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Fatigue crackgrowth coupon tests play an important role in designing safe and lightweight aircraft structures.How

many fatigue crack growth coupon tests are enough is an important question to be answered. With few coupon tests,

there will be a substantial uncertainty in design weight, with a significant chance of getting a heavier design, and a

considerable chance of overestimating fatigue crack growth design life. A simulation study is presented to determine

the optimal number of fatigue crack growth coupon tests by trading off testing cost against structural weight cost. It

also gives a designer an idea on how increasing the number of tests reduces the risk of overestimating design life. The

tradeoff is demonstrated for the damage-tolerant design of the lower spar caps of a business jet’s wing. With eight

coupon tests, there is a 26% chance of incurring at least 2.4% weight penalty and 18% chance of overestimating the

fatigue crack growth life by more than 10%. For 64 tests, the chances reduce to 3 and 0.5%, respectively.

Nomenclature

a = crack length, in.
C = Paris constant
Csct = cost of single coupon tests, U.S. dollars
Ct = cost of testing, U.S. dollars
c = effective crack length, in.
d = hole diameter, in.
K = stress intensity, ksi

p
in.

ls = length of wing spar, in.
Nd = fatigue crack growth design life, flight hours
Nt = number of load cycles in a coupon test, cycles
n = Paris exponent
na = number of aircraft
nct = number of fatigue crack growth coupon tests
p = cost penalty for a pound of weight, U.S. dollars per

pound
t = thickness, in.
Wlc = weight of lower cap, lb
Wwing = weight of wing due to lower caps of six spars, lb
w = width, in.
μ = mean
σ = standard deviation

Subscripts

a = aircraft
d = design
s = spar
lc = lower cap
t = test
t − ow = thickness of overweight samples
W − lc = weight of lower caps

Superscripts

* = true parameter value
ˆ = estimated parameter value

I. Introduction

M ATERIAL testing is a key task that approximates material
properties (e.g., yield strength, crack growth rate) needed for

designing safe and low-weight aircraft structures [1]. In general,
material properties are random and can be modeled with statistical
distributions [2]. For static strength design, the Federal Aviation
Administration (FAA) requires the use of A-basis orB-basis material
allowable to compensate for material variability and sampling
uncertainty arising from limited number of coupon tests [3]. The use
of B-basis material properties could lead to heavier designs if a small
number (e.g., less than 30) of tests are performed. As a result, aircraft
companies end up performing a sufficiently large number of coupon
tests (more than 30) to characterize the strength property of a given
material, which usually results in sufficient weight savings by
reducing sampling uncertainty [4,5].
In contrast, for damage-tolerant (DT) designs [6] (i.e., design

based on fatigue crack growth life), the FAAdoes notmandate the use
of basis values to compensate for material variability and sampling
uncertainty due to the smaller number of fatigue crack growth (FCG)
coupon tests. Furthermore, FCG coupon tests tend to be more time-
consuming and expensive (about $1000–2000 per test) than material
strength coupon tests (about $300 per test). Consequently, aircraft
companies may be performing fewer FCG coupon tests than needed.
It seems that some of the fatigue literature provides useful guidelines
[7–9] to determine the sufficient number of fatigue tests for under-
standing crack initiation behavior but not propagation behavior. This
is perhaps due to the concern for larger scatter in the crack initiation
life than crack growth life [10]. However, the question of how many
FCG coupon tests are needed appears to be largely unaddressed, even
though it might be of practical interest to airframe manufacturers.
Therefore, the main objective of this paper is to help designers in
deciding the optimal number of FCG coupon tests.
The current DT design practice for the metallic airframe is deter-

ministic and is mostly based on predicting the mean FCG life (i.e.,
part sizing is based onmean FCG rate properties). At first glance, this
may seem a risky design approach, but risk of failure is minimized
through the use of various conservative assumptions (some are dis-
cussed in Appendix A) in predicting the FCG design life of a
component. In some cases, gross conservative safety factors are
applied to the calculated FCG life. The tradeoff study presented in
this paper assumes that components are designed using the mean
FCG life as a design constraint. We present an example problem of
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designing lower caps of wing spars to decide the optimal number of
FCG tests. In general, with the increase in the number of FCG tests,
the mean design weight approximately remains the same, but there is
substantial decrease in the uncertainty (due to finite sampling/
number of tests) about themean designweight. That is, the likelihood
of getting a too-heavy design and the risk of underestimating the
desired mean FCG life by some amount decrease with the increase in
number of tests. The optimal number of tests is found by studying the
tradeoff between costs of weight penalty (due to underestimation of
FCG life) and FCG testing cost. We also find the risk of over-
estimating the FCG life by 5 and 10%, which could also be used by
the designer to decide the number of tests in certain situations.
The paper is organized as follows. Sections II and III briefly

