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Large samplinguncertainty is generally introduced in the calculation of a lowpercentile of fatigue crack growth life

due to a small number of coupon tests. It is often desirable to estimate a low percentile (for example, 10th percentile)

with a certain coverage probability (for example, 95%) using the confidence bound approach. An equally competing

objective is not to have overly conservative bounds.Theperformanceof twobootstrap-basedmethods are investigated

for calculating a one-sided 95% confidence bound on a low percentile of lognormal and gamma fatigue crack growth

life distributions. A comparison is also made with the classical tolerance interval method and nonparametric

(Hanson–Koopmans) method. These confidence bounds methods are tested to estimateB-basis fatigue crack growth
design life using material properties estimated from coupon test samples ranging from 8 to 64.

Nomenclature

a = crack length, in.
B = number of bootstrap samples
C = Paris constant
c = effective crack length, in.
d = hole diameter, in.
K = stress intensity factor, ksi

p
in.

k = tolerance interval factor
N = crack growth design life, flight hours
NB = B-basis design life, flight hours
nct = number of coupon tests
Nt = crack growth test life, cycles
N10% = 10th percentile design life, flight hours
n = Paris exponent
p = coverage probability
Rmm = relative mean margin
z = standard normal z score
α = confidence level
β = shape parameter
γ = percentile
η = scale parameter
θ = parameter/statistic
λ = location parameter
μ = mean
ρ = correlation coefficient
σ = standard deviation

Subscripts

B = B basis
b = bootstrap estimate

Superscript

� = true/population value

I. Introduction

M ATERIAL testing is a key task for estimating material
properties (e.g., yield strength or fatigue crack growth

behavior) needed for predicting failure and designing safe and low-
weight aircraft structures [1–3]. Such material properties exhibit
substantial variability, so it is customary to test multiple coupons in
order to estimate the statistical distribution of variability. Design then
usually proceeds on the basis of a low percentile of the material
property distribution estimated with a high confidence level from the
tests. For example, the B basis is a value that bounds the true (or
population) 10th percentile value with 95% confidence.
The paper extends the concept of B-basis values to the fatigue crack

growth (FCG) life calculation, which is not what aircraft companies
practice today. This is mostly due to regulations by the Federal Aviation
Administration (FAA) not requiring this kind of calculation. However,
with the recent pushwithin companies to account for theuncertainty and
scatter in life due to FCG ratematerial properties, the concept ofB-basis
FCG life introduced in this paper might be useful. The FCG life of a
structural component under design has substantial variability (aleatory
uncertainty) due to randomness (or scatter) in FCG rate data acquired
through coupon tests. Furthermore, because of high testing costs,
substantial sampling (epistemic) uncertainty exists in the estimated
lower percentiles (e.g., 10th percentile) due to smaller numbers (e.g., 8–
64) of FCG tests. The sampling uncertainty is usually compensated by
specifying confidence bounds, e.g., one-sided lower 95% confidence
bound. Now, due to small sample size, different methods could differ
substantially in estimating confidence bounds on a low percentile of a
distribution. A classical approach for estimating confidence bounds on
percentiles (or proportions) of a statistical distribution is the tolerance
interval (TI) method. For some distribution types (e.g., normal,
lognormal, andWeibull), TI factors are available (e.g., in MIL-HDBK-
17-1F [4]) to calculate exact one-sided lower confidence bounds. By
exact, we mean that 95% coverage probability is achieved. Various
methods for computing B-basis material allowable from composites
material data are discussed in [4,5].
When one is unwilling to assume normal, lognormal, and Weibull

distributions due to inadequate fits to the data, it is recommended in [4]
to use a nonparametric method (e.g., Hanson–Koopmans method). In
addition, in such cases, bootstrap confidence bound procedures could
prove beneficial. The bootstrapmethod is awell-established procedure
in the statistical community for estimation of confidence bounds, but it
is not a standard practice in the aerospace engineering community. This
paper introduces and illustrates the concept of B-basis FCG life
calculation using the bootstrap procedure.
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Cross et al. [6] used the bootstrap method to infer the confidence
intervals for the parameters of a random process (assuming
lognormal process) crack growth model. The bootstrap resampling
was performed on the FCG curves rather than on individual crack
measurements. Similarly, Bhachu et al. [7] used the bootstrapmethod
to combine aleatory and epistemic/sampling uncertainties in the
Walker equation material constants by resampling the FCG rate
curves for 7050-T7451 and 7475-T7351 aluminum alloys. The
combined uncertainties were then propagated to estimate the total
uncertainty in the predicted FCG life. Bigerelle et al. [8] andBigerelle
and Iost [9] used the bootstrap method to estimate the uncertainty in
Paris lawmaterial constants due to measurement noise by using FCG
rate data from a single specimen. McDonald et al. [10] used a
jackknife resampling (the bootstrap method is an improvement on
jackknife) technique to approximate the sampling uncertainty in the
parameters of the Johnson probability distribution due to sparse data.
Ravishankar et al. [11] found that bootstrap resampling provided
reasonable estimates of the epistemic uncertainty in the separable
Monte Carlo estimates of the probability of failure. Pieracci [12]
considered a problem of estimating the parameters of a Weibull
distribution from limited experimental data for durability analysis
and used the bootstrap method to approximate the confidence
intervals for the probability of crack exceedance at a given time.
We investigate the performance of twobootstrap confidence bound

methods: bias-corrected normal approximation (BCNA), and bias-
corrected accelerated percentile method (BCa). These methods are
used for calculating B-basis FCG life assuming lognormal and
gamma distributions. The performance of the two methods is
assessed by measuring their ability to achieve the desired confidence
level of 95% (i.e., do B-basis values actually bound true 10th
percentile life with exactly 95% probability) and how conservative
these B-basis values are relative to the true 10th percentile life.
Romero et al. [13–15] performed similar studies to test the

