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ABSTRACT

NOMENCLATURE

In this paper, numerical methods of fatigue life prediction for elastomers subjected to
multidirectional, variable amplitude loadings are presented. Because experiments and
numerical methods use different stress measures in large deformation, transformation
between nominal stress and the second Piola—Kirchhoff stress is performed before fatigue life
calculation. In order to incorporate the Mullins effect, the material properties of elastomers
are calculated after an initial transition period. An efficient interpolation scheme using load
stress/strain curves under unidirectional loading is proposed based on the fatigue character-
istic of elastomers. A rainflow counting method with multi-stress components is developed
for variable amplitude loadings, and the critical plane method is applied to find the plane with
the maximum damage parameter. Fatigue life predictions using the proposed numerical
method are validated against experimental results. As a practical example, the fatigue life of
a rubber engine mount is predicted using the proposed numerical method.

Keywords critical plane method; elastomer; fatigue; Mullins effect; rainflow counting.

d = fatigue life prediction coefficients
F = deformation gradient
K = fatigue life prediction coefficients
number of repeated loading blocks
number of peaks in a loading block
ng,ny,n; = eigenvectors of the right Cauchy Green deformation(C)
nyi,n75,n7 3 = eigenvectors of the logarithmic strain

m

n

Ny = number of cycles

N; = number of life cycles

P = first Piola Kirchhoff stresses(nominal stress)

S =second Piola Kirchhoff stresses

T = coordinate transformation matrix

0; = material constants for elastomer

E = Green Lagrange strain
Ay; = range of shear strain on critical plane
Aty = range of shear stress on critical plane

Ae™ = range of maximum principal strain

Ael™ = range of nominal strain on critical plane

Aoy = range of nominal stress on critical plane
€pqg = engineering strains
€1, = logarithmic strains

J; = principal stretch

ALj1sAr2,A1,3 = eigenvalues of the logarithmic strain
u; = shear modulus of elastomer
66,E; = stress and strain of a free surface plane
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61, € = stress and strain of a candidate critical plane
@ = eigenvector matrix of the right Cauchy Green deformation(C)
@, = eigenvector matrix of the logarithmic strains

INTRODUCTION

Elastomers, such as natural or synthetic rubber, are
widely used in machine components for their energy-
absorbing capability and elastic reversibility. Tyres, en-
gine mounts for automobiles and rubber bearings for
bridges are common examples of the elastomers’ applica-
tions. These elastomers often have to endure cyclic
loadings during their lifetime, and thus, fatigue failure is
one of the critical issues in elastomer design. Although
numerical methods of fatigue life calculation for metals
are well developed, they are not directly applicable to
elastomers due to the latter’s nonlinear characteristics."

Several experimental studies have suggested fatigue
characteristics of elastomers, and a few numerical stud-
ies have performed in specific components of machin-
ery. Wang et al’ studied multidirectional fatigue
properties using a series of experiments for propor-
tional and non-proportional loadings and compared
their results with several fatigue criteria. Li ez 4/’ and
Kim et al.* studied the fatigue failure of a rubber com-
ponent of automobiles using numerical and experimen-
tal methods, but the numerical methods were limited
only on the test conditions. In terms of strain measures,
Kim et al.* used the maximum principal Green-Lagrange
strain, and Li ez a/.* used the maximum principal true strain
for the damage parameter. Mars et 2.’ studied several
damage parameters for fatigue of elastomers, which were
related to strain and energy, and Saintier ez 2..* suggested
an equivalent stress parameter, which included damage and
reinforcement quantities on the critical plane. Zarrin-
Ghalami et al'™"" studied experimental data and life
prediction analysis for an automobile mount under con-
stant and variable amplitude in in-phase and out-of-phase
loading.

However, most studies are limited to constant ampli-
tude proportional loadings and numerical methods used
for comparing their fatigue parameters with test results.
Studies of numerical methods for fatigue life prediction
of practical elastomers subjected to multidirectional tran-
sient amplitude loading have rarely been reported, which
is the main contribution of the paper.