introduce the FCG coupon testing and life prediction for designing
components. Section IV introduces a procedure to simulate testing
and life prediction. It also presents the distributions of predicted FCG
life. These distributions are translated into distributions of design
thickness (or weight) that are given in Sec. V. Next, Sec. VI
extrapolates the weight penalties from simulation geometry to
aircraft wing spars. Finally, Sec. VII presents the cost tradeoff results
to determine the optimal number of FCG coupon tests.

II. Fatigue Crack Growth Coupon Testing

An important step in designing damage-tolerant aircraft structures
is the estimation of the crack growth behavior of a material through
coupon testing. The testing is usually repeated at different stress
ratios (e.g., R � 0.1, 0.5) to capture the stress ratio effect for com-
plete material characterization. For simplicity, we assume that
multiple tests are repeated for only one stress ratio. The estimated
material properties are further used to predict the FCG life of a
component that is discussed in the next section.
The crack growth behavior of amaterial is quantified bymeasuring

the rate of crack propagation from multiple FCG coupon tests. The
ASTM standard document [11] gives guidelines for FCG testing
procedures and data reduction techniques. The crack growth rate and
stress intensity range data (da∕dNt versus ΔK) obtained via FCG
coupon testing is fitted with a crack growth model as shown in Fig. 1.
Many crack growth models (e.g., Walker equation, Nasgro equation)
have been proposed to model the crack growth rate data [12,13] but
are basically the extensions of the Paris law:

da

dNt

� C�ΔK�n (1)

where da∕dNt is the crack growth rate measured in inches per cycle;
a is the measured crack length; Nt is the number of test load cycles

corresponding to each crack length measurement; C is the Paris
constant; n is the Paris exponent; and ΔK is the range of stress
intensity factor that drives crack growth.
Fitting the Paris law to data (as shown in Fig. 1a) gives a single

sample of C and n. Generally, these material constants are treated as
material properties that define the rate of crack growth for a particular
material. In practice, multiple tests are usually performed for a given
stress ratio (e.g., R � 0.1) and Paris fit to all the data gives a mean
value ofC andn. Thesemeanvalues are further used to predict amean
FCG life for a component, which serves as a constraint for sizing a
component.
However, the mean values of C and n are uncertain due to limited

number of coupon tests (i.e., if the same number of tests is repeated,
one would get different mean values). This leads to uncertainty in the
mean FCG life of a component and further leads to uncertainty in the
design weight. Such an uncertainty could be substantial with smaller
number of coupon tests and is often treated as epistemic uncertainty
[14,15]. That is, therewould be substantial chances of overestimating
and underestimating the mean FCG design life by some amount.
The overestimation of life would lead to a lighter (thinner) design
that increases the risk of failure. On the other hand, underestimation
of life would lead to a heavier design that is also undesirable. In-
creasing the number of tests would considerably reduce the chances
of overestimating the mean FCG life, and the weight penalty due to
underestimation would also reduce.
To study the effect of increasing the number of tests on uncertainty,

we simulate testing by generating finite samples of C and n (each
depicting a coupon test) from assumed true (fully sampled)
probability distributions. These samples are further used to calculate
corresponding FCG life samples for a given loading and component
geometry. The mean of these FCG life samples serves as a mean life
of a component. The mean FCG life is then used as a constraint for
sizing a component, which would give a corresponding design
weight. Such simulation is outlined in Sec. IV.
The simulation requires an assumption of true probability

distributions of C and n. These material constants are known to
exhibit strong negative correlation [16,17], and so these are usually
modeled with a joint probability distribution. Annis [18] and
Akkaram et al. [19] modeled C with a log-normal distribution, or
log(C) as normal, and n with a normal distribution using data from
68 tests (2024-T3 aluminum alloy) performed by Virkler et al. [16].
The joint probability distribution function (PDF) parameters
estimated from 68 tests is given in Table 1. For simulation, we
assume these parameters to represent a true/fully sampled joint
distribution (usually unknownbecause it requires infinite number of
tests) shown in Fig. 1b. The joint normal PDF is given in Eqs. (2)
and (3):
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Fig. 1 Representations of a) Paris model fit to the crack growth rate data, and b) assumed true joint normal PDF of log�C� and n.
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P�log�C�; n� � 1

