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Safety envelope for load tolerance of
structural element design based on
multi-stage testing

Chanyoung Park and Nam H Kim

Abstract
Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft struc-
tural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying
capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good invest-
ment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classifica-
tion, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An
important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope using
Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating
the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce
the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is
significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a
structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the
uncertainty due to a few element tests. It is shown that even a single element test can increase the load tolerance mod-
eled with the safety envelope by 20%.
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Introduction

The conventional structural design strategy is to find
the best geometric configuration, such as cross-sections,
panel thickness, or dimensions, to satisfy safety require-
ments under known applied loads. In practical engineer-
ing, however, it is seldom to design completely new
systems. Rather, the existing design is often updated
with enhanced performance. In passenger cars, for
example, it takes about every 3 years that manufacturers
modify a previous car model, but it takes more than
10 years to introduce a car model with a completely new
concept. In such an environment, it can be too expen-
sive to design structural components every time when
the model is slightly modified/updated. In addition, for

the purpose of managing the number of structural parts,
it would be best to reuse the same part for different
systems.

In order to use the same part for different systems, it
is necessary to provide the capability of how much load
the part can support safely. Traditional design concerns
load capacity by introducing a safety factor, which
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provides a safety margin under design loads. Kwak and
Kim1 proposed a concept of allowable load sets, where
design loads are used without considering uncertainties.
In linear static structures, the allowable load set
becomes piecewise-linear and convex. Wang et al.2

extended this concept to the fatigue life estimation
under uncertainty in the applied dynamic loads using
the stochastic response surface technique and sensitivity
information. However, they used the first-order relia-
bility method, which can lose its accuracy for nonlinear
response and correlated non-normal random variables.

In the space of applied loads, the safety envelope is
defined as a boundary of the region where the structural
element is safe. The structural element is considered
failed when the applied load is out of the envelope.
Figure 1 shows an example of safety envelope with two
independent loads, where the safety envelope becomes a
curve. Once this safety envelope is available, designers
can easily decide whether the current element can be
used for a new loading condition for a model.
Otherwise, a new element has to be designed to support
the applied loads.

In the conventional design concept,1 most structural
elements are designed with a safety factor under design
loads. This safety factor is applied in order to compen-
sate for various sources of uncertainty, such as variable
material properties, geometric tolerances, and calcula-
tion errors. Since the conventional design concept cal-
culates the design load by multiplying a safety factor to
the maximum applied loads, the safety envelope
includes the safety factor. However, since the safety
factor is applied to the load, the actual elements can be
over- or under-designed depending on the level of
uncertainty for the specific element.

In the reliability-based design perspective,2 instead
of applying a safety factor, it makes more sense to build
the safety envelope with a specific threshold of failure
probability under uncertainty. However, this requires
to calculate the probability of failure (PF) in multi-
dimensional space of applied loads. Wang et al.2

showed two-dimensional (2D) safety envelope for

fatigue reliability. In the case of 2D domain, the safety
envelope becomes a curve, and the Euler–Newton con-
tinuation method was used to search the continuous
boundary. However, this method is limited for one-
dimensional (1D) or 2D space of applied loads. In addi-
tion, it does not consider epistemic uncertainties, such
as sampling uncertainty in input variability and calcula-
tion uncertainty. The importance of treating epistemic
uncertainty is discussed by the literature regarding
probabilistic design. MIL-HDBK3 discusses sampling
uncertainty due to a finite number of samples and sug-
gests design tolerances such as A- or B-basis allowables.
Noh et al.4 emphasized handling sampling uncertainty
due to a finite number of samples. Villanueva et al.5

focuses on quantifying the effect of redesign consider-
ing the effects of future test for reducing uncertainty in
design. Acar et al.6 discusses the effects of sampling
uncertainties in material property and the prediction
uncertainty due to lacking knowledge about physics
regarding to aircraft structure failure.