performances of the normal TI method, the Pradlwarter–Schuëller
kernel density method, the Johnson method, and the nonparametric
method. These methods were used to construct two-sided 90%
confidence bounds on the probability density function (PDF),
ranging between 0.025 and 0.975 percentiles for normal, triangular,
and uniform distributions. They found that using normal TI factors
had a noteworthy advantage over other methods, even if the
underlying distribution was not normal. Therefore, we compare the
performance of the two bootstrap confidence boundmethods (BCNA
andBCa) against the normal TImethod (i.e., using normal TI factors)
and the nonparametric (Hanson–Koopmans) method. The
comparisons are made by assuming that the FCG design life follows
either a lognormal or a gamma distribution. The variability in the
FCG rate (ormaterial constants of a crack growthmodel) is estimated
from a small number of coupon tests, i.e., nct � f8; 16; 32; 64g.
The paper is organized in seven sections. Sections II and III discuss

the concept of conservative material properties and briefly explain
various sources of uncertainties. The paper then presents a brief
introduction to the tolerance interval method, the nonparametric
method, and the bootstrap confidence bound methods. Section IV
presents a formal discussion on FCG coupon testing and how
approximatedmaterial properties are used for prediction of FCGdesign
life. This is followed by Sec. V, which poses a simulation procedure of
fatigue crack growth coupon testing and prediction of FCG design life
based on these test samples. It also presents themetrics that are used for
measuring the performance of the various confidence bound method.
Section VI explains the statistical modeling of lognormal and gamma
FCG life distributions. The rest of the paper then presents comparisons
between different confidence bound methods in estimating B-basis
FCG life values for lognormal and gamma distributions.

II. Conservative Material Properties and Various
Confidence Bound Methods

The safety of aircraft structures is achieved by designing them to
operate reliably in the presence of uncertainties. To account for
uncertainty in material properties, Federal Aviation Regulations (14
CFR 25.613) require the use of conservative material properties. The

conservative material properties (A basis or B basis) used for

designing structures for static strength have two layers of

conservatism. The first layer is conservative with respect to the

variability (aleatory uncertainty) or randomness in material

properties. It requires that a high percentile (e.g., 90% for B basis)

of the population of material properties be above the design strength.

Statistically, this is expressed by requiring that the design strength is a

low percentile of the distribution of material strength (e.g., 10th

percentile for B basis). In terms of the cumulative density function

(CDF), the B basis is the strength where the CDF is equal to 0.1. The

FAA does not have similar requirements for fatigue growth

properties, requiring instead a factor of two in fatigue life. However,

we assume that that a designer may want to estimate the B-basis
values in the initial design.
Since the CDF is necessarily estimated from finite coupon test

data, there is epistemic uncertainty (lack of knowledge) in thevalue of

the estimated percentile. Confidence bounds are usually employed as

a second measure to compensate for this uncertainty. For example,

the B basis includes the 10th percentile values from an estimated

distribution with 95% confidence. Various confidence bound

methods used in this study for comparison are presented as follows.

A. Tolerance Interval Method

The tolerance interval method [16] is widely used to estimate one-

sided confidence bounds needed for obtaining B-basis values. It is
applicable for distributions for which the confidence bounds can be

calculated exactly, which include the normal, lognormal, and two-

parameterWeibull distributions. For the normal distribution, the one-

sided lower confidence bound is

xB � �x − k�nct��s (1)

where k is the tolerance interval factor that is a function of number of

coupon tests nct; �x is the sample mean, and �s is the sample standard

deviation.
For lognormal distribution, the one-sided confidence bound is

calculated by first taking the log transformation of the sample

distribution,which transforms the sample distribution into the normal

distribution. The B-basis values are then found by taking the

exponential of Eq. (1):

xB � exp� �xln − k�nct��sln� (2)

where �xln is the samplemean, and �sln is the sample standard deviation

after log transformation.

B. Nonparametric Method

MIL-HDBK-17-1F [4] recommends the use of a nonparametric

method for calculatingB-basis values if the underlying distribution is
not adequately modeled by normal, lognormal, or Weibull

probability models. The random data sample x � fx1; x2; : : : ; xng
is first ranked in ascending order. To calculate a B-basis value for

nct > 28, the value of rank r corresponding to the sample size nct is
determined from a table given in [4]. The B-basis value is the rth
observation in the dataset. For example, in a sample of size of

nct � 30, the lowest (r � 1) observation is the B-basis value.

However, for sample size nct ≤ 28, the nonparametric method

recommended for use is the Hanson–Koopmans (H-K) method [17].

The H-K method uses the following equation to calculate B-basis
values:

xB � xr

�
x1
xr

�
k

(3)

where the values of the rank r and tolerance factor k are determined

froma separate table given in [4] corresponding to a given coupon test

sample of size nct.
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C. Bootstrap Sampling and Confidence Intervals

Like the nonparametric method, the bootstrap method is a data-
based method, but it is based on sampling the data for statistical
inference. The bootstrap method was introduced by Efron in 1979 as
an improvement on the jackknife method for estimating the bias and
variance of a statistic of interest [18]. A good introduction to
bootstrap methods is given in [19]. The two most commonly used
bootstrap sampling methods are nonparametric and parametric.

1. Nonparametric Bootstrap Sampling

The nonparametric method resamples (with replacement) directly
from the available sample set without assuming any probability
model. It treats the available data sample as a surrogate population
x � fx1; x2; x3; : : : ; xnctg and draws nct samples (with replacement)
B times, giving B sets of bootstrap samples of size nct, e.g.,
xb1 � fx1; x3; x3; : : : ; xnctg and xb2 � fx2; x2; x3; : : : ; xnctg. It then
computes a sample parameter θ̂b (e.g., γ percentile) directly from
each bootstrap sample xb. This gives the sampling distribution of θ̂b
that can be used for defining bootstrap confidence bounds.
Nonparametric resampling is beneficial if one does not have

enough confidence in the underlying parametric model. This is often
thought to reduce errors in estimation due to model misspecification.
This method cannot be used if one is interested in computing lower
percentiles (e.g., 1 or 10%) from a small data sample.