2πσlog�C�σn
�������������
1 − ζ2

p exp

�
−

z

2�1 − ζ2�
�

(2)

z ≡
�log�C� − μlog�C��2

σ2log�C�
−
2ζ�log�C� − μlog�C���n − μn�

σlog�C�σn
� �n − μn�2

σ2n

(3)

III. Design of Lower Wing Spar Caps Using Fatigue
Crack Growth Material Properties

The samples ofmaterial constants generated to simulate testing are
used for calculating mean FCG design life for the wing spars/beams
shown in Fig. 2. Wing spars are primarily designed to take bending
loads due to aerodynamic lift, which subjects the lower spar caps
(e.g., shown in Fig. 2b) to axial tensile loads. Cracks often originate at
fastener holes drilled to attach spar caps and wing skin and grow
under cyclic flight loads to a length leading to fracture.
In the viewpoint of DT design, parts (e.g., a portion of the spar cap

shown in Fig. 3) are sized such that a particular design life goal is
achieved (e.g., 24,000 flight hours for a typical business jet spar cap
[20–22]). The FCGdesign life is predicted by executing an analytical
crack growth analysis for the given load conditions (e.g., using inputs
given in Table 2). For simplicity, the loading is assumed to be of
constant amplitude type and number of load cycles is assumed equal
to flight hours. The load range ΔP value is selected such that the
thickness of the part (shown in Fig. 3) is similar to the real wing spar
cap (shown in Fig. 2b) that was designed by considering variable-
amplitude loading. For illustration, we use the integral form of the
Paris law to calculate the design life:

Nd � 1

C

Zaf
ai

�
ΔK

�−n
da (4)

where Nd is the FCG design life, ai is the length of assumed
preexisting flaw at a hole, andaf is the crack length at which failure is
assumed to occur. For the part and crack geometry (through thickness

crack at a hole) assumed in this paper, a surrogate model that replaces
Eq. (4) is given in Appendix B. The random samples of C and n
generated to simulate coupon testing are propagated through Eq. (4)
to estimate the samples of FCG life for the geometry shown in Fig. 3.
A stepwise simulation procedure is outlined in Table 3.
As a first step, we estimate the true (fully sampled) FCGdesign life

distribution via Monte–Carlo simulation (MCS). This is done by
computing Eq. (4) for 10 million samples of C and n generated from
the assumed true joint PDF given in Table 1. The thickness of the part
shown in Fig. 3 is sized such that the true mean FCG design life is
equal to 24,000 flight hours (FH). This gives the value of true thickness
(t� � 0.3663 in.) that is used to estimate theweight penalty. In general,
lifetime failure data are modeled with distributions having a positive
skew (i.e., a longer right tail). In [9,23,24], researchersmodeled lifetime
data with a log-normal distribution.We also model the FCG design life
distribution with a log-normal distribution as shown in Fig. 4. The
parameters of the true FCG life’s log-normal PDF given in Eq. (5) are
μln �Nd��location� � 10.044 and σln �Nd��scale� � 0.289, where μln �Nd�
and σln �Nd� are themean and standard deviation of the natural logarithm
of Nd:

fNd
� 1

Ndσln �Nd�
������
2π

p exp

�
−
�ln �Nd� − μln �Nd��2

2�σln �Nd��2
�

(5)

The mean FCG life is

μNd
� exp

�
μln �Nd� �

σ2ln �Nd�
2

�
(6)

Table 1 Assumed true (*) parameters of the bivariate
normal distribution

Material
constant Distribution

True
mean μ�

True standard
deviation σ�

True
correlation ζ�

Log�C� Normal −18.20 0.328 −0.982
n Normal 2.872 0.165 −0.982

Front Spar

Main Spar

Rear Spar

a) b)