Elastomers are known as a typical hyperelastic mate-
rial having a nonlinear elastic behaviour, and thus, the
superposition technique in a metal fatigue is not appli-
cable for calculating dynamic stress/strain histories.
This means that the computational cost of calculating
stress/strain histories of elastomers under variable
amplitude loading greatly increases because of the

nonlinear transient analysis. Generally, material proper-
ties of fatigue life prediction are decided by experiments,
which are based on nominal stress and strain. On the other
hand, numerical methods of elastomers often use the
second Piola—Kirchhoff stress and the Green-Lagrange
strain, or Cauchy stress and logarithmic strain to de-
scribe the nonlinear behaviour of elastomers. In order
to address this difference, a reliable conversion proce-
dure between the two different measures is necessary
for numerical methods of elastomers’ fatigue. There
are many damage parameters for fatigue life prediction:
some of them have a single component, and others have
multicomponents. In constant unidirectional loading,
estimation of damage parameters is straightforward.
However, in variable amplitude loading, the estimation
of multicomponent damage parameters is a challenging
task, and a modified rainflow counting technique is re-
quired. In this paper, practical numerical methods for
fatigue life prediction of elastomers under time-varying
loads are presented by addressing the aforementioned
issues.

The paper is organized as follows. The first section
describes properties of elastomers for fatigue prediction,
such as mechanical characteristics, stresses and strains
measures and damage parameters of fatigue prediction.
The second section shows the numerical prediction of fa-
tigue of elastomers using experimental condition and a
practical example of an engine mount. Finally, conclu-
sions are discussed in the last section.

PROPERTIES OF ELASTOMERS
FOR FATIGUE PREDICTION

Characteristic properties of elastomers

Hyperelasticity is a characteristic property of elastomers,
showing a nonlinear elastic behaviour as illustrated in
Fig. 1. It does not have permanent plastic deformation,
which means that elastomers can return to their original
state when external loading is removed. Although elasto-
mers show nonlinear behaviour, there is a one-to-one
relation between the applied load and stress/strain.

In this paper, loadings used in fatigue prediction are
classified into two categories to develop efficient methods
for generating stress and strain histories. The first is unidi-
rectional loading in which the dynamic load history can be
parameterized by the history of a single load factor (e.g. see
path 1 in Fig. 11). In such a case, a single nonlinear analysis
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Fig. 1 One-to-one relation between force and strain.

with increasing load factors from the minimum to the
maximum can be used to interpolate the history of stress
and strain, which can greatly reduce computational cost.
The other is multidirectional loading, composed of
several unidirectional loadings that do not have the same
time-varying load factor. In multidirectional loading, the
interpolation scheme cannot be used, and thus, nonlinear
transient analysis that follows the complete load history is
required to obtain stress and strain histories. If multidi-
rectional loading has repeated loading blocks, then non-
linear transient analysis can be performed over a loading
block to save computational efforts. Paths 2 and 3 in
Fig. 11 are examples of multidirectional loading because
they have axial and torsional loadings whose load factors
vary independently.

The Mullins effect is an important characteristic
property of elastomers.” This effect is caused by micro-
scopic debonding of polymer particles chains. It is a par-
ticular damage behaviour in which the stress—strain curve
relies on the maximum value of strain. The stress—strain
path including the Mullins effect is shown in Fig. 2.

Stress [ b’ N

Strech ratio (A)

Fig. 2 Stress—strain path including Mullins effect.

The stiffness against deformation is reduced according
to the cyclic loadings; however, the reduction is stabilized
within the first few loading cycles. Because a fatigue
phenomenon occurs with thousands or millions of cycles,
the material properties of the stabilized status after the
Mullins effect should be used for fatigue calculation.

In this paper, the three-term Ogden model is used to
express the strain energy density function as

N
M o a; a;
W:Z;(AI + 25405 =3) 1)

i=1

where 11,4, and A3 are principal stretches and u; and a;
are material properties of the elastomer. Table 1 lists the
mechanical properties of an Ogden hyperelastic material
as suggested by Wang ez al.” The properties of elastomers
considering the Mullins effect are estimated by compar-
ing the stress values between the initial stage and the
stabilized stage in the uniaxial fatigue tests performed
by Wang et al.? Because stress linearly depends on u;, in
the Ogden model, a scale factor is applied to g, in order
to consider the Mullins effect.