2. Parametric Bootstrap Sampling

When there is enough confidence in the underlying probability
model, simulations from the model are argued to give more accurate
results than resampling from the empirical distribution. The
parametric bootstrap method assumes a particular probability model
for a sample and generates B sets of bootstrap samples of size nct
using the approximated parameters of the probability model. The
bootstrap samples are further used to compute a sample statistic or
parameter θ̂b (e.g.,mean),which gives the sampling distribution of θ̂b
that is used for computing confidence bounds. The parametric
bootstrap procedure is also sometimes referred to as Monte Carlo
simulation.

3. Nonparametric Bootstrap for Parametric Inference

In this paper, we are particularly interested in calculating a low
percentile value (10th percentile) from a small sample size. Due to
relatively small sample sizes (8–64), the tails of the empirical
distribution are not well approximated. Therefore, it would be more
useful to compute a low percentile by assuming a parametric
probability model. That is, bootstrap samples are generated
nonparametrically, but low percentile values are computed by fitting
a probability distribution to bootstrap samples. Meeker and Escobar
[20] described and illustrated the applications of such nonparametric
bootstrap sampling for parametric inference. This technique for
computing the bootstrap sampling distribution of θ̂b was referred to
as nonparametric bootstrap sampling for parametric models (NBSP)
by Edwards et al. [21]. They suggested that the NBSP is a useful and
more defensible approach when the sample size is small, provided
there is some confidence in the underlying parametric model. More
detail on this method is presented in Appendix B.

4. Bootstrap Confidence Bound Methods

The various methods of finding confidence bounds from bootstrap
sampling distribution are the 1) percentile method, 2) bias-corrected
accelerated method, 3) bias-corrected normal approximation
(BCNA), 4) approximate bootstrap confidence (ABC) interval
method, and 5) bootstrap-t method.
We use the BCa method and BCNA method for calculating one-

sided low 95% confidence bounds of the 10th percentile (B-basis
FCG life) of lognormal and gamma distributions in this paper.

5. Percentile Method

The percentile method is the most basic bootstrap method that
estimates confidence bounds by simply calculating the desired

percentile from the sampling distribution of θ̂b. For example, a one-

sided lower α � 95% confidence boundwould be the fifth percentile
point of the distribution of θ̂b. If the number of samples for

bootstrapping are not enough, then a confidence bound would not be
large enough to bound the true value of interest θ� exactly 95% of the

time, i.e., coverage probability p would be less than α � 95%. The
coverage probability p of a confidence bound is the probability that

the interval/bound contains the true value of interest θ�:

p � prob:fθb;α ≤ θ�g (4)

If the method works perfectly, then the coverage probability p is

equal to the confidence level (α, e.g., 95%).

6. Bias Correction

The bootstrapmethod offers away to estimate the bias in statistical
parameters (e.g., mean or percentile of the CDF). Such a bias may

arise due to estimation of a parameter θ̂ from a small size of samples,
which is different from the population parameter θ. The bootstrap

method estimates this bias as

θ̂bias � E�θ̂b� − θ̂ ≈ θ̂ − θ (5)

where θ̂ is the parameter estimated from the original samples, and
E�θ̂b� is the mean of the parameter θ̂b estimated from the bootstrap

method. Therefore, the bias-corrected estimate of θ̂ can be obtained as

θ̂bc � θ̂ − θ̂bias � 2θ̂ − E�θ̂b� (6)

7. Bias-Corrected Normal Approximation

If one assumes that the distribution of the estimated parameter θ̂b
from the bootstrap method is normal, then the �1-α�% one-sided

lower confidence bound can be set to

θ̂b;α � θ̂ − z1−αŝθ̂b (7)

where z1-α is the z score from the standard normal distribution (e.g.,

z0.95 � 1.65), and ŝθ̂b is the estimated standard deviation from the
bootstrap sampling distribution of θ̂b. The bias correction from

Eq. (6) can be used to modify the lower confidence bound calculated
from Eq. (7) as

θ̂bc;α � θ̂bcb − z1−αŝθ̂b � 2θ̂ − E�θ̂b� − z1−αŝθ̂b (8)

The bias correction could improve the coverage probability p of
the confidence bounds.

8. Bias-Corrected Accelerated Percentile Method

A detailed introduction to this method was given in [22]. The one-

sided lower confidence bound is found by using the following
formula:

θ̂BCa;α � Ĝ−1Φ
�
z0 �

z0 � zα
1 − A�z0 � zα�

�
(9)

where Ĝ−1
is the inverse empirical CDF of the bootstrap sampling

distribution of θ̂b; zα is the z score from the standard normal
distribution; z0 is the bias correction; A is the acceleration parameter,

and Φ is the standard normal CDF. For z0 � 0 and A � 0, Eq. (9)
reduces to the basic percentile method

θ̂BCa;α � Ĝ−1�α� (10)

The purpose of z0 is the same as the bias correction presented
previously. The acceleration parameterA is another adjustment that is

used to correct for the accelerating standard error on the normalized
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scale. A detailed discussion on the interpretation and calculation of
these parameters is presented in [22].

9. Approximate Bootstrap Confidence Interval Method

The ABC method approximates the BCa confidence bounds
analytically. This reduces the computational burden, as Monte Carlo
simulations are not required for estimation of confidence bounds.
It works by approximating the bootstrap random sampling results
by Taylor series expansions. It is reported to generate good
approximations to BCa intervals for most reasonably smooth
statistics. Refer to [22] for details.

10. Bootstrap-t Method

Thismethod is conceptually simpler thanBCa and it uses Student’s
t statistic for setting confidence bounds. The student t statistic is

T � θ̂ − θ

σ̂
(11)

where σ̂ is the estimate of standard deviation of θ̂. The α-level one-
sided confidence interval for θ is

θ̂ − σ̂T1−α (12)

where Tα is the percentile of t distribution that, in most cases, is
unknown. The idea of the bootstrap-t method is to estimate the
percentile of T by bootstrapping. This method is reported to have
some numerical stability issues. For more details on this method,
refer to [22].
We have usedMATLAB’s ”bootci” function to calculate one-sided

95% lower confidence bounds on the 10th percentile of FCG life
distribution.