Wing Skin

Lower-cap

Fastener

Web
Upper-cap

Fig. 2 Representations of a) wing assembly of a business jet, and b) cross-sectional view of wing assembly at main spar.

w

a

cr=d/2

w/2

ΔP

Fig. 3 Lower spar cap at critical fastener location subjected to axial
tensile load.
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Note that, for t� � 0.3663 in., the true mean FCG life is exactly
equal to the design goal of 24,000 FH. Thus, for a very large number of
FCG tests, one would get design weight corresponding to the true
thickness of t� � 0.3663 in.

IV. Simulation of Crack Growth Testing and
Distributions of Mean Design Life

In reality, only a handful of FCG coupon tests could be performed
that introduce uncertainty in the mean values of C and n, which
further lead to uncertain in the mean FCG design life value. This
advances to uncertainty in the design thickness t or design weightW.
For example, if one repeatsnct number of coupon testsmultiple times,
the mean FCG design life based on repeated tests would be different
each time, which would lead to different design weights. However,
the uncertainty would decrease with the increase in the number of
tests. To illustrate the effect of such uncertainty, the simulation
procedure outlined in Table 3 is undertaken.
The simulation gives the distributions ofmean FCGdesign life μ̂Nd

that are shown as empirical cumulative distribution function (CDFs)
in Fig. 5a for different nct. It can be noticed that all empirical CDFs
approximately pass through the true mean life μ�Nd

� 24;000 FH at

about 50% probability, and uncertainty/spread about te mean shows
the possible values of μ̂Nd

that could be obtained for a fixed true

thickness of t� � 0.3663 in. (estimated in the previous section),
depending on the sample set of C and n obtained from FCG coupon
testing. In Fig. 5a, the samples to the right of true mean life
overestimate the mean FCG design life, which would lead to lighter
designs but would erode the margin of safety. On the other hand,
samples to the left of the true mean would lead to heavier designs,
which is also undesirable. Furthermore, uncertainty about the true
mean FCG life decreases rapidly with the increase in the number of

coupon tests. This reduces the chances of overestimating and the
chances of underestimating the FCG design life considerably.
For example, consider the samples to the left of the true mean

FCG life in Fig. 5a; for a fixed chance (e.g., 40 and 20%) of
underestimating the FCG life (shownbyhorizontal arrows in Fig. 5a),
the correspondingmean life increaseswith the increase in the number
of tests. That is, the 20th percentile and 40th percentilemean FCG life
values increase (see Fig. 5b) with increase in nct, which would
eventually lead to the decrease in the corresponding values of design
weight (discussed in the next section). On the other hand, considering
samples to the right of the true mean FCG life in Fig. 5a, the
probability of overestimating the true mean FCG life of 24,000 FH
(e.g., at least by 5%, or 1200 FH, and 10%, or 1400 FH, shown by
vertical lines in Fig. 5a) can be seen to decrease rapidly with the
increase in the number of tests in Fig. 6. For example, the probability
of being greater than 25,200 FH is about 35% for nct � 8 tests and
about 10% for nct � 64 tests.

V. Distributions of Design Thickness

The mean FCG design life values estimated in Fig. 5a are either
larger or smaller than the desired FCG design life goal of 24,000 FH.
Thus, to check the effect of limited testing on design weight,
thickness of the spar cap shown in Fig. 3 is changed in away that each
sample of μ̂Nd

in Fig. 5a is equal to 24,000 FH. That is, the thickness

for the geometry shown in Fig. 3 is found such that μ̂Nd
≥ 24;000 FH.

