully follows the future damage, and long-term prediction
by NN are comparable with that of PF in Fig. 13(b).

Table 1
Prior distributions of model parameters, noise and bias.

Paris model m¼Uð3:3;4:3Þ C ¼Uðlogð5� 10�11Þ; logð5� 10�10ÞÞ
(True: 3.8) (True: 1.5e�10)

Huang’s model m¼U 2:8;3:4ð Þ C ¼Uðlogð3� 10�11Þ; logð8� 10�11ÞÞ ΔKth ¼Uð2;8Þ
(True: 3.1) (True: 5.5e�11) (true: 5.2)
β¼Uð0:1;0:4Þ n¼Uð1:5;4Þ σy ¼Uð400;600Þ
(True: 0.2) (True: 2.8) (True: 580)

Noise and bias For small noise For large noise Bias¼Uð�0:004;0:004Þ
σ ¼Uð0;0:003Þ σ ¼Uð0;0:006Þ
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Fig. 11. Prognostics results from physics-based approaches for a simple damage growth under small noise and negative bias. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Comparison of prognostics results using parameters obtained from laboratory tests and parameters updated in the field. (a) Parameters from laboratory tests:
prediction set #8 with biased information. (b) Parameter updated: prediction set #10 with loading from data set #1.
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These results can be improved: If the loading conditions are
added to training in NN, long-term prediction behaves better than
no loading case and closer to the short-term results as shown in
Fig. 13(c). For PF, if the distribution of initial damage size in Fig. 13
(b) is updated to be close to the true initial damage, the median
will be close to the true curve because the physical model largely
depends on the initial damage size. It is, however, a time-
consuming process to update the initial damage in PF. Fig. 13
(d) shows the results using the true value of initial damage
instead. Even though physics-based approaches undoubtedly out-
perform data-driven ones if both a physical model and loading
conditions are available, data-driven approaches with more train-
ing data (three sets in this case) and other information (loading
condition in this case) can outperform physics-based ones, as
shown in Fig. 13(c) and (d).

4.5. Results summary

In terms of algorithms, results from case studies can be
summarized as follows. The GP works well when the covariance
function is well-defined, such as the case of low noise in data and
simple behavior of the damage model. However, all other algo-
rithms work well for such a benign case as well. The GP can
outperform other algorithms if interpolation conditions can be
considered with the given information. The GP is easy to imple-
ment and quick to calculate, which gives prediction results with
interval within around 2 s, while NN depends on each training

case (a few seconds to minutes for one training) that is usually
repeated to account for prediction uncertainty. The NN is advanta-
geous for cases with high levels of noise and complex models with
many training data sets. However, it would be challenging to
obtain many sets of training data in practice. PF and BM are less
affected by the level of noise and model complexity, but they can
be employed only when a physical model and loading conditions
are available. The results from the two methods are not much
different, but PF has a wide range of applications and BM is fast
when the expression of posterior distribution is available expli-
citly. When loading conditions and physical models are not

0 0.5 1 1.5 2 2.5 3
x 104

0

0.01

0.02

0.03

0.04

0.05

Cycles

C
ra

ck
 s

iz
e 

(m
)

Short-Predic.
Long-Predic.
True
Threshold

0 0.5 1 1.5 2 2.5 3
x 104

0

0.01

0.02

0.03

0.04

0.05

Cycles

C
ra

ck
 s

iz
e 

(m
)

Median
95% PI
Measurement
True
Threshold

0 0.5 1 1.5 2 2.5 3
x 104

0

0.01

0.02

0.03

0.04

0.05

Cycles

C
ra

ck
 s

iz
e 

(m
)

Short-Predic.
Long-Predic.
True
Threshold

0 0.5 1 1.5 2 2.5 3
x 104

0

0.01

0.02

0.03

0.04

0.05

Cycles

C
ra

ck
 s

iz
e 

(m
)

Median
95% PI
Measurement
True
Threshold

Fig. 13. Comparison of NN and PF for a complex damage growth model under small noise. (a) NN with training sets #2, 7, 9. (b) PF with distributed initial damage size. (c) NN
with training sets #6, 7, 10 and loading conditions. (d) PF with true value of initial damage size.

Fig. 14. Selection tree for an appropriate prognostics method.
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available, short-term prediction can be done by using data-driven
approaches with at least three data sets. For long-term predictions,
loading conditions are required.

Fig. 14 shows a selection tree based on the aforementioned
summary. The first column is composed of three parts depending
on the existence of information. In case of loading information
with the physical model, as given in the first diamond, it does not
have to be accurate as mentioned in Fig. 12(b). But the loading
information in the second diamond as used in the data-driven
approach should be accurate. Otherwise, the third diamond can be
used. The tree is divided into two depending on (a) the complexity
of damage growth behavior and (b) the level of noise. “BM4¼PF”
and “GP4¼NN” mean that BM and GP are better than PF and NN,
but PF and NN are still viable. “NN-Short” means that only short-
term prediction is possible. However, it is noted that these results
are not conclusive. For example, while the path “No informa-
tion”-“complex damage growth”-“small level of noise” leads to
the suggestion of NN-short with 3sets of data, it may not always be
the case because there are still chances for achieving long term
prediction by combining more transfer functions (adding hidden
layers) and adding hidden nodes.

5. Conclusion

This paper provides a practical review of both data-driven and
physics-based approaches for prognostics. As common prognostics
algorithms, NN, GP, PF and BM are reviewed and employed for case
studies to discuss their attributes, pros and cons and applicable
conditions. Even if advanced algorithms are available, basic algo-
rithms are employed in this study and the results are analyzed by
focusing on their intrinsic characteristics. This will be helpful for
beginners in prognostics to choose the best algorithm for their
field of application. Furthermore, one can improve each algo-
rithm’s performance by considering three issues discussed in
Sections 2 and 3, and can develop hybrid approaches after under-
standing intrinsic characteristics of each algorithm, which are
expected as future works on the topic of prognostics algorithms.
Lastly, selective references of the four basic algorithms that are
used in this study are listed in Table 2.
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