III. Bootstrap and Probability Model Selection

The normal TI factors would give exact confidence bounds after
log transformation of samples from a lognormal distribution.
However, since TI factors specific to a gamma distribution are not
available, it would be interesting to evaluate the performance of
normal TI factors for approximating B-basis values. The
unavailability of TI factors for a gamma distribution makes bootstrap
methods attractive. The class of bootstrap resampling technique
implemented in this paper is “nonparametric bootstrap for parametric
inference.” That is, resampling is done nonparametrically from a
small number of samples without any assumption of probability
distribution but 10th percentile values are computed from bootstrap
samples (or from resamples) by assuming a particular probability
model. An assumption of a probability distribution is necessary for
approximation of low percentiles by extrapolating the empirical CDF
into a tail region (see Appendix B). In addition, with a small sample
size, one could also select a wrong probability model that could lead
to erroneous inference. Therefore, we use the two bootstrap methods
to calculate B-basis values for the following scenarios:
1) If a sample belongs to a lognormal distribution (i.e., underlying

parent distribution), the following may occur:
a) The underlying distribution is detected correctly, i.e.,

a lognormal distribution is chosen (see Fig. B1a in Appendix B).
b) The underlying distribution type is detected incorrectly, i.e.,

a gamma distribution is chosen.
2) If a sample belongs to a gamma distribution (i.e., underlying

parent distribution), the following may occur:
a) The underlying distribution is detected correctly, i.e.,

a gamma distribution is chosen (see Fig. B1b in Appendix B).
b) The underlying distribution type is detected incorrectly, i.e.,

a lognormal distribution is chosen.

IV. Fatigue Crack Growth Testing and Life Prediction

The FCG behavior of a material is estimated through coupon
testing and is used for predicting FCG design life for a structural

component. The crack length a vs load cycle Nt data obtained via
testing are converted to a FCG rate (da∕dNt) vs stress intensity ΔK
data [23].ΔK defines the intensity of stress at a crack tip that controls
the rate of crack growth, i.e., higher stress intensity values lead to
larger crack growth, and vice versa. The relationship between
da∕dNt vs ΔK data measures FCG behavior and can be treated as a
material property. Many analytical crack growth models (i.e.,
nonlinear regression equations) [24,25] have been proposed to
express the relationship between da∕dNt vsΔK data. For illustration,
the Paris lawgiven inEq. (13) is considered in this paper formodeling
the FCG rate data and for the calculation of FCG life. The Paris law is
typically only applicable tomodel the linear region of themacrocrack
growth and does not take the stress ratio R effect into account. In
reality, models that take the R effect into account are used for
calculation of FCG life under variable-amplitude loading, e.g., the
Walker equation and Nasgro equation. Such equations involve more
fitting parameters that may need additional statistical modeling:

da

dNt

� C�ΔK�n (13)

where C is the Paris constant (intercept), and n is the Paris exponent
(slope). These material constants are random, as each coupon test
(under same testing conditions) gives somewhat different da∕dNt vs
ΔK data, which depict variability due to material randomness. The
variability in these material constants can be modeled with a joint
probability distribution with a strong negative correlation ρ. So, the
purpose of FCG coupon testing is to estimate the parameters of a joint
probability distribution. With a small number of tests, the sampling
uncertainty in the estimated joint distribution parameters would be
substantial, which further causes considerable sampling uncertainty
in the parameters of the predicted FCG design life distribution (e.g.,
10th percentile FCG life is uncertain). To achieve safe designs, it may
be desirable to calculate the B-basis FCG life values to compensate
for the sampling uncertainty arising from a small number of tests.
This is done by calculating the lower one-sided 95% confidence
bound from different methods. The FCG life for a structure under
design (e.g., for the geometry shown in Fig. 1 and loading conditions
given in Table 1) can be predicted by evaluating the integral form of
the Paris law:

N � 1

C

Zaf
ai

�ΔK�−n da (14)

where N is the design life measure in flight hours (FHs), ai is the
initial crack length, and af is the failure/critical crack length. TheΔK
solution for the through-edge crack at a hole is given in Appendix A.
The loading type (Table 1) assumed in this paper is the constant-
amplitude loading with R � 0, which is not the case in the reality
where variable-amplitude loading is a typical scenario. The value of

w

a

cr=d/2

w/2

ΔP

Fig. 1 Through-edge crack at centered hole in a plate under a constant-
amplitude cyclic tension load.
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constant-amplitude loading is chosen such that life is representative
of a typical goal for the wing root of a business jet [26]. Also, one FH
is assumed to be equal to 1000 cycles that are based on inputs from a
business jet manufacturer.

V. Simulation of FCG Testing and Life Prediction

The B-basis FCG life for a given geometry (e.g., Fig. 1) and load
conditions (e.g., Table 1) is a function of available test data (da∕dNt

vsΔK data). That is, different testing laboratories would get different
sets of coupon test data for a given number of coupon tests and
materials. This gives different values of the parameters of a joint
probability distribution of the material constant and that of the
corresponding FCG life distribution, which would further lead to
different B-basis values for the same geometry and loads. We
simulate this scenario by repeatedly generating correlated random
samples of C and n (of size nct) from their true joint probability
distribution, given in Tables 2 and 3. Each sample of C and n
represents a single FCG coupon test. The parameters of the true joint
probability distribution are only known if one can perform an infinite
(very large) number of tests. For our simulation, we assume that the
parameters of a true joint probability distribution of C and n are
known (e.g., given in Tables 2 and 3). The corresponding true
distribution of FCG design life could be estimated by Monte Carlo
simulation. That is, for the geometry shown in Fig. 1 (Appendix A)
and loading conditions given in Table 1 (Appendix A), 20 million
samples of C and n generated from the true joint distribution would
approximate the true distribution of FCG life by evaluating Eq. (14).
The geometry is sized such that the true 10th percentile N�

10% of the
resulting true FCG design life distribution is equal to 24,000 flight
hours. This is done by increasing the thickness of the geometry to
0.4275 in. while keeping other dimensions fixed. The width
(w � 2 in.) is about the size of a half-spar cap for a midsize business
jet’s wing, and the diameter corresponds to a no. 6 fastener. These
dimensions are representative of the center wing spar shown in [26].
We use the procedure outlined in Table 4 to evaluate the performance
of different methods to calculate the B-basis FCG life. Note that the
bootstrapping method is performed using samples of fatigue crack
growth life that are not correlated.
The performance of different methods is measured by computing

their ability to achieve the desired coverage probability p but, at the
same time, provide the least conservative B-basis values as follows:
1) The coverage probabilityp of a confidence bound (or interval) is

the probability that the confidence bound contains the true value of
interest. The coverage probability p and 1 − α confidence level are
the same before the confidence bounds are actually calculated. If a
method is working perfectly, then p � 1 − α (e.g., p � 1 − α �
0.95 for 95% confidence bounds). The value of p corresponding to a
particular sample size nct is estimated by calculating the number of
B-basis life values that bound a true 10th percentile FCG life:

p � #NB ≤ N�
10%

nrep
≈ Prob:fNB ≤ N�

10%g (15)

whereNB is the B-basis design life, nrep is the number of repetitions,
and N�

10% is the true 10th percentile design life.
2) The second objective is to calculateB-basis values with the least

conservatism. This is measured by calculating the mean (or expected
value) of margin between the B-basis life and true 10th percentile
FCG life, relative to the true 10th percentile,

Rmm � E�N�
10% − NB�∕N�

10% (16)

A positive value of Rmm (relative mean margin) indicates a
conservative estimate of FCG life.

VI. Fatigue Crack Growth Life Distributions

To test the performance of different confidence boundmethods, as
per the procedure listed in Table 4, we consider lognormal and
gamma FCG life distributions. In general, lifetime failure data are
generally modeled with distributions having a positive skew; i.e., a
long right tail. Accordingly, [27–29] modeled lifetime data with a
lognormal distribution. The type of FCG life distribution in our case
depends on the marginal distributions of C and n. Annis [30] and
Akkaram et al. [31] modeled C with a lognormal distribution and n
with a normal distribution based on the test data for a 2024-T3
aluminum alloy from Virkler et al. [32]. Millwater and Wieland [33]
found that an extreme value distribution was good fit to C for 7075-
T735 aluminum alloy. Based on this, we consider two cases: first,
when themarginal distributions ofC andn are lognormal and normal,
respectively, leading to lognormal FCG life distribution; and second,
when the marginal distributions ofC and n are the extreme value and
normal, respectively, leading to gamma distribution of FCG life.

Table 1 Dimensions and loads for the geometry
shown in the Fig. 1

Dimension Unit Value

Width w in. 2
Diameter d in. 0.20
Thickness t in. 0.4275
Initial crack length ai in. 0.05
Failure crack length af in. 0.90
Load amplitude; ΔP � Pmax − Pmin kip 1
Stress ratio; R � Pmin∕Pmax — — 0

Table 2 True parameters of the bivariate normal distribution of
material constants

Material
constant Distribution True location λ� True scale η� True correlation ρ�

log�C�� Normal −18.20 0.328 −0.982
n� Normal 2.872 0.165 — —

Table 3 True parameters of the joint extreme value and normal
distribution of material constants

Material
constant Distribution

True
location λ� True scale η�

True
correlation ρ�

C� Extremevalue −1.223 × 10−8 3 × 10−9 −0.952
n� Normal 2.872 0.165 — —

Table 4 Simulation procedure to estimate the performance of
different confidence bound methodsa

Step Action

1 Generate correlated random samples of C and n of size nct from a true
joint probability distribution: for example, by using functions available
within MATLAB that automatically takes correlation into account,
e.g., mvnrnd.

2 Use Eq. (14) to calculatenct samples of FCG life corresponding to each
sample of C and n.

3 Estimate theB-basis value of FCG lifeNB using differentmethods, i.e.,
BCa bootstrap, BCNA bootstrap, normal TI method, and
nonparametric (H-K) method.

4 Check if B-basis value contains the true 10th percentile life, i.e.,
NB ≤ N�

10%.
5 Repeat steps 1 through 4 (e.g., nrep � 10; 000 times) to estimate the

coverage probability, p � prob.fNB ≤ N�
10%g. The 10,000 repetitions

are enough to clearly see the trends in performance of methods as a
function of the number of tests. That is, trends will not change if the
simulation is repeated.

6 Repeat steps 1 through 5 for fnct � 8; 16; 32; 64g.
7 Repeat steps 1 through 6 for underlying parent lognormal and gamma

FCG life distributions.
8 Repeat steps 1 through 7 for the bootstrap method if the underlying

distribution is detected as lognormal and gamma.

aFor consistency, each method computes confidence bounds from same set of data that

minimizes noise due to sampling.
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A. True Lognormal FCG Life Distribution

The true lognormal distribution of FCG life N is obtained by
assumingCwith a lognormal distribution [or log�C� as normal] andn
with a normal distribution. The parameters describing the true joint
normal distribution are listed in Table 2 and are taken from [30],
which are derived from the 68 coupon tests performed byVirkler et al.
[32]. The marginal true distributions of C and n along with the
correlated random samples generated from their joint distribution are
shown in Fig. 2.Note that each correlated random sample represents a
single FCG coupon test.
The true lognormal FCG design life distribution (for the geometry

and load conditions given in Appendix A) is obtained by evaluating
Eq. (14) for 20 million correlated random samples of C and n
generated from the bivariate normal distribution given in Table 2. The
lognormal fit to these 20 million data samples of FCG design life is
shown in Figs. 3a and 3b. The probability plot in Fig. 3b indicates that
the lognormal distribution is a good fit to the FCG life data. The true
10th percentile FCG life value is N�

10% � 24;000 FHs. The true
parameters of the lognormal PDF given in Eq. (17) are
λ��location� � 10.48, and η��scale� � 0.314:

fLogn�N� � 1

Nη
������
2π

p exp

�
−
�ln �N� − λ�2

2η2

�
(17)

B. True Gamma FCG Life Distribution

The true gamma distribution of FCG life N is obtained by

modeling C with type-1 extreme value distribution (Gumbel) and n
with the normal distribution. That is, C is assumed to follow an

extreme value distribution, as it has a longer right tail similar to

lognormal distribution and it gives a test case where life follows

gamma distribution. So, the bootstrap method is a possible option to

calculateB-basis values, as tolerance interval factors are not available
for gamma distribution. The parameters describing the true joint

distribution are listed in Table 3. The marginal true distributions ofC
and n along with the correlated random samples generated from their

joint distribution are shown in Fig. 4. The true parameters of the

marginal distribution ofC are selected so that the true 10th percentile

FCG life is 24,000 flight hours, whereas the parameters of n are kept

the same, as given in Table 2. Transforming the samples from a joint

standard normal distribution with a correlation coefficient of −0.982
(given in Table 2) to parameters ofC and n (given in Table 3) changes
the correlation coefficient from −0.982 to −0.952. The PDF of the

extreme value distribution is

fextval�C� �
1

η
exp

�
C − λ

η

�
exp

�
− exp

�
C − λ

η

��
(18)

where λ is the location parameter, and η is the scale parameter.
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Fig. 2 Correlated random samples generated from bivariate normal
distribution of log�C� and n. The marginal distribution (dist.) of C, is
lognormal and n is normal.
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Fig. 3 Representations of a) lognormal fit to the 20million data samples of FCG life, andb) probability plot showing lognormal distribution is a good fit to
the data.
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Fig. 4 Correlated random samples generated from bivariate
distribution of C and n. The marginal distribution of C is extreme
value (val.), and n is normal.
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The true gamma FCG design life distribution is also obtained via
Monte Carlo simulation in the same way as true lognormal
distribution. The gamma fit to these 20 million data samples of FCG
life is shown in Figs. 5a and 5b. The probability plot in Fig. 5b
indicates that the gammadistribution is a good fit to the FCG life data.
The true 10th percentile FCG life value isN�

10% � 24; 000 FHs. The
parameters of the true (fully sampled) gamma PDF given in Eq. (19)
are β��shape parameter� � 16.70 and η��scale parameter� � 2047:

fgamma�N� �
�
N

η

�
β−1

exp

�
−
N

η

�
∕ηΓ�β� (19)

VII. Performance Comparison of Methods

The performance of the two bootstrap methods (i.e., BCa and
BCNA) is compared with the normal TI and nonparametric (H-K)
methods. Both bootstrap methods assume two cases per distribution:
first, when the underlying probability distributions type is identified
correctly; and second, when the underlying probability distribution
type is not identified correctly. The implementation of nonparametric
bootstrap sampling for parametric inference is illustrated in
Appendix B.

A. Lognormal Distribution Identified Correctly

If the parent lognormal distribution is identified correctly, then

both BCa and BCNA use lognormal distribution for computing 10th

percentile values from bootstrap samples (see Appendix B). The

performance comparisons discussed here are based on the empirical

CDFs of B-basis values (obtained from the simulation outlined in

Table 4) shown in Fig. C1 in Appendix C. Note that each method

computes B-basis values from the same set of data to ensure fair

comparison. The coverage probability p and relative mean margin

Rmm results are shown graphically in Fig. 6, and the corresponding

data are presented in Table 5 (the values out of parentheses are

coverage probabilities, and the values in parentheses are relative

mean margins). Table 3 and Fig. 6, however, also show the cases

where the lognormal data are identified as gamma (curves marked

with squares and plus signs in Fig. 6, and second and third columns in

Table 3). These are discussed in the next section.
It can be noticed that the ”normal TI”method achievesp � 95% (to

the precision of theMonteCarlo simulation from10,000 repetitions) in

the estimated B-basis FCG life values for all test coupon sizes. This is

no surprise, as normal TI factors are known togive exactB-basis values
for lognormal distribution through log transformation. It could be

further noticed from Table 5 (for all methods) that the coverage
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Fig. 5 Representationsof a) gamma fit to the20milliondata samples of FCG life, andb)probability plot showing gammadistribution is a good fit to the data.
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Fig. 6 Representations of a) coverage probability p, and b) relative mean margin Rmm% as a function of nct for different confidence bound methods,
when data come from lognormal distribution.
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probability and relative mean margin have strong correlation, i.e.,

increasingp increasesRmm and vice versa. That is, increased coverage

(more than 95%) is obtained at the cost of more conservativeness.

However, for the same coverage, the conservative margin required

decreases substantiallywith sample size. This indicates that,withmore

samples, a lighter structure may be designed.
In comparison, the bootstrap and nonparametric methods have

substantial errors in coverage, with the nonparametric method

converging from above and the bootstrap methods converging from

below. However, it is clear that, if the distribution is known to be

lognormal, the method of choice is the normal TI method.