This gives the distributions of design thickness, which are shown as
empirical CDFs in Fig. 7. It can be noticed that all the CDFs pass
through the true design thickness of 0.3663 in. at about 50%
probability. The spread about true design thickness represents the
uncertainty in the design thickness/weight values. That is, one could
obtain a design from a range of possible designweights depending on
the sample set of C and n obtained from coupon testing. However,
spread/uncertainty decreases with the increase in the number of tests.
In Fig. 7a, the samples of thickness to the left of the true thickness

represent designs that are lighter due to overestimation of FCG life as
was shown in Fig. 5a. That is, the spar cap is thinner than it should be,
which would increase the risk of failure. However, it is not easy to
estimate how much of this decrease in design weight (due to
overestimation of life) would offset the cost of fatigue problems due
to increased risk of failure. On the other hand, the thickness samples
to the right of the true thickness are heavier due to underestimation of
FCG life. It is easier to analyze the cost benefit due to reduction in
weight penalty due to these heavier designs with the increase in
number of tests against the testing cost. Thus, the optimal number of
tests will be based on the mean of all the samples to the right of the
true thickness (0.3663 in.) shown in Fig. 7a. The mean of these
overweight thickness samples (μt−ow, horizontal line in Fig. 7a)
decreases with the increase in the number of tests, which is also
shown in Fig. 7b. The thickness penalty Δt also reduces, which is
measured with respect to true thickness of t� � 0.3663 in.:

Δt � μt−ow − t� (7)

The thickness penalties corresponding to Fig. 7b (i.e., for the
geometry shown in Fig. 3) are given in Table 4. Also, from Table 4, it

104 105
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0.5

0.75
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0.95

0.99
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0.999
0.9995

0.9999

FCG design life, N d FH

pr
ob

ab
ili

ty
true distribution, μ

Nd

* = 24,000 FH, t*= 0.3663"

lognormal fit

data

Fig. 4 Probability plot indicating log-normal distributionas a good fit to
the FCG design life samples obtained via MCS.

Table 3 Simulation of FCG coupon testing and calculation
of mean FCG design life

Step Description

1 Generate nct random samples ofC and n from the true joint PDF given
in Table 1.

2 Calculate samples of FCG design life Nd using Eq. (4), and estimate
parameters �μ̂ln �Nd�; σ̂ln �Nd�� by fitting the log-normal distribution to the
FCG samples.

3 Use parameters�μ̂ln �Nd�; σ̂ln �Nd��to estimate mean FCG design life
using Eq. (6), i.e., μ̂Nd

.
4 Repeat steps 1–3 10,000 times by generating new sample sets ofC and

n to get a distribution ofμ̂Nd
.

5 Repeat steps 1–4 for nct � f8; 16; 32; 64; 128; 256; 512; 1024g.

Table 2 Dimensions and loads for the geometry shown
in Fig. 3

Dimension Value

Width w 2 in.
Diameter d 0.20 in.
Initial crack length ai 0.05 in.
Failure crack length af 0.90 in.
Load range ΔP 1 kips
Stress ratio R 0
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can be noticed that the probability of being heavier by more than
2.4% (shown by the vertical line in Fig. 7a) reduces with the increase
in nct. For example, for nct � 8, there is 26% chance of being heavier
by more than 2.4%, i.e., Pr�t > 0.375 in.), which reduces to 3%
for nct � 64.

VI. Extrapolation of Weight to Wing Spar and Fleet

Typically, for a business jet’s wing, approximately 50–70% of the
wing spar’s lower-cap sizing is dominated by the FCG life constraint.
The thickness results listed in Table 4 are extrapolated to calculate the
weight penalty for the entire lower cap of a spar. Thus, we consider
that the wing spar is ls � 24 ft long (a typical length of a midsized
business jet spar [20]), and for the first half of spar’s length, the lower
cap’s thickness is assumed to be t and width as wlc � 4 in. Further,
for the second half of the spar’s length, the thickness and width are
assumed to be 1∕4t andwlc∕2. The mean weight for entire lower cap
of a single spar corresponds to the mean thickness of overweight
samples (μt−ow):

μW−lc �
�
1

2
wlclsμt−ow � 1

16
wlclsμt−ow

�
ρal �

9

16
wlclsμt−owρal

(8)

where ρal � 0.105 lb∕in.3 As nct → ∞, μt−ow → t� � 0.3663 in.,
and μW−lc → W�

lc � 24.92 lb. This is about 70% of the weight of the
real main spar’s lower cap shown in Fig. 2. Next, a typical business
jet’s wings have six spars, and so their combined weight is
approximated using the following equation:

