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Abstract Assuming independence between failure modes
makes system reliability calculation simple but it adds approx-
imation error. Interestingly, error due to ignoring dependence
can be negligible for a highly reliable system. This paper inves-
tigates the reasons and the factors affecting the error. Error in
system probability of failure (PF) is small for high reliability
when tail-dependence is not very strong or the ratio between
individual PFs is large. We created various conditions using
copulas and observed the effect of ignoring dependence. Two
reliability-based design optimization problems with a 2-bar and
a 10-bar trusses are presented to show the effect of error on the
optimum design and the system PF calculation. For the 10-bar
truss, there were 5 % error in system PF and mass penalty less
than 0.1 % in the optimum design for a target system PF of 10−7

even though five truss failures were strongly correlated.
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1 Introduction

Evaluating system reliability has been recognized as an impor-
tant step in reliability-based design optimization. Althoughmany
reliability analysis methods have been developed, calculating

system reliability including dependence between failure modes
is still considered as a challenging problem (Li et al. 2007).

Reliability analysis methods can largely be categorized into
sampling-based methods (e.g., Monte Carlo Simulation
(MCS), importance sampling and surrogate-based methods)
and analytical methods (e.g., first-order reliability method
and second-order reliability method).

MCSmight be the best method to evaluate system PF, but it
is computationally expensive to achieve an acceptable level of
accuracy for high reliability, even with the use of importance
sampling techniques to reduce the variance ofMCS (Melchers
1989, 1999; Dey and Mahadevan 1998). To reduce computa-
tional cost in MCS, surrogate-based methods have been de-
veloped (Zheng and Das 2000). Sampling-based methods
using surrogates can consider dependence between failure
modes, but the computational cost of constructing surrogate
models increases rapidly with dimensions, often called the
curse of dimensionality (Ba-Abbad et al. 2006).

Since analytical methods are computationally efficient, they
are computationally favorable for calculating reliability (Dey
and Mahadevan 1998; Halder and Mahadevan 2000).
However, they have difficulties in accounting for dependence
between failure modes. Consequently, approximate ap-
proaches, such as the lower-upper bound method (Halder
and Mahadevan 2000; Hohenbichler and Rackwitz 1983;
Vanmarcke 1973) and probability network evaluation tech-
nique (PNET) method (Ang et al. 1975), have been developed.

However, it is not well known that the effect of dependence
between failure events can weaken as PF decreases (Schmidt
2002). In other words, the effect of dependence between fail-
ure events can be negligible for highly reliable structural
designs.

Often structures are required to be highly reliable
(Elishakoff 2004). For example, the U.S. Army’s introduction
of a structural fatigue reliability criterion for rotorcraft has
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been interpreted as a requirement for component lifetime reli-
ability of 0.999999 (Neal et al. 1992). With such a high mag-
nitude of reliability, failures are extremely rare events. For
such rare events, the effect of dependence between failure
modes on system reliability can often be negligible.

It is well known that ignoring dependence between input
uncertainties can result in large errors in calculating reliability
(Melchers 1989). Consequently modeling and identifying de-
pendence between input model uncertainty is an important
issue (Noh 2009; Noh et al. 2010). However, surprisingly,
ignoring dependence between failure modes, which is recog-
nizable as dependence between output uncertainties, may not
result in large errors in system reliability.

The objective of this paper is 1) to demonstrate that most
cases the error due to ignoring dependence on system reliabil-
ity can be small even with strong dependence between failure
modes and 2) to explore conditions where even for high reli-
ability, the error may not be small.

2 Dependence between failure modes and system
probability of failure

Structural failure with multiple failure modes is modeled with
uncertainties in limit states, which are also called output un-
certainties. Therefore, dependence between failure modes is
equivalent to dependence between output uncertainties. If
there is a system with N failure modes, limit states are defined
such that the ith failure event occurs when

Gi ≤ 0; i ¼ 1;…;N ð1Þ

while the system is intact when

Gi > 0: ð2Þ

The PF of a single failure mode is referred to as a marginal
PF that is defined as

Pf i ¼ Pr Gi ≤ 0ð Þ ð3Þ

Two commonly used concepts for multiple failure modes
are a series and parallel failure models. In the series failure
model, the system fails if any of its failure modes is activated.
In the parallel model, the system fails if all of its failure modes
are activated (Haldar and Mahadevan 2000). Therefore, the
series failure model is the union of failures, while the parallel
model is the intersection of failures. Both models are affected
by dependence between failure modes.

In this paper, the effect of ignoring dependence is
discussed with the series model, since the ways of approx-
imating dependence for both series and parallel failure
models are the same and the series model is a common
failure scenario in structural design.

For example, the exact system PF of a series model com-
posed of two failure modes is defined using the union of two
limit states as

Pf sys ¼ Pr G1≤0f g∪ G2≤0f gð Þ ð4Þ

Using the well-known expansion theorem (Hohenbichler
and Rackwitz 1983), the probability of the union of two events
is decomposed as

P f sys ¼ Pr G1≤0ð Þ þ Pr G2≤0ð Þ � Pr G1≤0f g∩ G2≤0f gð Þ ð5Þ

Note that computational challenge occurs in calculat-
ing the last term on the right-hand side of (5), which
requires integrating the joint PDF of two limit states.
Approximate methods have been developed to evaluate
the system PF without integrating the joint PDF over
the failure region (Hohenbichler and Rackwitz 1983;
Vanmarcke 1973; Ditlevsen 1979). However, if the two
failure modes are assumed to be independent, then the
calculation of system PF becomes straightforward be-
cause the last term in (5) becomes the product of mar-
ginal PFs. With the independence assumption, the sys-
tem PF can be approximated by

Pidp
f sys ¼ Pr G1≤0ð Þ þ Pr G2≤0ð Þ � Pr G1≤0ð ÞPr G2≤0ð Þ ð6Þ

where the superscript ‘idp’ represents the case with indepen-
dence assumption. Themain goal of this paper is to discuss the
difference between (5) and (6).

2.1 Illustrative truss example

A simple two-member truss shown in Fig. 1 is used to illus-
trate the dependence between limit states. A horizontal force h
and vertical force v are applied at the joint of two members.
The truss structure has two failure modes due to the resulting
stresses: failure of elements 1 and 2 when the corresponding
stresses exceed the ultimate stress, σu, that the material can
sustain. A1 and A2 are areas of elements 1 and 2, respectively.