In high dimensions, a new method is required to
effectively identify the boundary of safety envelope. In
this article, the concept of probabilistic classification7–9

is utilized to estimate the failure envelope of a structural
element. Since the proposed method is sampling based,
it can be applicable to nonlinear responses as well as
correlated non-normal random variables. Therefore,
the proposed method is more general than the previous
method of estimating failure envelope. The second
important contribution of this article is to incorporate
the effect of tests on reducing uncertainty in failure
envelope prediction. In the traditional building-block
process, tests are performed at different stages to reduce
errors in calculation (epistemic uncertainty). Park
et al.10 discusses theoretical concept of accounting epis-
temic uncertainties in structural element design and the
effects of coupon and element tests on reducing uncer-
tainties in element strength prediction and thus design
weight. In this article, we utilize statistical tolerancing
and Bayesian inference to reduce this uncertainty. The
proposed approach is demonstrated with a cantilever
beam example, which shows reasonable conservative-
ness against the test uncertainties.

This article is organized as follows. Section
‘‘Building a failure envelope using probabilistic classifi-
cation’’ introduces probabilistic classification to find
the boundary of safety envelope with a specific level of
PF. Section ‘‘Calculation of structural element safety
envelope based on coupon and element tests’’ illustrates
how to calculate the contribution of coupon and ele-
ment tests on uncertainty reduction. Section
‘‘Cantilever beam example’’ uses a cantilever beam
example to illustrate the proposed failure envelope with
tests, followed by conclusion in section ‘‘Concluding
remarks.’’

Figure 1. Safety envelope with two loads.
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Building a failure envelope using
probabilistic classification

There are different ways of building the safety envelope.
For example, Wang et al.2 used an iterative method to
search the surface of the safety envelope. In this article,
we use sampling-based method with probabilistic classi-
fication to find it. In his process, we fit a surrogate for
the PF and find the boundary of safety envelope using
a target level of PF.

The dimension of a safety envelope is determined by
the number of load components. For example, a safety
envelope for a single load is a load tolerance value,
while that for three loads is a surface. In order to
explain how to obtain the load tolerance corresponding
to PF of 10% for a bar under an axial load, it is
assumed that the failure strength S of the bar follows a
normal distribution N(220, 112)MPa, while the applied
load F is uniformly distributed U(190, 250) kN. Stress
of the bar with the cross-sectional area A=0.001m2 is
calculated as s=F/A. By defining the limit state as
G=S2 s, the bar is considered failed when G\ 0,
while safe when G. 0. However, due to randomness in
failure strength and applied load, the limit state is also
random, which can be realized by generating samples
according to the random distribution. Therefore, for a
given load, failure is defined with a probability, which
is a PF, and the PF is a function of load magnitude. By
obtaining the PF function, we can conveniently calcu-
late a load tolerance for a target PF.

Figure 2 shows failed (red crossed symbols) and safe
(blue circled symbols) samples randomly generated
according to the above-mentioned distributions of load
and strength. Figure 2 also shows a fitted PF function
based on the samples. Safe samples are dominant for a
low-load level and failed samples are dominant for a
high-load level such that PF increases as the load level
increases. In such a case, PF of 10% (horizontal dashed
line) can be calculated using the PF function. The load

tolerance for PF of 10% is at F=208kN. The inter-
pretation of a point safety envelope is that at this level
of load, PF is 10% under given uncertainty in failure
strength. The same concept can be extended to multiple
loads.

This article uses a probabilistic classification method
to build a safety envelope, which is a PF function for
given applied loads, based on failed and safe samples.
There are largely two types of classification, determinis-
tic and probabilistic classifications. Figure 3 shows a
schematic illustration of deterministic and probabilistic
classifications. When the region of blue class and the
region of red class are exclusive, deterministic classifica-
tion is used to identify the boundary between two
exclusive regions as shown in Figure 3(a). Probabilistic
classification was initially developed to predict the class
probabilities. Figure 3(b) shows a probabilistic classifi-
cation example based on weight and height statistics of
people; the taller and heavier a person, the higher prob-
ability being a male. However, it is possible that a man
and woman can have the same height. Thus, when the
weight and height of a person are given, the sex of the
person is described as probability. Probabilistic classifi-
cation can provide the region of weight and height that
the person is classified as a male with any given prob-
ability. In the same sense, as in the previous example,
we can predict whether a bar is failed or not based on
the PF curve that is fitted using samples.

Classification can be either the discriminative
approach or the generative approach.11 The discrimina-
tive approach directly models the classification prob-
ability, whereas the generative approach focuses on the
class-conditional densities and uses them to obtain clas-
sification probability.8 In this article, the discriminative
approach is used. This is because the generative
approach requires to make a good estimates of the
class-conditional densities to obtain the classification
probability function. In addition, data from a high den-
sity region of each class may not necessarily help in
defining the classification function.