Stresses and strains measures

In general, identifying material parameters through ex-
periments should be independent of numerical methods;
otherwise, it is possible to determine if the error in
numerical methods may affect the identified material
parameters. Even if elastomers experience large deforma-
tion, nominal stress and strain are always measured based
on the forces and displacements during the test. On the
other hand, hyperelastic models are often defined using
different stress and strain measures, such as the second
Piola—Kirchhoff stress and the Green-Lagrange strain.
Therefore, there is a distinct discrepancy in stress and
strain measures between experiments and numerical
methods. In addition, fatigue damage parameters are also
defined using nominal stress and strain because they were
determined by experiments. As a result, it is necessary to
convert the stress and strain measures of numerical
methods to nominal stress and strain. The detailed con-
version relations between numerical methods and exper-
iments measures are listed in Appendix.

Table 1 Material properties of the Ogden constitutive model

M1 aq M2 05] M3 a3
Without 0.5558 2.5786 5.6426 0.1068 6.2845 0.1120
Mullins effect
With 0.4099 2.5786 4.1613 0.1068 4.6348 0.1120

Mullins effect
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Damage parameters of fatigue life prediction

In general, the fatigue life of elastomers can be found
by making a relationship between a damage parameter
and the number of fatigue life cycles as in Eq. (2).
Different damage parameters have been suggested: the
SWT model by Smith er 4", the CXH model by
Chen et 4" and the modified Fatami-Socie’s model
by Fatami and Socie.'* Because the purpose of the
paper is to develop a general computational framework
for fatigue analysis of elastomer, different fatigue life
prediction models can be used. In this study, two dam-
age models are used for fatigue life prediction, although
other damage parameters can easily be adopted. In the
first model, the range of maximum principal strain is
used as a damage parameter (Eq. (3)), which is reason-
able when the principal direction remains fixed. The
other parameter is the CXH model (Eq. (4)), which
uses normal and shear components of stress and strain
on the critical plane and it is suggested as a best param-
eter by Wang et al.? Even if these two models use the
same symbols of model constants K and 4, because
the damage parameters (the left-hand side) are differ-
ent, model constants may have different values under
the same loading conditions, such as uniaxial loading.

Damage parameter = K (ZN f)d )
Ae™™ = K(2Ny)* 3)
AciAS™ + Ay Ary = K (2Ny)* )

In Eq. (2), K and d are the fatigue life prediction coef-
ficients and Nyis the number of cycles to fatigue failure. In
Eqgs (3) and (4), Ae™™ is the range of maximum principal
strain, and AeP™, Aoy, Ay; and Aty are the ranges of
normal strain, normal stress, shear strain, and shear stress
on a critical plane, respectively. Note that the parameters,
Kand 4, in Eq. (3) are different from those in Eq. (4). For
example, the damage parameter in Eq. (3) is in the unit of
strain, while the damage parameter in Eq. (4) is in the unit
of strain energy density.

Applying the damage parameter to the history of
stress and strain requires converting the history to a
sum of unit cycles. Typically, the rainflow counting
method is used for this purpose. The standard
rainflow counting method is enough for the damage
parameter with one component, such as the peak max-
imum principal strain in Eq. (3), but a special counting
method is necessary for the damage parameter of mul-
ticomponents, such as the CXH model in Eq. 4). In
this paper, the multicomponents rainflow counting
method is developed for the CXH damage parameter,
which not only keeps the standard procedure of the
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rainflow counting method using the history of one
component but also includes the effect of the history
of other components, which is conceptually explained
in Fig. 3.

In the case of CXH model, the four components, two
stresses and two strains in Eq. (4), need to be considered
in rainflow counting. The idea is simple in a sense that
the rainflow counting with multicomponents still has a
main component and several sub-components. This is
based on experimental observation in Wang ef al.>, where
the cycle is counted based on the main component (in this
case, maximum principal strain). For a given cycle of the
main component, the model requires the range of
sub-components. Therefore, standard rainflow counting
is applied to the main component, 4¢{™, and it is assumed
that the start/end points of sub-components of each
cycle are identical to those of the main component.
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Fig. 3 Multicomponent rainflow counting for stress and strain range
of unit cycle.
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Fig. 4 Definition of a critical plane for a fatigue failure.
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Fig. 5 Loading blocks of transient loads.