The limit state and the member force of element 1 are
defined as

G1 ¼ A1σu1 � F1

F1 ¼ 1

2

v

cosα
þ h

sinα

� �
ð7Þ

The limit state and the member force of element 2 are
defined as

G2 ¼ A2σu2 � F2

F2 ¼ 1

2

v

cosα
� h

sinα

� �
ð8Þ

It is assumed that the ultimate strength and two external
forces are input uncertainties, and the height of the structure
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and angle are deterministic. The values and distributions of
these variables is given in the reliability-based optimization
example section. They lead to the two failure modes following
a bivariate normal (BVN) distribution with a correlation coef-
ficient of 0.8.

Figure 2a shows a scatter plot of 10,000 randomly
generated limit state pairs, G1 and G2, which shows
dependence between the two failure modes. The depen-
dence between the failure modes is created by the angle
between the structure and the external forces even if all
input uncertainties are independent. The strength of de-
pendence between G1 and G2, is 0.79 in terms of the
linear correlation coefficient. Because the limit states are
linear with respect to random variables and because the-
se random variables are normally distributed, the joint
probability density function (PDF) is bivariate normal
distribution. The system PF, Pfsys, is estimated as the
ratio of the number of samples in the shaded area in
Fig. 2a to the total number of samples. The histograms
shown on both axes a re margina l h is tograms
representing the marginal PDF of the limit states.

Figure 2b is a contour plot of the joint PDF of the limit
states based on the 10,000 samples.

3 Error in system reliability due to ignoring
dependence

In this section, we investigate the effects of ignoring depen-
dence on the error regarding three factors, the level of true
system reliability, the correlation strength and the tail depen-
dence. Examples were generated to examine the influences of
the factors on the error. To regulate the influences of the fac-
tors, we chose a dependence model and set their parameters
for each examples.

3.1 Error for bivariate normal distribution

It is easy to calculate the system PF if the two failure
modes are assumed to be independent, but this incurs an
error. Figure 3 shows the difference in intersection prob-
ability with and without considering dependence

(b)(a)Fig. 2 Scatter plot of two limit
states for 2-bar truss example. a
Scatter plot of random samples
(shaded region is the failure
region). b Contour plot of the
joint PDF of G1 and G2

(a) (b)

Fig. 1 A simple 2-bar truss in
biaxial loading example
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between two failure modes. Figure 3a shows 10,000
samples of the two dependent limit states. The samples
are generated from bivariate normal distribution with
mean vector of (1.2,1.2) and the standard deviation vec-
tor of (1.0,1.0), and a correlation coefficient of 0.8. The
shaded region is the failure region and samples in the
region represent failures. When the failure modes are
assumed to be independent, the joint PDF is equal to
the product of two marginal PDFs of limit states, whose
corresponding samples are shown in Fig. 3b. The ratios
of the numbers of failed samples to the total number of
samples in different failure regions are shown in
Table 1. The ratios include sampling errors due to the
finite number of samples; the ratios in parenthesis are
the true probability. It is noted that the standard error in
each number in the table is approximately equal to its
square root.

The percent error due to ignoring dependence is defined as

Error ¼ Pidp
f sys

P f sys
� 1

�����
������ 100 %ð Þ ð9Þ

where Pf sys is the system PF with dependence considered,
while Pf sys

idp is the probability assuming independence. The
reliability index β=−Φ−1(Pf) is another widely used measure,
where Φ−1(•) is the inverse cumulative distribution function

(CDF) of standard normal distribution. The percent error in
terms of reliability index is defined as

Error ¼ βidp
sys

βsys
� 1

�����
������ 100 ¼

�Φ−1 Pidp
f sys

� �
�Φ−1 Pf sys

� � � 1

������
������

� 100 %ð Þ ð10Þ

where βsys
idp is reliability index ignoring dependence and βsys is

the reliability index with dependence considered.

3.2 The effects of magnitude of true system PF
and the strength of dependence on error

In this section, an analytical example with two failure modes
is used to study the effect of the true system PF level and the
strength of dependence on error. The two failure modes are
defined with a bivariate normal distribution (BVN). The sys-
tem PF level and the strength of dependence are regulated by
changing the mean and the linear correlation coefficient ρ,
respectively.

Figure 4 illustrates four possible combinations of the-
se two parameters and errors are different for difference
cases. By evaluating errors for different true system PFs
and different linear correlation coefficients, their effects
can be discovered.

We make the two failure modes have the same marginal
PFs, which is when the effect of dependence is strongest. The
limit state functions are defined as

G1 ¼ z� U 1cos 45� � θ=2ð Þ � U 2sin 45� � θ=2ð Þ
G2 ¼ z� U 1sin 45� � θ=2ð Þ � U 2cos 45� � θ=2ð Þ ð11Þ

where U1 and U2 are independent and follow the standard
normal distribution, and θ is a parameter determining the cor-
relation strength (unit of degree and maximal at θ=0°) and the

Table 1 Probability of failures in Fig. 3 (numbers in parenthesis are the
numbers expected from the exact probabilities)

# of samples Considering dependence Ignoring dependence

G1<0 0.1182 (0.1151) 0.1126 (0.1151)

G2<0 0.1153 (0.1151) 0.1198 (0.1151)

G1<0 and G2<0 0.0679 (0.0665) 0.0138 (0.0132)

G1<0 or G2<0 0.1656 (0.1637) 0.2186 (0.2170)

(a) (b)Fig. 3 Difference between
intersection probabilities
considering and ignoring
dependence. a Scatter plot
considering dependence
X 1

X 2

	 

eN 1:2

1:2

	 

;

1 0:8
0:8 1

	 
� �
.

b Scatter plot ignoring
dependence X1~N(1.2,1) and
X2~N(1.2,1)
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angle between the most probable points (MPPs) of the con-
straints. z is a parameter determining the level of reliability,
with high values of z corresponding to low probability of
failure.

Since the limit state functions are linear combinations of
two independent normal random variables, the covariancema-
trix of the two limit states is easily derived as

cov G1;G2ð Þ ¼ 1 sin 90�−θð Þ
sin 90�−θð Þ 1

	 

ð12Þ

In this case, the correlation matrix is identical to the covari-
ance matrix. The joint PDF of limit states and parameters are
then defined as

G1

G2

	 

eN 2

z
z

	 

;

1 ρ
ρ 1

	 
� �
ð13Þ

where N2(•,•) is BVN of G1 and G2 and ρ=sin(90°− θ).
Since the random variables U1 and U2 are standard nor-

mal and independent, the MPPs are found by plotting the
limit state lines G1=0 and G2=0 as shown in Fig. 5. The
minimum distance between the origin and the MPPs is the
parameter, z. The angles between the limit state lines and
U1 and U2 axis are θ. When the limit state lines are per-
pendicular, θ=90°, the linear correlation between two limit
states is zero; that is, the two limit states are independent.
When two limit state lines are aligned; i.e., θ=0°, the linear
correlation coefficient becomes one, and the two MPPs
overlap. In other words, when the two MPPs are very
close, it implies that two failure modes are highly
correlated.