Figure 2. A probability of failure function based on limit-state
samples of a bar under an axial load.
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Figure 3. Classification types: (a) deterministic classification
and (b) probabilistic classification.
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A classification probability surrogate is built using
the logistic response function logit(y)= 1=(1+
exp (� y)) and the latent function f (x).8 The role of the
logit function is to transform a latent function in infi-
nite range to the range [0, 1] as probability, so that the
transformed latent function, which is a classification
probability function, does not allow negative probabil-
ity or probability .1.

Gaussian process (GP) is used to model the latent
function using input load vector x. Since we want to fit
a PF surrogate, when the class ‘‘fail’’ is defined as nega-
tive limit state, we express a PF surrogate as

p G� 0jxð Þ=logit f xð Þð Þ ð1Þ

In the case of a uniaxial bar example, Figure 4(a)
and (b) shows the latent function and the PF surrogate,
respectively.

Fitting a PF surrogate with the logistic regression
boils down to how to fit the latent function using sam-
ples. The latent function predicts a high probability for
a class in the corresponding class dominant region. In
this article, we used a GP model for fitting latent func-
tions. Detailed process of fitting a GP latent functions
for given classified samples can be found in Rasmussen
and Williams.9

Calculation of structural element safety
envelope based on coupon and element
tests

The accuracy of a safety envelope depends on the accu-
racy of failed/safe sample calculation. For the previous
bar example, if we have an error in the failure strength
distribution, the load tolerance value may include error.

For aircraft structures, the building-block test process
is applied to detect design errors and to reduce uncertain-
ties in design and manufacturing.3 At each level,

analytical/numerical models are calibrated to account for
discrepancies between model prediction and test results.
Structural elements are designed based on coupon and
element tests. Coupon tests are used to build the material
strength distribution, and element tests validate failure
predictions. Since dozens of coupons and a few element
tests are often used, the estimated strength distribution
has sampling error, and failure predictions have calcula-
tion errors. For example, if the failure criterion of the
bar example tends to underestimate failure, then an over-
estimated safety envelope would be obtained. Therefore,
uncertainty after tests has to be incorporated into build-
ing a safety envelope of a structural element with proper
uncertainty models.6,10 The following sections present
uncertainty modeling for considering the effects of
coupon and element tests.

Modeling population distribution using coupon tests

The strength of a material has inherent variability,
which shows a statistical distribution. Coupon tests are
carried out to estimate the distribution. With coupon
tests, the distribution type has to be identified and the
parameters of the distribution should be estimated. The
distribution of coupon tests needs to consider uncer-
tainties in estimating parameters from finite samples.
For simplification, we assume that designer identifies
the distribution type of coupon tests correctly and esti-
mates the parameters. The process of obtaining a pre-
dictive distribution that includes both the original and
sampling uncertainty is presented.

We assume that the true material strength follows
the following normal distribution

t̂c, true;N mc, true, sc, true2

� �
ð2Þ

where mc, true and sc, true2 are the true mean and
standard deviation, respectively. The circumflex symbol

Figure 4. A probability function and the corresponding latent function: (a) latent function and (b) probability function.
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represents a random variable and the subscript ‘‘c’’ is
used to denote coupons. Since the parameters of the
true distribution are unknown, the parameters need to
be estimated with a finite number of coupons, which
introduces sampling uncertainties. For example, an
estimated mean from 50 coupons would differ from
that of 100 coupons. In this article, we use a predictive
material strength distribution for taking into account
the sampling uncertainty.

Since we assume that we identify the distribution
type correctly, to obtain a predictive distribution, we
need to know uncertainties in a sample mean and stan-
dard deviation. With nc coupons, the sampling uncer-
tainties of the mean and standard deviation can be
estimated12 as

m̂c;N mc, test,
sc, test2

nc

� �
ð3Þ

ŝc;
sc, test

x nc � 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nc � 1

p
ð4Þ

where mc, test and sc, test2 are the sample mean and stan-
dard deviation of coupons, respectively, and x(nc � 1)
is the chi-distribution of the degree of freedom nc � 1.
The standard deviations in equations (3) and (4) repre-
sent the confidence of the sample mean and standard
deviation, respectively. These standard deviations
decrease as the number of coupons increases, and they
eventually converge to zero for an infinite number of
coupons.