Sub-components’ maximum and minimum values are
estimated between the start and end points. In Fig. 3, nor-
mal strain is the main component, and other components
are sub-components.

In the CXH model, the amplitude of the damage
parameter depends on the combination of multicompo-
nents. Even if a uniaxial load is applied, the state of stress
can be complicated, and the principal direction can be
changed along the load path. Therefore, the critical plane

method is applied to find the plane that maximizes the
damage parameter in Eq. (4). A critical plane is defined
by the rotation angles on a free surface, and it is conceptu-
ally illustrated in Fig. 4. Generally, the crack is generated
on the free surface of a body and the direction of a crack
candidate plane can be estimated using two angles, 6 and
¢, which define the rotated axes x—y—z in Fig. 4. The angle
¢ has a range from 0° to 180°, and the angle 0 has a range
from 0° to 90°. The transformation of stresses and strain
from a free surface to a candidate critical plane is
expressed in Eq. (5).

or =T eqT, &1 =T e, T )
—sin @ —cos 6 cos ¢ sin 6 cos ¢
T=1| cos@ —cos@sing sin @ sin g
0 sin 6 cos 6

Given data by experiment

Material properties of hyperelastic model(p, a)
Coefficients of fatigue prediction(K, d )

Histories of stresses and strains of elastomers

Uni-directional loading

Multi-direction loading

Interpolation using
load-stress/strain curves

Nonlinear transient analysis
using repeated loading block

Conversion of stresses and strains measures
to engineering stress and strain

Transform random histories of damage
parameters to summation of unit cyclics

Multi-components damage model

Single component damage model

Fine the critical plane

Multi-components rainflow counting

Standard rainflow counting

Accumulated damage parameter

Fatigue life prediction

Fig. 6 Flowchart for fatigue life prediction of elastomers.
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6, £ Stresses and strains of a free surface plane
61, £ Stresses and strains of a candidate critical plane

The Miner’s rule is used to estimate total damage
from the sum of all cycles. For the multicomponents
damage parameter, the Miner’s rule in Eq. (6) is
applied for each cycle, and elastomers are assumed to
fail when the accumulated damage becomes 1.0. In
Eq. (6), m is the number of repeated loading blocks
as shown in Fig. 5, N; is the number of life cycles
until failure for i-th peak loading, and n is the number
of peaks in a loading block. When a loading block is
repeated, the histories of stress and strain need to be
calculated only within a block because these histories
are also repeated in other blocks.
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Fig. 7 Dimension of the specimen (unit: mm).
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Fig. 8 FEA model of the specimen.
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2n
Total Damage = mx{ } 6
g ,;1 N, (6)

NUMERICAL FATIGUE PREDICTION
OF ELASTOMERS

Figure 6 shows a flowchart of numerical procedure for
predicting the fatigue life of elastomers. It has all of
the processes that are necessary for fatigue prediction,
except for determination of material parameters. The
numerical simulations follow the flowchart in Fig. 6.

Numerical simulation for fatigue life prediction of
elastomers

The numerical simulations in this paper are based on the
experiments performed by Wang et al* Therefore, the
properties of the elastomers and the experimental results
cited from the paper are used. The dimensions of the elas-
tomer specimen and the numerical model are shown in
Figs 7 and 8. The steel connected with the elastomers are
modelled by rigid link boundary conditions, and displace-
ment loads are applied at the centres of rigid link groups.
For the hyperelastic behaviour of the elastomer, the
Ogden constitutive model is used, whose basic equations
are given in Appendix. The material constants of the
Ogden model obtained from experiments are shown in
Table 1 when N=3. The material constants are modified
to include the Mullins effect. The fatigue model coeffi-
cients, K and d, are determined from unidirectional and
multdirectional loadings (Table 2), which depend on
the fatigue damage parameters. Experimental data from
paths 1 and 2 are used to calculate fatigue model coeffi-
cients, while the data from path 3 are used for validation.
The material constants and the fatigue model coefficients
obtained from experimentation are used in the fatigue life
prediction using numerical methods. The numerical
methods are performed by the displacement—control
method as with the experiments in Wang et al.> The
comparisons between experiments and numerical
methods of fatigue life predictions by the maximum prin-
cipal strain model and the CXH model are shown in
Figs 9 and 10, respectively. The results of unidirectional
loadings are shown in Fig. 9(a) and Fig. 10(a), and the