Since the failure is associated with the negative region of
limit states, the intersection probability of the two failures is
obtained with cumulative distribution function (CDF) of the
BVN. The exact system PF can be calculated with (5) and the
system PF ignoring dependence is calculated from (6). The
error is calculated with (9) and (10). The strength of depen-
dence is usually categorized into four types: very weak
(0.0≤ρ≤0.4), moderate (0.4≤ρ≤0.7), strong (0.7≤ρ≤0.9) or
very strong (0.9≤ρ≤1) (Nelsen 1999). The error is calculated
for strong correlation (0.7–0.9) in terms of the true system PF
in the range of 10−1 to 10−6.

The errors in reliability index and PF due to ignoring
dependence are shown in Fig. 6 for different linear corre-
lation coefficients, the magnitude of system PF and system
reliability index. In general, the error is high when the level
of true reliability index is low (or PF is large). In order to
be more specific, Table 2 presents the required levels of
system PF or reliability index to make the error less than
target values. In Table 2, even with strong correlation, ρ=
0.8, the error in PF is less than 10 % for the true system PF
of 10−4, and the error in reliability index is less than 1 %
for the true reliability index of 3.28. The observations im-
ply that the effect of ignoring dependence becomes weak
when PF is small.

One can observe from Table 2 and Fig. 6 that the error in
system reliability index is much smaller than the error in PF.
At this point, it is appropriate to note that at system low prob-
abilities of failure, small errors in input distributions may lead
to small errors in system reliability index but large errors in
system PF. Therefore, striving for very accurate small system
PF is out of reach for many cases. For example, a distribution
of failure stress is typically estimated based on 100 test sam-
ples or less. The standard error of a standard deviation of a
normal distribution based on 100 samples is 7 %. At a PF of
10−4, this 7 % error would lead to approximately 7 % error in

(a) (b) (c) (d)

Fig. 4 Illustration of four cases regarding to the magnitude of the true system PF and the strength of correlation. aModerately strong correlation+high
system PF. b Moderately strong correlation+low system PF. c Very strong correlation+high system PF. d Very strong correlation+low system PF
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reliability index, but more than 50 % error in PF. Therefore, a
large relative error in PF is to be expected for a small PF from
other reasons as well.

3.3 The effect of the degree of dependence in the tail
on error

One way of estimating the dependence in the tail region is to
check the shape of distribution. As shown in Fig. 3, indepen-
dent distributions have circular-shaped contour at the failed
tail region, while dependent distributions have a sharp contour
in this region. For independent modes with a low PF, the low-
left region of the contour is locally circular. On the other hand,
if we had a distribution that is sharp in that region, as illustrat-
ed in Fig. 7b, it indicates that the tail-dependence is strong.
The linear correlation coefficient is not sufficient to evaluate
the level of dependence in the tail. The BVN shown in Fig. 7a
has weaker dependence in the tail than the distribution shown
in Fig. 7b even though they have the same linear correlation
coefficient of 0.8.

For distributions with strong tail-dependence, wemay expect
that the error in PF decreases slowly, or will not decrease with
decreasing PF. Thus, measuring the degree of tail-dependence is

important, for whichwe rely on a statistical measure, denoted by
L (Noh 2009; Venter 2002), for the lower tails of two distribu-
tions. The L function is the ratio between probability of inter-
section and marginal probability. When independence assump-
tion is applied to the PF, it is the ratio between the probability of
double failure and the probability of the first mode of failure (or
the second since they are the same). More formally, the ratio is
defined as a function of marginal PF as

L zð Þ ¼ Pr G1≤ F−1G1
zð Þ

n o
∩ G2≤ F−1G2

zð Þ
n o� �

=z ð14Þ

where z is the marginal probability, and F−1G1
zð Þ is the inverse

CDF of G1 for given probability z.
The reason that this ratio is relevant to our case is that the

system PF is the sum of the two marginal probabilities of
failure minus the probability of intersection (see 5). For inde-
pendent limit states, L(z)=z because the probability of the
intersection is z2 which is the square of the marginal probabil-
ity when two marginal probability of failures are the same.
However, for dependent limit states, the L function is away
from L(z)=z and the degree of discrepancy represents the de-
gree of the dependence in the tail.

Figure 8a shows the degree of dependence in the tail of
BVN as a function of marginal probability and the correlation
coefficient. L(z)=z for independent limit states. One can read
an approximate error for different magnitudes of system PF
from the figure. For example, when z=10−5, the system PF is
approximately 2×10−5, and for ρ=0.8, we see that L=0.14,
which estimates about a 7 % error in PF.

There are cases that the error does not decrease as the mag-
nitude of system PF decreases because of strong tail-depen-
dence. Figure 8b shows curves of L function for three different
degrees of tail-dependence but with the same correlation co-
efficient. When an L function approaches the independent L
function as z decreases, it represents that the effect of depen-
dence is weakened in the tail. For strong tail dependence,
however, L function remain constant and the effect of depen-
dence remains strong in the tail.

Fig. 5 Two correlated failure modes in the normalized space

(a) (b)Fig. 6 The variation of error with
magnitude of system PF for
bivariate normal distribution with
equal failure probabilities for the
two modes. a Error vs reliability
index (BVN). b Error vs PF
(BVN)
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The red curve in Fig. 8b, a weak tail-dependence case,
converges faster than that of BVN. The error of neglecting
dependence is smaller than that of BVN for the same system
PF and the error becomes negligible even for a relatively large
system PF. However, the green curve in Fig. 8b, a strong tail-
dependence case, does not decrease; error remains the same
even for a very small system PF. The behavior of L function
shows that the degree of dependence is very strong even in the
extreme tail that there is almost no change in the L function.