μW−wing � 2�μW−ms � μW−fs � μW−rs� � 2�1� 0.50� 0.75�μW−lc

� 9

2
μW−lc (9)

where μW−ms is the mean weight of the main spar, μW−fs is the mean
weight of the front spar (about 50%of themain spar), and μW−rs is the
meanweight of the rear spar (about 75%of themain spar). Therefore,
the weight penalty for the wings due to six spar caps (ΔWwing) is

calculated as follows:

ΔWwing � μW−wing −W�
wing (10)

where W�
wing is the true weight of the wing due to six lower

caps corresponding to the true thickness of t� � 0.3663 in.
(i.e.W�

wing � 112.2 lb). The corresponding weight penalties are

listed in Table 5. It can be noticed that the weight penalty is about
3.53 lb (about 3% ofW�

wing) for nct � 8 and reduces to about 0.3 lb

(0.3% of W�
wing) for 1024 tests.

VII. Cost of Weight Penalty and Testing Cost Tradeoff

The weight penalties calculated in the previous section are based
on the mean thickness of the overweight samples (from Fig. 7a) can
now be used for calculating the cost penalty to the operators due to
additional weight attributable to finite coupon testing. The worth of
structural weight proposed by Curran et al. [25] is 300∕kg (136∕lb).
Similarly, Kim et al. [26] referred to the U.S. National Materials
Advisory Board report [27] that estimated the worth of weight saved
as 200∕lb for a civil transport aircraft. Acar et al. [5] varied the cost of
weight penalty p between 200∕lb and 1000∕lb. Bhachu et al. [21]
proposed a measure of worth based on useful load and found that p
varies between $800 and $1600 for business jets. In this paper, we
vary p between 200∕lb and 1200∕lb to see its effect on the optimum
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function of number of tests.
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number of FCG coupon tests. The cost associated with weight
penalty is calculated using the following formula:

CΔW−fleet � naΔWwingp (11)

where na is the number of aircraft (400), i.e., the weight penalty is
transformed into the cost penalty for the entire fleet of aircraft to be
produced by a manufacturer. On the other hand, the cost of coupon
testing increases linearly with the number of FCG coupon tests:

Ct � nctCsct (12)

where Csct is the cost of single coupon tests that ranges between
$1000 and $2000. These cost numbers are based on personal
communications with engineers at Cessna Aircraft Company. We
assume the mean cost of $1500 per test for our analysis. Notice that
the cost of FCG coupon testing is much higher than $300 for material
yield strength tests mentioned in [5].

The tradeoff results are shown in Fig. 8. It can be noticed from
Fig. 8a that, for weight penalty of p � 200∕lb , the optimal number
of FCG coupon tests is around 64 (i.e., the point where both costs are
balanced), and for p � 1200∕lb, it is about 210. Thus, one could
justify 64–210 FCG tests for designing damage-tolerant components
(e.g., wing spar caps). On the other hand, if the designer is too
concerned about eroding the margins of safety on the FCG design
life, then Fig. 6 could be used to qualitatively decide the number of
tests. For example, if the designer is okay with the 1% risk of
overestimating the FCG life by 5%, then the optimal number of tests
would range from 128 to 256 (refer to Fig. 6). However, if the
designer is finewith 1% risk of overestimating the desiredmean FCG
life by 10%, then the optimal number of tests would range from 32 to
64. In any case, the current amount of FCG coupon testing that
typically ranges from 8 to 32 seems to be somewhat inadequate.
The results presented in this paper are based on the assumption of

the Paris law, but in reality, models that take stress ratio into account
are employed (e.g., Walker equation). In those cases, the testing is
repeated for multiple stress ratios, and so the optimal number of tests
could be distributed equally among those testing conditions. For
example, if testing is repeated at four different stress ratios, then the
optimal number of tests (e.g., 64) may be distributed among four
stress ratios (i.e., 16 tests per stress ratio). However, such an
assumption should be verified by performing a simulation similar to
the one presented in this paper with the improved model.