Table 2 Fatigue model coefficients, K and 4, for different loadings and damage models

Unidirectional tests

Multidirectional tests

Damage criteria K 4 K d
Peak max. principal strain 16.12 —0.218 12.87 —0.201
CXH model 177.13 (MPa) —0.357 134.73 (MPa) —0.339
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Fig. 9 Correlation
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by the peak maximum principal engineering strain model (experimental data from Wang ez al. %).
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Fig. 10 Correlation by the CXH model (experimental data from Wang er al.%).

results of multidirectional loadings are shown in Fig. 9(b)
and Fig. 10(b). The fatigue model coefficients of two
criteria are estimated by a regression curve using involu-
tion equation, which were used in the maximum principal
engineering strain model and the CHX model. In the
case of unidirectional loading test, the correlation

coefficient between the maximum principal strain crite-
rion and CXH criterion is 0.92, while the multidirec-
tional loading test, it is 0.95. Therefore, it can be seen
that the proposed numerical model can simulate the
experimental conditions. Table 3 compares damage
parameters from experiments and numerical methods

Table 3 Fatigue prediction results by experiments and numerical methods (experimental data from Wang e al.%)

Damage parameters

Peak maximum principal engineering strain CXH model
Loading  &min  €max  Ymin  Pmax  Cycles to
path %) (%) (%) (%) failure Experiment Numerical Experiment Numerical
1 0 200 0 0 10000 2.00 1.97 5.33 5.55
0 150 0 0 25250 1.50 1.47 3.52 331
0 140 0 0 63500 1.40 1.37 2.95 2.93
0 110 0 0 110000 1.10 1.07 1.98 1.92
0 100 0 0 147050 1.00 0.97 1.98 1.63
0 90 0 0 450800 0.90 0.87 1.37 1.35
2 0 200 -35 35 7300 2.00 1.97 5.80 5.73
0 150 -35 35 13 000 1.50 1.47 3.65 3.53
0 140 35 35 26000 1.40 1.37 3.15 3.16
0 110 =35 35 44800 1.10 1.07 240 2.19
0 100 -35 35 73499 1.00 0.97 2.11 1.91
3 0 150 —-35 35 17 180 1.50 1.61 4.03 3.90
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with a good agreement for all three paths. Damage
parameters of the maximum principal strain model in
Table 3 are not changed between paths 1 and 2, because
the damage parameter only depends on the maximum
principal strain. On the other hand, damage parameters
of the CXH model include both normal and shear com-
ponents of stress and strain. Therefore, in multidirec-
tional loadings, the values of damage parameters are
higher than those of unidirectional loadings at the same
normal deformation.

It is acknowledged that more complicated load paths
than those in Fig. 11 can be used to build a robust fatigue
model. For more complicated load paths, readers are
referred to the reference by Saintier et 42.%° and Zarrin-
Ghalami et al. '™'"'. However, complicated load paths
can increase the possibility of experimental error as well
as cost.

Fatigue life prediction of an engine mount

As a practical example, the fatigue life of a rubber engine
mount is calculated using the proposed method. The
same material properties in Table 1 and CXH fatigue
coefficients in Table 2 are used for the rubber part.
The inner and outer bushings are made of aluminium.
The dimensions of the engine mount model are shown
in Fig. 12(a). Plane stress condition is assumed with a
unit thickness. A block loading with 50 cycles, shown
in Fig. 12(b), is repeatedly applied in the x-direction at
the centre of the inner bushing, that is, unidirectional
loading. A commercial finite element analysis soft-
ware'’, MIDAS NFX (Gyeonggi-do, Korea), is used to
carry out nonlinear analysis. Figure 13 shows the con-
tour plot of the maximum principal true strain at the
maximum load magnitude. It is noted that the maximum
value occurs (near the 140° region) in the inner bushing
(point A in Fig. 13). Because applied loading is unidirec-
tional, the stress and strain histories can be calculated
either using interpolation from a single nonlinear analy-
sis or using nonlinear transient analysis with a loading

block. Figure 14(a) and (b) shows the time history of
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Fig. 12 Dimension of the rubber mount and an assumed practical

loading.

the normal true strain and stress at point A and its critical
plane from the two methods. It is noted that both results
are very close to each other.