Figure 9a shows the variation of error as a function of the
magnitude of system PF for different tail-dependences. For a
weak tail-dependence, even with a strong correlation coeffi-
cient, ρ=0.8, the error in PF is less than 10 % for the PF of 5×
10−2 (blue curve). On the other hand, for a strong tail-depen-
dence, the error stays high even for a low PF (green curve). In
terms of the reliability index in Fig. 9b, even a strong tail-
dependence does not change the trend of decreasing errors
for high values of reliability index (low values of the PF).

The reason of different behaviors of errors in PF and reli-
ability index is the nonlinear relationship between PF and
reliability index.When PF=0.1, 10% error in PF is equivalent
to 5 % error in reliability index. When PF=0.01, however,
10 % error in PF yields 2 % error in reliability index. For the
same error in PF, the equivalent error in reliability index de-
creases as PF decreases.

Table 3 presents the magnitudes of maximum system
PF and minimum reliability index for different target
errors. For example, for the weak tail-dependence, in
terms of reliability index, there is only 1 % error when
system reliability index is 1.98.

From Table 3, we can observe that for strong tail-
dependence the error in system PF will not decrease, or de-
crease slowly with decreasing PF, while the error in reliability
index will still decrease. A positive side is that the error in
reliability index decreases even with strong tail-dependence as
shown in Fig. 9b.

We use the L function as a measure of the degree of tail-
dependence herein by estimating the tail-dependence coef-
ficient (TDC) (Frahm et al. 2005). The limit of L is referred
to as TDC that represents the strength of tail-dependence
(Joe 1997).

TDC ¼ lim
z→þ0

L zð Þ ð15Þ

L for BVN converges to zero as z approaches zero; the error
due to ignoring dependence decreases as system PF decreases.
However, distributions with strong tail-dependence have non
zero TDC. Unfortunately, accurate TDC estimation to deter-
mine the degree of tail-dependence requires more than 1,000
samples (Frahm et al. 2005).

4 Copula models

The previous sections BVN and generic strong and weak de-
pendence models were used to generate examples. In this
section, more dependence types will be used to enrich varie-
ties in examples using copulas. The word ‘copula’ is a Latin
noun which means ‘a link’. The word was employed in a
statistical term by Sklar (Sklar 1959) in the theorem describing

(a) (b)Fig. 7 Randomly generated
10,000 samples having different
tail shapes with a linear
correlation coefficient of 0.8. a
ρ=0.8 (BVN). b ρ=0.8 (strong
tail-dependence)

Table 2 Minimum reliability
index and maximum PF in order
to achieve target errors

Reliability measure Target error ρ=0.7 ρ=0.75 ρ=0.8 ρ=0.85 ρ=0.9

Reliability index 5 % 1.68 1.79 1.93 2.10 2.31

1 % 2.82 3.03 3.28 3.60 4.04

PF 10 % 3.4×10−3 9.4×10−4 1.4×10−4 6.4×10−6 1.6×10−8

5 % 1.7×10−4 2.4×10−5 1.4×10−6 1.1×10−8 1.5×10−11
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the functions that join marginal CDFs to form a joint CDF. In
this context, copula is a function that links a joint CDF to its
marginal CDFs (Nelsen 1999; Joe 1997; Georges et al. 2001).
Copula is a joint CDF whose one-dimensional margins are
uniform in the interval (0,1). Copula is an important concept
for modeling a joint CDF that includes dependence.

However, defining complex multi-dimensional depen-
dence is still a highly active area of research (Kurowicka
and Joe 2011). Multivariate normal distribution (MVN) is
one popular model to define multi-dimensional dependence,
but it has a limitation that MVN can only model linear depen-
dence of independent normal distributions. Also there are pa-
rameterized multivariate copulas, such asmultivariate Clayton
and multivariate Gumbel. For more general approaches, there
are various approaches of non-copula based methods and
copula-based methods. For copula-based methods, vine cop-
ula method is one of methods that modeling multi-
dimensional dependence with flexibility based on well-
established pair copulas families (Aas et al. 2009). Also there
are graphical models based on directed acyclic graphs
(Kurowicka and Joe 2011).

In this section, four common copulas in Fig. 10 are used to
explain the tail-dependence and error in neglecting the

dependence. It is noted that BVN is defined with Gaussian
copula with normal marginal distributions, but the Gaussian
copula is not limited to BVN. The marginal distributions of
Gaussian copula can be any distribution. For example, we will
observe the behavior associated with a Gaussian copula when
the marginal distributions are Gumbel distributions.

Let Y={Y1,Y2,…,Yn}
T be a vector of n-dimensional ran-

dom variables, which are defined with marginal CDFs,
FYi yið Þ. The probability of intersection is a function of depen-
dence. The probability of intersection of n-dimensional ran-
dom variables is also called a joint CDF that is defined as

FY 1;…Yn y1;…; ynð Þ ¼ Pr Y 1≤y1;…; Yn≤ynð Þ ð16Þ

Copula functions define the joint CDFwith marginal CDFs

FY 1;…Yn y1;…; ynð Þ ¼ C FY 1 y1ð Þ;…; FYn ynð Þð Þ ð17Þ

where C is a copula function. Note that copula functions are
independent to marginal CDFs and all arguments of copula
functions have a domain of [0, 1]. Also, due to the property of
multivariate CDF, the output of the copula function also has a
range of [0, 1].

(a) (b)Fig. 8 Curves of L function with
respect to the strength of
dependence and tail shape of joint
PDF. (Asymptotic value of L(z)
for z→+0 is 0). a L function for
different values of the strength of
dependence (BVN). b L function
for different magnitudes of
tail-dependence

(a) (b)Fig. 9 Error curves for different
strengths of tail-dependence. a
Error vs PF. b Error vs reliability
index
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Figure 11 shows L function for the copulas shown in
Fig. 10. As expected, the copula with a sharp tail,
Clayton, has a very strong tail-dependence. Gaussian
copula has stronger tail-dependence than Gumbel and
Frank copulas.

It is noteworthy that the type of marginal distribu-
tions is immaterial as far as the error of ignoring

dependence is concerned. The error is a function of
the magnitude of system PF and the type of copula.
For example, the error using a Gaussian copula with
two lognormal marginal distributions will be the same
as the error using the same Gaussian copula with BVN
distributions. The readers are referred to Appendix A
for a detailed explanation.