VIII. Conclusions

From the preceding analysis, it was demonstrated that performing
more FCG coupon tests reduces the risk of both overestimating the
mean FCG design life and overdesigning the structure, although it is
not easy to decide the optimal number of tests by calculating the cost
associated with the reduction in the chances of fatigue problems (due
to overestimation of life). But one could make an informed decision
by looking at an acceptable probability (e.g., 1%) of overestimating
the life by somepercentage (e.g., 5 or 10%). Such an approachmaybe
useful for deciding the optimal number of tests for designing damage-
tolerant components (e.g., stringers) that does not drive much weight
into the airframe.
On the other hand, for structures like wing spars, a decision on the

optimal number of tests could be made by studying the tradeoff
between costs of weight penalty and testing cost. It was shown that
about 64–256 coupon tests could be justified in comparison to the
current practice of about 8–32 tests, depending upon the associated
weight penalty that was assumed to range from $200/lb to $1200/lb.
Therefore, we conclude that the current amount of FCG coupon
testing that ranges from 8 to 32 could be increased to maximize the
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Fig. 7 Representations of a) CDFs of thickness, and b) mean of overweight thickness samples as a function of number of tests.

Table 4 Mean thickness of overweight samples,
thickness penalties, and probability of overdesigning

nct μt−ow, in: Δt, in: Pr�t > 0.375 in.�, %
8 0.3778 0.0115 26
16 0.3743 0.0080 18
32 0.3719 0.0056 9.5
64 0.3702 0.0039 3
128 0.3690 0.0027 0.6
256 0.3683 0.0020 0.03
512 0.3676 0.0013 — —

1024 0.3672 0.0009 — —

→∞ 0.3663 — — — —

Table 5 Weight penalty for wing spars based on mean
thickness of overweight samples

nct μW−wing, lb ΔWwing, lb

8 115.7 3.53
16 114.6 2.45
32 113.9 1.71
64 113.4 1.20
128 113.0 0.82
256 112.8 0.61
512 112.6 0.41
1024 112.4 0.29
→∞ 112.2 — —
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chances of weight savings and reducing the chances of fatigue
problems due to overestimation of life.

AppendixA: ConservativeAssumptions ofCrackGrowth
Analysis

The deterministic crack growth analysis makes many conservative
assumptions (implicit safety factors) and explicit safety factors for
conservatively predicting the FCG design life. Some implicit safety
factors/conservative assumptions are as follows.
1) Conservative assumption about the size of preexisting rogue

flaw (e.g., 0.05 in.). The probability of such a flaw to exist in a pristine
structure is about 10−6 [28].
2) Mean crack growth rate curves are multiplied with a safety

factor to derive the upper bounds.
3) Thematerial testing is usually performed under a high-humidity

and high-temperature environment that is known to accelerate the
crack growth rate. Thus, material constants obtained by fitting crack
growth models to such data are conservative.
4) Crack growth models often only model the linear Paris region

(i.e., where crack growth rates are between 10−6 and 2 × 10−5 inches
per cycle, or betweenΔK � 6 − 16 ksi

�p
in.). That is, ignoring near-

threshold crack growth data tends to underpredict the crack growth
life.
5) Sometimes a factor of safety (e.g., 1.5 to 2) is used to knock

down the calculated FCG life.
Therefore, in the presence of such conservative assumptions, one

hopes to cover for the uncertainty arising from flight load spectrum
and material randomness.

Appendix B: Fatigue Crack Growth Life Based on
Geometry, LoadConditions, and Stress Intensity Solution

The FCG life equation given in Eq. (4) can be expanded as follows:

Nd � tn
�
C−1

�
ΔP

���
π

p
∕w

�−n Zaf
ai

�
Gcf

���
a

p �
da

�
(B1)

Gcf � FwcG
∞
cf �

�
0.7071� 0.7548

�
r

r� a

�
� 0.3415

�
r

r� a

�
2

� 0.642

�
r

r� a

�
3

� 0.9196

�
r

r� a

�
4
�

×

��������������������������������������������������������
sec

�
πr

w

�
sec

�
π�r� a∕2�

w − a

�s
(B2)

where Fwc is the finite width correction, and G
∞
cf is the infinite plate

solution. The integrand in Eq. (B1) requires numerical integration
that is computationally expensive in the simulation. Therefore, it is
approximated by the surrogate given in Eq. (B3) that is valid for the
geometry given in Table 2:

Nd � tn
�
C−1

�
ΔP

���
π

p
∕w

�−n

×
�
1.64 − 1.22n� 1.14n2 − 0.3n3 � 0.047n4

��
�B3�
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