The predictive distribution of coupon strength can
be obtained using double-loop Monte Carlo Sampling
(MCS) as shown in Figure 5. The following four-step
process is used: (1) calculate a sample mean and stan-
dard deviation using nc coupons, (2) generate N random
sample statistics pairs from the sampling uncertainty
distributions using equations (3) and (4), (3) generate
random M material strength samples from each mate-
rial strength distribution of a mean and standard devia-
tion pair, and (4) obtain a predictive material strength

distribution from the collection of the M 3 N material
strength samples.

Reducing calculation error using element tests

Using the predictive distribution of failure strength in
the previous section, structural elements are designed
and tested. Structural element designs involve failure
predictions such as stress calculation. We assume that
the error in failure prediction comes from stress calcula-
tions, which is considered as uncertainty to avoid error
in calculating safety envelope. When the calculated
stress includes error, the true stress can be expressed as

te, true = 1� etrueð Þte, calc ð5Þ

where etrue is a true error, and te, true and te, calc are a true
element stress and a calculated stress, respectively. The
subscript ‘‘e’’ is used to denote elements. Since the true
error is unknown (i.e. epistemic uncertainty), we can
model the calculation error as a probabilistic distribu-
tion, and thus the calculated stress as

t̂e = 1� êð Þte, calc ð6Þ

where ê denotes the calculation error and t̂e represents
the estimated true stress with uncertainty.

The epistemic uncertainty caused by the calculation
error can be reduced by building and testing the struc-
tural element. In aerospace structures, it is customary to
test about three to five elements to reduce the calculation
error and calculate a conservative element strength. Park
et al.10 showed how to reduce the epistemic uncertainty
using element tests that include test variability. Detailed
process of Bayesian inference and the GP regression
model is explained in the numerical example in section
‘‘Cantilever beam example.’’ In this article, for simplicity,
it is assumed that the element tests do not include mea-
surement error, that is, te, true = te,meas. In such a simpli-
fied case, the true error can be calculated using measured
failure strength from an element test as

etrue = 1� te,meas

te, calc

ð7Þ

where te,meas is a measured element failure strength.
That is, the element test reveals the true error by com-
paring the calculations with experiments.

Cantilever beam example

In this section, we will show how to build a safety
envelope for 10% PF of a cantilever beam designed
with coupon and element tests. The cantilever beam
dimensions and applied loads are shown in Figure 6(a).
It has a circular section with the radius of 0.1m and

Figure 5. Process of obtaining a predictive material strength
distribution using double-loop MCS.
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length of 2m. The objective is to find the safety envel-
ope, which is a curve in 2D, when the two applied
loads, Fy and Fz, are in the range of [1000, 2000]N. A
schematic figure of the estimated safety envelope is pre-
sented in Figure 6(b). Two sources of uncertainty are
considered: the variability in the failure strength and
error in stress calculation. It is assumed that the mate-
rial strength distribution is obtained from simulated 50
coupons, and the stress calculation error is reduced by
a single-element test.

Simulated test results are generated using an
assumed true material strength distribution for coupon
tests and an assumed true stress function for element
tests. As introduced in the previous section, the use of a
finite number of tests brings in additional uncertainty.
Element designs must consider the uncertainty to prop-
erly estimate PF, and thus the safety envelope. In the
following sections, we will first show how to build a
safety envelope using the proposed approach with a
single set of randomly generated tests. Since test results
can vary, the process is then repeated to demonstrate
the statistical performance of the proposed approach.
Since tests are generated from the assumed true distri-
bution, the true safety envelope can be used to evaluate
the conservativeness of the proposed approach.

Building a safety envelope with a single set of coupon
and element tests

Coupon tests. Coupon tests should be carried out in
advance to building a safety envelope since the material
strength distribution is required. The following true
material strength distribution is assumed to draw cou-
pon samples

tc, true =N 5250, 157:52
� �

kPa ð8Þ

Randomly generated 50 coupon samples have the
mean and standard deviation of 5227 and 151 kPa,
respectively. Since sampling uncertainty exists in the

sample mean and standard deviation, a predictive
strength distribution is generated by following the pro-
cess described in Figure 5. Samples of the predictive
distribution were generated using randomly generated
means and standard deviations and double-loop MCS.
Samples of mean were generated using equation (3)
with N(5227, 21.42), while samples of standard
deviation were generated using equation (4) with
sc, test = 151, nc=50.