Table 3 Minimum reliability
index and maximum PF needed
for target error magnitudes

Reliability measure Target error ρ=0.8 (BVN) ρ=0.8
(strong tail-dependence)

ρ=0.8
(weak tail-dependence)

Reliability index 5 % 1.93 3.13 1.44

1 % 3.28 6.92 1.98

PF 10 % 1.4×10−4 N/A 5.0×10−2

5 % 1.3×10−6 N/A 2.5×10−2

(a) (b)

(c) (d)

Fig. 10 Joint PDF shapes with
four commonly used copulas with
two standard normal marginal
distributions with a linear
correlation coefficient of 0.7. a
Gaussian copula. b Clayton
copula. cGumbel copula. d Frank
copula
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4.1 The effect of ignoring dependence for different copulas

In the previous section, the error due to ignoring dependence
for BVN, which is defined with a Gaussian copula, is shown
as a function of the magnitude of system PF and the correla-
tion coefficient. In this section, the errors with different de-
pendence models are defined with Clayton, Gumbel and
Frank copulas. Since the type of marginal distributions are
immaterial to the error (see Appendix A), the normal distribu-
tions are used as marginal CDFs. Then, the errors are calcu-
lated in terms of system PF and reliability index. The system
PF shown in (5) is rewritten using a copula as

P f sys ¼ FG1 0; z; 1ð Þ þ FG2 0; z; 1ð Þ � C FG1 0; z; 1ð Þ; FG2 0; z; 1ð Þ; θð Þ
βsys ¼ − Φ−1 P f sys

� �
ð18Þ

The magnitude of PF and the strength of dependence are
controlled by changing z and θ. PF ignoring dependence is
expressed as

P f ind ¼ FG1 0; z; 1ð Þ þ FG2 0; z; 1ð Þ � FG1 0; z; 1ð ÞFG2 0; z; 1ð Þ ð19Þ

The errors in (9) and (10) are shown in Fig. 12 for different
correlation coefficients. It is observed that the error in system
reliability index decreases as system reliability increases even
for strong tail-dependence. In the case of system PF, however,
the error does not decrease for the Clayton copula, but the
error decreases for the other two copulas.

Although the Kendall’s tau is used to define the level
of dependence, the corresponding linear correlation coef-
ficient is also shown for the purpose of consistency. For
dependences defined with an elliptical joint distribution,
Kendall’s tau can be converted to the equivalent linear
correlation coefficient with a formula of ρ=sin(0.5πτ)
(Lindskog 2000). For non-elliptical dependence, there is
no universal way to convert Kendall’s tau to the linear
correlation coefficient. For example, the dependence be-
tween samples in Fig. 7a is defined with bivariate normal

distribution, which is an elliptic joint pdf, whereas that in
Fig. 7b is defined with a Clayton copula and two normal
marginal distributions, which is a non-elliptic joint pdf.
The strengths of dependence between two sample sets
are 0.8 in terms of the linear correlation coefficient.
However, in terms of the Kendall’s tau, the strengths are
0.59 and 0.63, respectively. We generate 10,000 samples
with a given level of Kendall’s tau, from which the cor-
responding linear correlation coefficient is calculated.
This process is repeated for different Kendall’s tau to find
the specific value of linear coefficient.

Table 4 presents the magnitudes of minimum system reli-
ability indices for 5 and 1 % target errors. From Fig. 12 and
Table 4, we see that, as expected, for the Frank and Gumbel
copulas, which have weak tail-dependence, the errors in the
reliability index decay fast for high reliability index. However,
even for the Clayton copula with a strong tail-dependence, the
error reduces relatively fast. Error in the reliability index con-
verges to zero as the reliability index increases. In Table 5, the
magnitudes of maximum system PFs for 10 and 5% errors are
shown. The errors in PF with Gumbel and Frank copulas
decrease as reliability indices increase since they have a weak
tail-dependence. For Frank copula, the error becomes less than
5 % at the magnitude of 10−3 even at the very large correlation
coefficient of ρ=0.9. For the Clayton copula model, on the
other hand, the error in PF increases as reliability increases
due to its strong tail-dependence.

4.2 Effect of the ratio between marginal PFs

The ratio between marginal PFs also turns out to have a sig-
nificant effect on the error. The Gaussian and Clayton copulas
are considered since the other copulas have a small error be-
cause of their weak tail-dependence. The ratio between Pf2
and Pf1 is denoted as α as

Pf 2 ¼ αPf 1 ð20Þ

(a) (b)Fig. 11 L functions for different
copulas. a Extreme tail region. b
Large range
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Figure 13 shows the error with respect to the magnitude of
reliability index and logarithmic PF while the strength of de-
pendence is kept as ρ=0.8. From the graphs, it is clear that the
error is maximal when the ratio is 1 and decreases substantial-
ly with increasing ratio. For a strong tail-dependence copula,
Clayton, the effect is most dramatic when the ratio is 8, even
the errors in PF are near 10 %.

As the ratio increases, the error in reliability index
and the error in PF decrease. Table 6 shows minimum
reliability index for 5 and 1 % error with respect to the

ratio of marginal PFs. The error monotonically de-
creases as reliability index increases. Table 7 shows
maximum system PF for 10 and 5 % error with respect
to the ratio. For Gaussian as a dependence model, the
PF for 10 % error is 1.4×10−4 for the ratio of 1 and the
PF for 10 % error is 1.7×10−4 for the ratio of 4. For
the ratio of 8, the error is less than 10 % for all PF
variation. For Clayton, the error is always larger than
10 % but the ratio of marginal PFs affects the error a
lot as shown in Fig. 13d.

(b)(a)

(d)(c)

(f)(e)

Fig. 12 Relative error in
reliability index (left figures) and
PF (right figures) versus system
PF. a Error vs reliability index
(Clayton). b Error vs PF
(Clayton). c Error vs reliability
index (Gumbel). d Error vs PF
(Gumbel). e Error vs reliability
index (Frank). f Error vs PF
(Frank)
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5 Reliability based design examples

In this section RBDO for two truss structures, a two bar truss
and a ten-bar plane truss, are carried out for different system
reliability constraints to demonstrate the weakening effect on
error in system PF calculation and the corresponding design
mass penalty by ignoring dependence. For a given system
reliability constraint, two optimum designs are obtained.
One design is obtained by calculating system PF based on
the independence assumption and the other without the as-
sumption. For the design with the independence assumption,
the corresponding true system PF is also evaluated. With n
bars, the Optimization formulation is given as

Minimize Mass ¼
Xn

i¼1

AiLiρ ðkgÞ

Subject to βallow < −Φ−1 P f sys

� �
P f sys ¼ Pr ∪

n

i¼1
Gi < 0f g

� �
Gi ¼ Αiσu;i− Nij j for i ¼ 1;…; n

0:01≤Αi≤1 for i ¼ 1;…; n ð21Þ

where Ai, Li, Ni and σu,i are the area, the length, the mem-
ber force and the ultimate strength of ith bar, respective-
ly. The goal of the optimization is to obtain optimum
areas for minimizing mass while satisfying system reli-
ability constraint. It is assumed that the system is intact
when all the bars are intact. A bar fails when the mag-
nitude of an axial force exceeds its ultimate failure

strength. In this section, in order to focus on measuring
the effect of ignoring dependence and to make optimi-
zation process suitable, we use examples that have no
errors in individual PF calculations with FORM.