B. Lognormal Distribution Identified as Gamma

Now, if the actual parent distribution (i.e., lognormal) ismisidentified

as gamma, then both bootstrap methods use gamma distribution for

computing 10th percentile values from bootstrap samples (see

Appendix B). The results of the coverage probability p and relative

mean margin Rmm are shown in Fig. 6, and corresponding data are

presented in Table 5. It can be noticed that both bootstrapmethods (BCa

gamma and BCNA-gamma) obtain p < 95% for nct � 8, and p ≥
95% for nct > 16. Also, the values of p are safer than if distribution is

identified correctly, which is also reflected in the higher Rmm values in

comparison to BCa-logn and BCNA-logn. The coverage probability is

higher because of the bias that exists (i.e., underlying sample is from

lognormal, but we are treating it as gamma). So, confidence bounds are

wider that give higher coverage probability than if the distribution is

correctly identified as lognormal. The bias remains even if nct � 64,
i.e., 98% coverage instead of 95%. Also, for nct > 8, the bootstrap

methods appear to provide conservative coverage more efficiently (that

is,with smallermargins) than the nonparametricmethod. The important

conclusions from the comparison of methods for estimating B-basis
values for lognormal distribution are as follows:
1) The normal TI method gives the most accurate coverage

probabilities and the least relative mean margins for all sample sizes.
However, this is true if one has enough confidence that the underlying
distribution is lognormal.
2) With incorrect identification (lognormal as gamma), the

bootstrap methods obtain higher coverage probabilities (for
nct > 16) but, in terms of relative mean margin, are still better than
the nonparametric method.
3) With correct identification (lognormal as lognormal), bootstrap

methods are more efficient in the relative mean margin (i.e., less
conservative) in comparison with incorrect identification (lognormal
as gamma).
4) For large sample sizes, the nonparametricmethod provides good

results that do not depend on identifying the right distribution.
5) There are substantial reductions in margins, and hence in design

weight as the number of samples increase.

C. Gamma Distribution Identified Correctly

The following discussion presents comparisons if FCG life is
modeled as a gamma distribution (as was shown in Sec. VI). The

results of the coverage probability p and relative mean margin Rmm

are shown in Fig. 6, and corresponding data are presented in Table 6.

These results are derived from the empirical CDFs of B-basis values
(obtained after performing the simulation outlined in Table 4) shown

in Fig. C2 in Appendix C. Also, as was alluded to earlier, tolerance
interval factors for gamma distribution are not available to give exact

confidence bounds. So, the normal TI method might also obtain less

than 95% coverage probabilities.
Once again, the nonparametric (Hanson–Koopmans) method

obtains p > 95% for all values of nct but at the cost of higher Rmm

values (or by havingmore conservativeB-basis values; see Fig. C2 in
AppendixC). In comparison, using a normal TI givesp < 95% for all

values of nct, and in-fact performance declines with the increase in

sample size, i.e., p � 93% for nct � 16, and p � 92% for nct � 64.
Although, for nct ≤ 16, coverage probabilities p from the normal TI
are not that bad from a practical standpoint (about 93%).
Also, both bootstrap methods (BCa-gamma and BCNA-gamma)

obtain p < 95% for nct < 64, and p ≈ 95% for nct � 64. Further,
BCNA-gamma performs significantly better than BCa-gamma for

nct ≤ 16 in terms of getting coverage probability p much closer to
95%, and both methods have similar performance afterward. An

important observation for nct � 8–16 is that the normal TI method

gave more accurate coverage probabilities than both bootstrap

methods. On the other hand, bootstrap methods gave better coverage

probabilities for nct � 32–64 (see Fig. 7a) than the normal TI. For
this case, even if one identifies the distribution correctly, the

nonparametric distribution is the only safe alternative.

D. Gamma Distribution Identified as Lognormal

Now, if the actual parent distribution (gamma) is identified
“incorrectly” as lognormal, both bootstrap methods (BCa-logn and

BCNA-logn) obtain p < 95% for all values of nct. In fact, with the

increase in thenumber of tests, coverage probabilities seem toconverge

to 92.5% instead to 95%. Furthermore, it is noticed that p from the

normal TI method is similar to bootstrap-logn methods for nct � 64.
The important observations from the analysis of different methods for
calculating B-basis values for gamma distribution are as follows:
1) The normal TI method (even though the underlying distribution

is not normal or lognormal) gave better coverage probabilities than
the bootstrap methods (i.e., about 93%) for smaller sample sizes (8–
16). So, the normal TI method may be a good choice if one is willing
to trade off slight underestimation of coverage probability (i.e., 93%
instead of 95%) with significantly better B-basis values or lower
relative mean margins in comparison to nonparametric method (e.g.,
about 24–15% for normal TI vs 47–29% for nonparametric).

Table 5 Coverage probability 100p% and relative mean margin Rmm% for data from
lognormal distributiona

nct BCNA, gamma BCa, gamma BCNA, logn BCa, logn Normal TI Nonparametric, H-K

8 93.0 (31.4) 89.9 (25.3) 89.9 (25.4) 84.3 (17.9) 95.1 (30.0) 99.0 (54.3)
16 95.3 (23.1) 94.6 (21.6) 92.2 (17.7) 90.0 (15.6) 94.9 (19.5) 97.3 (31.7)
32 96.8 (17.4) 96.9 (17.2) 93.5 (12.4) 92.9 (12.1) 94.9 (13.1) 96.7 (20.9)
64 98.0 (13.4) 98.2 (13.6) 94.3 (8.9) 94.3 (9.0) 95.2 (9.1) 96.1 (13.3)

aThese numbers are based on 10,000 repetitions, so there is about a 0.1–0.5% error in these proportions.