Building a safety envelope using the predictive distribution. As
shown in the bar example, in probabilistic classifica-
tion, it is required to collect limit-state samples over the
range of applied loads in order to build the safety envel-
ope. In this example, we use the maximum stress for
failure criterion, where the beam fails when maximum
principal stress is greater than the failure strength.
Because the failure strength has uncertainty, the true
limit state of the element for given applied loads Fy and
Fz is expressed as a random variable as

Ĝtrue Fy,Fz

� �
= t̂c, true � te, true Fy,Fz

� �
ð9Þ

In equation (9), the true failure strength is estimated
using the predictive distribution, t̂c, obtained using 50
coupon tests, as described in the previous section. Since
the true stress cannot be predicted exactly due to calcu-
lation error, the following relation similar to equa-
tion (5) is used

te, true Fy,Fz

� �
= 1� etrue Fy,Fz

� �� �
te, calc Fy,Fz

� �
ð10Þ

Using the predictive distribution of failure strength
and calculated stress, the limit-state random variable is
finally expressed as

Ĝ Fy,Fz

� �
= t̂c � 1� êinitð Þte, calc Fy,Fz

� �
ð11Þ

where the calculation error is denoted by êinit because
this is the initial error and will be updated by element
test.

Figure 6. Structural element and a schematic failure envelope on the region: (a) a cantilever beam with two applied loads and (b) a
schematic figure of the failure envelope.
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Typically, the uncertainty in calculation error can be
estimated from expert opinions or past design experi-
ence. We assume that the initial estimate of calculation
error is modeled as a normal distribution with zero
mean and standard deviation of 0.1 as

êinit;N 0, 0:12
� �

ð12Þ

The true error is calculated by comparing the true
stress and the corresponding calculated stress. We
assume that the maximum stress is calculated using the
Euler–Bernoulli beam theory, where the calculated
maximum principal stress is obtained as

te, calc Fy,Fz

� �
=� FzLð Þr sin umax

I
�

FyL
� �

r cos umax

I

where umax = arctan
Fz

Fy

� �
ð13Þ

where I is the second moment of inertia and umax is the
angle to the maximum stress with the coordinate in
Figure 6.

A safety envelope with the initial error bounds is built
using the probabilistic classification and limit-state sam-
ples. The limit-state samples are randomly generated in
three steps: (1) generating 2000 applied load samples of
Fy and Fz using a uniform distribution U(1000, 2000),
(2) generating 2000 samples of failure strength from the
predictive distribution and the initial error distribution,
and (3) calculating the corresponding limit-state samples
using equation (11). Figure 7 shows 2000 limit-state
samples and the corresponding safety envelope. Note
that samples can be obtained in various ways. If a
numerical model to predict failure of an element is com-
putationally cheap, the model can be directly used to
acquire samples. A surrogate can be alternatively used
as a cheap representative model of an expensive numeri-
cal model. The classification is utilized to conveniently

build a safety envelope using samples. If there is no
uncertainty in material properties and calculation error,
the beam can support up to 2000N forces when only Fy

is applied. Due to uncertainty, however, the beam has a
10% PF when the load is 1500N. Note that this safety
envelope is before incorporating element tests. Because
of sampling error, the envelope shows variability. For
example, along the line of Fy=Fz, the envelope shows
about 3% of coefficient of variation; all other directions
show a similar level of variability.

Element tests and the calculation error update. The
unknown calculation error was compensated by includ-
ing the error distribution in the limit-state function but
it is often overly conservative. If the distribution is nar-
rowed by reducing the uncertainty, the safety envelope
increases and leads to a lighter design. In this section,
we present an approach to reduce the initial calculation
uncertainty by incorporating element tests into
Bayesian statistics.

For the cantilever beam, the calculation uncertainty
can be reduced by measuring the maximum stress from
element tests. An element test of the beam measures the
maximum stress by gradually increasing the load mag-
nitudes of Fy and Fz with a fixed load ratio. Figure 8
shows seven maximum stress measurements along
Fy=Fz line until the beam fails. With no measurement
error, we can measure the true maximum stresses
te, true(F

(i)
y ,F(i)

z ) at seven points including the failure
point along the load path. Even if there is a measure-
ment error, when its magnitude is small compared to
strength variability and calculation error, it can be
ignored. Note that failure point varies for different ele-
ment tests because of the variability in element strength.