5.1 Two-bar truss (n=2)

The previous truss structure in Fig. 1 is used for
RBDO. The bar areas, A1 and A2, are design variables.
FORM is used to evaluate marginal PFs during design
optimization iterations and the system PF is calculated
by assuming independence. Since the limit states are
linear functions of normally distributed random vari-
ables, FORM provides the exact marginal PFs of two
failure modes and the system PF can be exactly calcu-
lated through a simple algebra. The angle between the
truss and the external loads v and h makes member
forces, F1 and F2, dependent, which is defined with
the Gaussian copula of the linear correlation coefficient
0.8. Consequently, the failure modes of the two mem-
bers are also dependent. Table 8 shows input variables,
as well as the distributions and the dependence model
of the member forces F1 and F2.

Figure 14a shows the mass and the corresponding
system reliability index as function of design variables.
The dashed lines are contours of exact system reliability
index (shown by the label) and the solid lines are con-
tour lines with assumed independence. The discrepancy
between the solid line and the dashed lines indicates
mass penalty due to the error. It can be seen that for
high values of A1 or A2 the discrepancy is very small.
This is because the member with large area has low
stress, so that only the failure mode in the other mem-
ber is critical, and the dependence between failure
modes has very little influence on the probability of
failure. The filled 2D contour is mass, where light gray
represents light mass and dark gray represents heavy
mass. Optimum designs provide minimum mass for the
specified system reliability index. The green star marker
is the exact optimum design and the green circle marker
is the optimum design ignoring dependence for target
system reliability of βallow=3.5.

Table 4 Minimum system reliability index for 5 and 1 % target errors
(in reliability index) versus the strength of dependence measured by the
linear correlation coefficient

Copula Target error \ ρ ρ=0.7 ρ=0.75 ρ=0.8 ρ=0.85 ρ=0.9

Clayton 5 % 2.88 3.01 3.14 3.26 3.38

1 % 6.50 6.72 6.92 7.10 7.27

Gumbel 5 % 1.40 1.50 1.63 1.78 1.96

1 % 2.27 2.42 2.60 2.82 3.12

Frank 5 % 1.30 1.37 1.44 1.53 1.63

1 % 1.86 1.92 1.98 2.06 2.17

Table 5 Maximum system PF
for 10 and 5 % target errors in PF
(not error in logarithm of PF) with
respect to the strength of
dependence measured by the
linear correlation coefficient

Copula Target error ρ=0.7 ρ=0.75 ρ=0.8 ρ=0.85 ρ=0.9

Clayton N/Aa

Gumbel 10 % 3.72×10−2 2.07×10−2 9.63×10−3 3.21×10−3 5.64×10−4

5 % 1.54×10−4 4.79×10−5 9.58×10−6 8.52×10−7 7.29×10−8

Frank 10 % 7.7×10−2 6.3×10−2 5.0×10−2 3.9×10−2 2.7×10−2

5 % 7.3×10−3 6.0×10−3 4.9×10−3 3.8×10−3 2.7×10−3

a Error for Clayton is always larger than 10 % for the magnitude of system PF less than 0.01
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For the allowable reliability index of 3.5, at the optimal
design point, the dependence between the two failure modes
is described with Gaussian copula and normal marginal distri-
butions (BVN) with the linear correlation coefficient of 0.8
and the ratio between marginal probabilities of failure is 1.12
(P1=1.4×10

−4 and P2=1.2×10
−4).

Figure 14b presents three lines of mass versus re-
quired reliability index. The black solid line indicates
the optimal design mass when dependence is ignored.
The dashed line indicates the corresponding actual sys-
tem reliability of that design, so that vertical difference
between the two lines represents the reliability index
error. For a design reliability index of 1.5 (PFallow=
0.067), the conservative error is 0.15 which translates

to 36 % error in the probability of failure, while for a
reliability index of 3.5 (PFallow=0.00023) the error is
0.03 (or 12 % error in the probability). The errors in
system PF and system reliability index are close to
those presented in Fig. 6, in which the errors for a
Gaussian copula dependence with the linear correlation
coefficient of 0.8 and the ratio of 1 are presented.

The dashed line indicates the optimal design for giv-
en reliability constraint when dependence is exactly
considered. The star and circle markers are the exact
optimum design and the optimum design with indepen-
dence assumption for βallow=3.5, respectively. The mass

(a) (b)

(c) (d)

Fig. 13 The magnitude of errors
for different ratios between
marginal PFs. a Error versus
reliability index (Gaussian). b
Error (in PF) versus system PF
(Gaussian). c Error versus
reliability index (Clayton). d
Error (in PF) versus system PF
(Clayton)

Table 6 Minimum system reliability index for 5 and 1 % target errors
versus the marginal-probability ratio with ρ=0.8

Copula Target error ratio=1 ratio=2 ratio=4 ratio=8

Gaussian 5 % 1.94 1.84 1.56 1.14

1 % 3.28 3.19 2.94 2.54

Clayton 5 % 3.14 2.68 1.92 1.25

1 % 6.96 6.14 4.63 3.31

Table 7 Maximum system PF for 10 and 5 % target errors versus the
marginal-probability ratio with ρ=0.8

Copula Target error ratio=1 ratio=2 ratio=4 ratio=8

Gaussian 10 % 1.4×10−4 2.7×10−4 1.7×10−3 N/Aa

5 % 1.3×10−6 2.5×10−6 1.4×10−5 2.9×10−4

Clayton N/Ab

a Error is always less than 10 %
bError for Clayton is always larger than 10% for the magnitude of system
PF less than 0.01 when PF is smaller than 0.01
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penalty is the additional mass of the optimal design
mass ignoring dependence over the exact optimal design
mass for the same system reliability constraint, so that
horizontal distance between the solid and dashed lines is
proportional to the mass penalty. There is 3.1 % mass
penalty for βallow=1.5 and the mass penalty is reduced
to 0.5 % for βallow=3.5. However, for this example the
mass penalty provides additional design safety so that
ignoring dependence does not harm the design safety.