Table 6 Coverage probability 100p% and relativemeanmarginRmm% for data fromgamma
distributiona

nct BCNA, gamma BCa, gamma BCNA, logn BCa, logn Normal TI Nonparametric, H-K

8 89.3 (21.9) 86.4 (18.8) 86.7 (19.5) 81.3 (14.2) 93.0 (23.8) 98.4 (47.2)
16 92.4 (15.9) 91.7 (15.5) 89.7 (14.2) 88.0 (13.0) 93.1 (15.2) 97.0 (28.5)
32 93.7 (11.3) 94.1 (11.6) 91.2 (10.1) 91.1 (10.1) 92.4 (10.1) 96.7 (19.4)
64 94.2 (8.0) 94.7 (8.2) 91.6 (6.9) 92.2 (7.2) 91.8 (6.7) 96.4 (11.9)

aThese numbers are based on 10,000 repetitions, so there is about a 0.1–1% error in these proportions.
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2) If underlying distribution is identified correctly (gamma as
gamma), then both bootstrap methods compete with the
nonparametric method and normal TI method for larger sample
sizes. However, practically, the bootstrap method may not lead to a
substantial reduction in weight penalty in comparison if the
nonparametric method is used for calculating B-basis design life
values for those sample sizes. Also, if the underlying distribution is
misidentified (gamma as lognormal), then the bootstrap methods do
not perform well.
3) With correct identification (gamma as gamma), bootstrap

methods are more efficient in the relative mean margin (i.e., less
conservative) in comparison with incorrect identification (gamma as
lognormal).
4) Finally, for large sample sizes, the nonparametric method

provides good results that do not depend on identifying the right
distribution.
5) As for the lognormal case, when life is governed by the gamma

distribution, there are substantial margin reductions, hence weight
savings, with increasing sample sizes.

VIII. Conclusions

From the foregoing analysis, the following important observations
are made:
1) If one wants to be safe, the nonparametric method is the best

method. It is always conservative, it appears to converge to the right
coverage with increasing sample size, and it does not depend on
identifying the distribution correctly. However, this is done by
calculating significantly more conservative confidence bounds,
which would increase design weight.
2) If there is enough confidence in the identified distribution and

tolerance interval factors are available (e.g., for normal, lognormal,
and Weibull) for that distribution type, then the tolerance interval
method is the best method.
3) If there is not enough confidence in the identified distribution

and tolerance interval factors are not available (e.g., for gamma
distribution), then the normal TI method (i.e., using a tolerance
interval factor specified for normal distribution) could be used for
smaller sample sizes (less than 32). This is an attractive option if one
is comfortablewith trading off a slightly smaller coverage probability
(e.g., 93% instead of 95%) with a smaller relative mean margin
(almost twice as small) in comparison to the nonparametric method.
4) If there is enough confidence in the identified distribution and

tolerance interval factors are not available (e.g., for gamma
distribution), then the bootstrap methods provide an attractive
alternative for sample sizes greater than 16. The confidence bounds are
less conservative in comparison to the nonparametric method.

However, one needs to look at the benefit (e.g., in terms of design
weight) of having less conservative boundswith the bootstrapmethod.
5) It is a well-known fact that uncertainty (conservative margin is

greatly reduced) inB-basis prediction reduces with an increase in the
number of tests. However, we reemphasize that one must do a larger
number of tests, which companies do not do today due to absence of
regulations from the FAA.
Even though this paper concludes that the TI method or

nonparametric method might work well depending on the data
situation (i.e., available sample size or availability of TI factors for the
underlying distribution type), a situation may arise in practice where
the bootstrap method is the only viable option to define the B-basis
values (depending upon how one wants to use the concept of B-basis
values). This paper defined the B-basis values on the FCG life, but
one may want to define the B-basis value on the crack model
parameters themselves. In that case, bootstrapping might be the only
available option. In such cases, some of the conclusions of this study
might be very useful for practitioners. For example, it was shown that
the BCNA bootstrap method would be more useful than the BCa

bootstrap method for small sample sizes (e.g., for n � 8 to 16), as it
gives higher coverage probability.

Appendix A: Crack Geometry, Load Conditions, and
Stress Intensity Solution

The FCG life equation given in Eq. (14) can be expanded as
follows:

N � tn

2
4C−1�ΔP ���

π
p

∕w�−n
Zaf
ai

�Gcf

���
a

p � da
3
5 (A1)
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w − a
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(A2)

where Fwc is the finite width correction, and G
∞
cf is the infinite plate

solution. The integrand in Eq. (A1) requires numerical integration
that is computationally expensive. It is approximated by the surrogate
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Fig. 7 Representations of a) coverage probability p, and b) relative mean margin Rmm% as a function of nct for different confidence bound methods,
when data come from gamma distribution.
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Fig. B1 Representations of a) lognormal fit and gamma fit to a sample generated from lognormal distribution, and b) lognormal and gamma fit to a

sample generate from gamma distribution.
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Fig. C1 B-basis FCG life empirical CDFs (for lognormal parent distribution) obtained via different confidence bound methods by simulation shown in
Table 4.
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given in Eq. (A3) that is valid for the width, diameter, and crack
lengths given in Table 1:

N�tn�C−1�ΔP ���
π

p
∕w�−n�1.64−1.22n�1.14n2−0.3n3�0.047n4��

(A3)

Appendix B: Nonparametric Bootstrap for Lower
Percentiles

For the original FCG life sample of size nct, the bootstrap method
resamples data from it nonparametrically (with replacement) to
create B (5000) bootstrap samples of size nct. We then compute the
10th percentile values from each bootstrap sample by approximating
parameters of the assumed probability model to create its sampling
distribution. If the FCG life data are treated as a lognormal
distribution, then parameters are estimated by a method of moments:

λ � μln ; η � σln (B1)

where μln and σln are the mean and standard deviation of the log-
transformed FCG life. If the FCG life data are treated as a gamma
distribution, then the parameters are estimated by a method of
moments:

β̂ �
�
μ

σ

�
2

; η̂ � σ2

μ
(B2)

where μ and σ are the mean and standard deviation of the FCG life
sample. The resulting sampling distributions are then used to set
confidence bounds, as per the bootstrap methods discussed in
this paper.

Appendix C: Empirical CDFs of B-Basis FCG Life from
Different Confidence Bound Methods

The round marker in the legends of Figs. C1 and C2 indicates
points where the coverage probability p and desired confidence level
α are equal, i.e., 95%. If a CDF passes through this point, then it
indicates that a desired confidence level is achieved. On the other
hand, if the CDF passes above or below this point, then it indicates
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Fig. C2 B-basis FCG life empirical CDFs (for gamma parent distribution) obtained via different confidence bound methods by simulation shown in
Table 4.
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overestimation or underestimation of the desired confidence level
of 95%.
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