Once the stress and strain histories are available,
fatigue life prediction is possible by defining the history
of damage parameters. In the critical plane method, the
range of angles ¢ and 0 are divided by 10° increments,
and damage parameters are calculated at each angle. After
rainflow counting, the accumulated damage of the load-
ing block is calculated using the Miner’s rule in Eq. (6).
A damage ratio is defined as an inverse of the number

Path 1

Path 2

Path 3

e

e

—
’\/g

V ¢

Fig. 11 Unidirectional and multidirectional loading paths.
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Fig. 14 Normal strain and stress of the critical plane at point A.

of cyclic loading blocks when the fatigue failure occurs.
Figure 15 shows the plot of block damage ratio as a func-
tion of angles ¢ and 0. In this example, the critical plane is
determined by the rotation of 140° along the z-direction

and the rotation of 0° along the y-direction. The damage
ratios by the CXH model for fatigue prediction criteria
are listed in Table 4. The damage ratio is defined as an
inverse of the number of cyclic loading blocks when
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Damage ratio / Block loading

Fig. 15 Damage ratios of a given block loading for each critical
plane.

Table 4 Damage ratios for a given block cyclic loading for the CXH
criteria

Unidirectional Multidirectional
Methods loading test (K, d) loading test (K, d)
Linear interpolation  8.764x 107’ 7.168x 1077
Nonlinear transient 8.922x1077 7.329x 1077

the fatigue failure occurs, that is, the fatigue life is
(1/damage ratios) blocks. This definition is consistent
with Miner’s damage accumulation rule. There is around
a 2% difference of damage ratios between linear inter-
polation scheme and the nonlinear transient method.
However, the cost of solution is not comparable because
the linear interpolation scheme using the relationship
between stresses and strain versus loadings needs only
around 10 steps from minimum to maximum loadings,
while the nonlinear transient analysis over full time load-
ings is necessary for the nonlinear transient procedure.

CONCLUSIONS

The numerical methods for fatigue life prediction of elas-
tomers under variable amplitude loadings are presented.
The suggested numerical methods can be applicable for
elastomers of any complicated structure using the material
properties of hyperelastic behaviour and fatigue life predic-
tion coefficients given by experiments. The characteristic
properties of elastomers, such as hyperelastic behaviour
and Mullins effect, are summarized. Considering nonlinear
behaviour of elastomers, an efficient interpolation scheme
using load stress/strain curves is investigated in unidirectional
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loadings, and it can greatly reduce the cost of solution of
histories of stresses and strains under time-varying load-
ings. For multidirectional loading, using a repeated loading
block with nonlinear transient analysis is suggested. The
difference of measure of stresses and strains between
experiments and numerical methods is explained, and the
conversion methods between measures are summarized.
The multicomponents rainflow counting for a damage
parameter having multicomponents of stresses and strains
is developed, and the method is applied with the critical
plane method for the CXH damage parameter. In the com-
parison between experiments and numerical methods, the
fatigue life predictions of numerical methods show good
agreement with those of experiments under unidirectional
and multidirectional loadings. In addition, the procedure
of the suggested numerical methods is applied for a practi-
cal example, an engine rubber mount. It is shown that the
numerical results matched with experimental data with
uniaxial and multiaxial loadings, which mean that the
suggested numerical method can simulate the experimental
results well. In addition, because the damage parameters of
the CXH model include both normal and shear compo-
nents of stress and strain, in multidirectional loadings, the
values of damage parameters are higher than that of
unidirectional loadings at the same normal deformation.
In practical application, it is shown that the proportional
loading can save significant amount of computational time
compare with nonlinear transient case.
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APPENDIX

"The basic equations of the Ogden model for hyperelastic
behaviour of elastomers and several relations between
experimental results measures and numerical methods
measures are listed in this Appendix.

Ogden Model for Hyperelastic behaviour
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