For the previous example, the dependence between limit
states is a Gaussian copula, which does not have strong tail-
dependence. To create strong tail-dependence between fail-
ure modes, instead of defining distributions of the external
forces, v and h, we artificially change the coupling between

member forces F1 and F2 to the Gumbel copula with a
strong coupling defined by Kendall’s tau of 0.9 (see
Table 9). Similarly those two ultimate strengths are coupled
with Clayton copula. The forces and strengths have different
copulas because they appear with opposite signs in the limit
states (see also Fig. 10)

Figure 15 shows that strong tail-dependence leads to larger
discrepancy between optimal designs for the same reliability
constraint than the previous example. The star and circle
markers are the exact optimum design and the optimum design
with assumed independence, respectively. The error in system
reliability index is 14 % for βallow=1.5 and 2 % for βallow=3.5.
The corresponding errors in system PF are 64 and 35%. There
is 5.1 % mass penalty for βallow=1.5 and 1 % for βallow=3.5.

For the allowable reliability index of 3.5, at the op-
timal design point, the linear correlation coefficient be-
tween the two failure modes is 0.935. The ratio between
marginal probabilities of failure is 1.12 (P1=1.4×10

−4

and P2=1.2×10
−4).

This example combines stronger linear correlation coeffi-
cient (0.935 vs. 0.8) and stronger tail-dependence (Gumbel
and Clayton vs. all Gaussians). To separate the effects, we also
ran a case where the linear correlation coefficient was 0.8 at
the optimal design for βallow=3.5 with the same strong tail-
dependence. The error in system PF is 42 % for βallow=1.5
and 30 % for βallow=3.5. That is the strong tail-dependence
had larger influence on the error in system PF calculation then
the increase in linear correlation coefficient.

It is noteworthy that the strong correlation is due to the
fact that randomness in the loads and strength affects the
two failure modes in a similar way. That dependence does
not mean that design improvement in one failure will af-
fect the other failure. For this optimization problem, A1

Table 8 Input variables for 2-bar truss design

Uncertainty variables

Vertical force (v)1 N(50, 152) kN

Horizontal force (h)1 N(50, 2.52) kN

Ultimate strength (σu1)
1 N(250, 12.52) Mpa

Ultimate strength (σu2)
1 N(250, 12.52) Mpa

Calculated distribution of member forces

Member force 1 (F1)
2 N(70.71, 10.752) kN

Member force 2 (F2)
2 N(0, 10.752) kN

Deterministic variables

Angle (α) 45 (degree)

Height (l) 0.51/2 m

Density (ρ) 1 kg/m3

1 v, h, σu1 and σu2 are independent
2 The member forces are dependent which is defined with a Gaussian
copula with ρ=0.8

(a) (b)
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Fig. 14 Visualization of
probabilistic optimization results
(dashed lines show exact results,
and solid lines results neglecting
dependence) for 2-bar truss. (a)
Mass (light and dark shade
represent light and heavy mass,
respectively) and constraint lines
with respect to the magnitude of
allowable reliability index. (b)
Minimum mass which is
proportional to design weight and
corresponding reliability index
and actual reliability index
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will affect only the reliability of element 1 and A2 will
affect only the reliability of element 2.

5.2 Ten-bar plane truss example (n=10)

RBDO of a ten-bar plane truss shown in Fig. 16 is
carried out. Cross-sectional areas of bars are design var-
iables. Because the system is statically indeterminate,
the axial force of a bar is a function of cross-sectional
areas as well as the applied forces. Since member forces
are linear combinations of the random applied forces,
member forces Ni are correlated, and thus, the ten fail-
ure modes are correlated. The member forces in the bars
are given by (Herencia et al. 2013)

N 1 ¼ P2 �
ffiffiffi
2
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2
N8; N 2 ¼ �
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2
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Since the member forces are linear functions of applied
forces, FORM provides the exact PF of each bar. Table 10
presents inputs and their definitions. The random input distri-
butions were selected in order to create strong correlations
between limit states.

Figure 17 shows the effect of ignoring dependence on the
design mass and the error in system PF for different levels of
reliability constraint. The optimum design mass with the in-
dependence assumption, βidp, is different from the optimum
design without using the assumption, βsys. In Fig. 17, βidp,actual

Table 9 Random inputs for strong tail-dependence (the strength of
dependence is defined with the Kendall’s tau, τ) for 2-bar truss

Random inputs Distribution

Member force 1 (F1)
1 N(70.71, 10.752) kN

Member force 2 (F2)
1 N(0, 10.752) kN

Ultimate strength (σu1)
2 N(250, 12.52) MPa

Ultimate strength (σu2)
2 N(250, 12.52) MPa

1 F1 and F2 are dependent defined with a Gumbel copula with the
Kendall’s tan of 0.9
2 σu1 and σu2 are dependent defined with a Clayton copula with the
Kendall’s tau of 0.9
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Fig. 15 Visualization of
probabilistic optimization results
with strong tail-dependence for
2-bar truss. (a) Mass (bright and
dark color represent light and
heavy mass, respectively) and
constraint lines with respect to the
magnitude of allowable reliability
index. (b) Minimum mass which
is proportional to design mass and
corresponding reliability index
and actual reliability index
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is the actual system reliability index corresponding to the op-
timum design obtained by βidp. Because the design using βidp
underestimates the reliability, it yields a more conservative de-
sign than the design using βsys. The error and the corresponding
discrepancy of optimum mass decreases as the level of system
reliability constraint increases. At βallow=1.28 (PFsys=0.1), the
error in system reliability calculation is 45% but the correspond-
ingmass penalty is 1%. This small mass penalty is caused by the
small coefficients of variation of the applied forces and the ulti-
mate strengths. At βallow=5.20 (PFsys=10

−7), the error in system
reliability calculation is 5 % and mass penalty is less than 0.1 %.

The true system reliability indices of the design with inde-
pendence assumption and the design without using the as-
sumption were obtained by MCS. For calculating true system
reliability indices, 10 million samples were used for βallow=
1.28 (PFsys=0.1) to βallow=3.72 (PFsys=10

−4) and the number
of samples increases as system reliability index increases to
achieve the same level of accuracy. One hundred million,
billion, ten billion samples were used for βallow=4.26
(PFsys=10

−5), βallow=4.75 (PFsys=10
−6) and βallow=5.20

(PFsys=10
−7), respectively. For obtaining the design without

using the assumption, million samples were used for βallow=
1.28 (PFsys=0.1) to βallow=3.09 (PFsys=10

−3) and the number
of samples increases as system reliability index increase.

Randomness in PF calculation was suppressed during the op-
timization process by using a constant random seed.

Figure 18 presents correlations between limit states of bar 1,
2, 3, 5, 8 and 10 for βallow=1.28 (PFsys=0.1) and βallow=5.20
(PFsys=10

−7) with scatter plots from 10,000 samples and the
linear correlation coefficients. Since PFs of bar 4, 6, 7 and 9 are
essentially zero, correlations with those bars have no influence
on system PF calculation. For example, the image in (2, 1)
position is a correlation plot between bars 1 and 2 and the
number in (1, 2) position is the corresponding correlation co-
efficient. Red samples in the scatter plots represent failed sam-
ples. In general, correlations are strong as ten out of 15 corre-
lations are greater than 0.7, which is the lower bound of strong
correlation (Georges et al. 2001). Figure 18 also provides PF
ratios between failure modes. The numbers in parenthesis are
marginal PFs of the design using the independence assumption
and the ratio can be calculated using the numbers. For example
the PF ratio between limit states of bars 1 and 2 is 1.33. The
marginal PFs of the design without using the assumption are
less conservative since the independence assumption overesti-
mates the system PF and PF ratios are similar.

The correlations slightly decrease as the allowed reliability
index increases. Since the ultimate strengths are independent,
the increase in the required reliability index increases the bar
areas and the corresponding coefficient of variation of resistance
(Aiσu,i) of the limit state functions. It also weakens the strength of
correlation between the limit states. Since the coefficients of
variation of the ultimate strengths are much smaller than that of
the applied forces, the effect of increasing the allowed reliability
index on correlation strength change is small as observed.

6 Concluding remarks

In this paper, the effect of assuming independence between
failure modes on error in system PF and system reliability
index calculations was studied. It was found that the effects

Fig. 16 Ten bar truss structure

Table 10 Inputs and their definitions of the 10 bar truss (all random
variables are independent)

Deterministic inputs Value

Young’s modulus (Ei) for i=1,..10 2.1 GPa

Density (ρ) 1 kg/m3

Length (L) 1 m

Random inputs Distribution

Applied forces (P1) N(100, 5) kN

Applied forces (P2) N(100, 5) kN

Applied forces (P3) N(50, 2.5) kN

Ultimate strength (σu,i) for i=l,..10 N(1,0.012) MPa

1.3 1.35 1.4 1.45 1.5
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Fig. 17 Visualization of probabilistic optimization results
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of tail-dependence and the ratio between marginal PFs are
significant. For low probabilities of failure, we can conclude
that: 1) for errors in system reliability index, we can always
ignore the dependence and 2) for errors in system PF, we can
safely use independence assumption when the ratio of marginal
PFs is high or tail-dependence is not very strong. In other
words, we can determine whether errors in system PF is ignor-
able based on the ratio of marginal PFs and the tail-dependence.
Note that there is no need to estimate the tail-dependence accu-
rately. We can find out whether the tail strength is very strong
by estimating the L function or TDC using MCS. For two
failure modes, the conclusions are supported by the examples
which are quite comprehensive but the examples are not suffi-
cient to firmly support the conclusions for higher number of
correlated failure modes. However, real applications have a lot
of error sources, the error due to ignoring dependence would be
likely be small compared to other error sources such as error in
input distribution or error in computational models.

The bivariate normal distribution (BVN) and copulas were
used to generate examples to demonstrate the effects of the

correlation strength and tail-dependence. For the BVN with
strong dependence with a correlation coefficient of ρ=0.8,
there is 1 % error in the system reliability index at 3.28, and
there is 10 % error in system PF at 10−4. To illustrate the effect
of tail-dependence, we used four commonly used copulas,
Gaussian, Clayton, Gumbel and Frank copulas to generate
examples. The decay of errors with increasing reliability index
depends on a parameter called tail-dependence. For strong tail-
dependence between failure modes, the errors in system PF do
not decay even for a low system PF. Possibly, small errors in
large values of reliability index are acceptable even if the rel-
ative errors in PF are high. This is because similar large errors
in PF are inevitable due to small errors in input distributions.

It is also found that the ratio between marginal PFs is influ-
ential to the error, especially for strong tail-dependence. It is
observed that the errors in PF are small when the ratio of
marginal PFs is larger than 8 even for a strong tail-dependence.

Finally, examples of the design of a two-bar and ten-bar
trusses were used to illustrate the effect of the error in reliabil-
ity index on the optimum solution and the performance (here

Fig. 18 Scatter plots of limit state
correlations between bar 1, 2, 3, 5,
8 and 10 and the corresponding
correlation coefficients for the
optimal design of allowed system
PF 0.1. (Red color of samples
denotes failure)

(a) (b)Fig. 19 Two joint PDFs that have
different marginal PDFs for the
limit states, but the same
individual PFs
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design mass) penalty associated with it. For the two-bar ex-
ample, it was found that even with very strong correlation
(0.935) between two almost equally critical failure modes, at
βallow=3.5, the error in the reliability index was about 2 % and
the mass penalty was only 1 %. For the ten-bar example, the
error in the system PF of 45 % at βallow=1.28 with strong de-
pendences between bar failures decreases to 6 % at βallow=5.20.
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Appendix A: The effect of marginal distributions
on the errors due to ignoring dependence

Since copula is independent to marginal distributions, error
only depends on copulas. For example, two joint PDFs de-
fined with same copula and different marginal PDFs have the
same errors for the same marginal PFs. In other words, the
types of marginal distributions do not affect the error.

Figure 19a and b show joint PDF contours of two failure
modes. Figure 19a shows a joint PDF contour with different
marginal distributions of limit state: the extreme distribution
for G1 and the normal distribution for G2. Figure 19b shows a
joint PDF contour with the same marginal distributions: the
normal distribution for both G1 and G2. They have the same
marginal PFs (Pf1 = Pf2 = 0.1265) and dependence model (the
Gaussian copula with ρ=0.7). The shaded region is the region
of intersection PF. Although the two joint PDFs have different
contour shapes, their errors are the same, 19.8 %, since their
marginal PFs and copula models modeling dependence are the
same.
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