For a single-element test, with nmeas measurement
points, we can obtain the true calculation errors
e= fe1, . . . , enmeasg at these points as

Figure 7. A failure envelope obtained based on limit-state samples: (a) limit-state samples and (b) safety envelope for PF = 0.1.
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ei = etrue F ið Þ
y ,F ið Þ

z

� �
= 1�

te, true F ið Þ
y ,F ið Þ

z

� �
te, calc F

ið Þ
y ,F

ið Þ
z

� �
for i= 1, . . . , nmeas

ð14Þ

In this article, we propose an approach to extrapo-
late the true calculation error data from an element test
to other unmeasured points using Bayesian inference
and a Gaussian process (GP) regression model. The ini-
tial distribution of calculation error in equation (12) is
used to build a prior GP model, which will be updated
with the true errors. The prior GP model is defined
using equation (12) as

êinit Fy,Fz

� �
;N 0, 0:12

� �
ð15Þ

The GP model requires a correlation model and the
popular Gaussian kernel is used herein. The covariance
function of the GP model is defined as

cov ê Fy,Fz

� �
, ê F 0y,F 0z

� �� �
= 0:12 exp

�
Fy � F 0y
Fz � F 0z

	 
T
ly 0

0 lz

� �
Fy � F 0y
Fz � F 0z

	 
 ! ð16Þ

Roughness parameters ly and lz are estimated using
the errors measured from element tests using a likeli-
hood function. The likelihood function is derived as

Lðly; lzÞ=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð Þnmeas Sj j
p exp � 1

2
eT

testSetest

� �
ð17Þ

where S is a covariance matrix, whose (i, j) element
is expressed using equation (16) as cov(ê(F(i)

y ,F(i)
z ),

ê(F(j)
y ,F(j)

z )).
The posterior distribution of calculation error

êupd(Fy,Fz) is obtained by multiplying the prior GP
model in equation (15) with the likelihood function in
equation (17). After normalization, the posterior distri-
bution becomes the following normal distribution

êupd(Fy,Fz);N (mupd(Fy,Fz), kupd(Fy,Fz)) ð18Þ

The mean and variance of the updated distribution
represent the prediction and the amount of remaining
uncertainty after the test, respectively. The mean and
variance are obtained as a function of applied loads as

mupd Fy,Fz

� �
=S Ftest

y ,Ftest
z

� �
, Fy,Fz

� �� �T

S�1
etest

kupd Fy,Fz

� �
= k Fy,Fz

� �
� S Ftest

y ,Ftest
z

� �
, Fy,Fz

� �� �T

S�1S Ftest
y ,Ftest

z

� �
, Fy,Fz

� �� �
ð19Þ

where Ftest
y = fF(1)

y , . . . ,F(nmeas)
y g and Ftest

z = fF(1)
z , . . . ,

Fnmeas
z g are forces at test points, and (i)th element of a

vector S((Ftest
y ,Ftest

z ), (Fy,Fz)) is also obtained using
equation (16) as cov(ê(F(i)

y ,F(i)
z ), ê(Fy,Fz)).

The above equations are derived based on the GP
regression model. More detailed information about
estimating roughness parameters and updating a prior
model of a GP model can be found in Rasmussen and
Williams.9

For the purpose of illustration, the true stress func-
tion is defined using calculated stress in equation (15)
and the error function etrue(Fy,Fz) as

te, true Fy,Fz

� �
= 1� etrue Fy,Fz

� �� �
te, calc Fy,Fz

� �
ð20Þ

The true error function is assumed as

etrue Fy,Fz

� �
= 0:05

2fy Fy

� �2 � 1:05fy Fy

� �4
+

fy Fy

� �6

6
+ fy Fy

� �
fz Fzð Þ+ fz Fzð Þ2

 !
+ 0:05

ð21Þ

where fy(Fy)= 0:002Fy � 3 and fz(Fz)= 0:002Fz � 3.
The forces Fy and Fz are obtained from the simulated
element tests. Figure 9 shows the true and calculated
stress functions over the safety envelope region. The
true stress shows nonlinear behavior whereas the calcu-
lated stress is almost linear.

Using the true failure strength distribution and the
true stress function, a single-element test was simulated
by increasing the loads along Fy=Fz and collected seven
maximum stresses as illustrated in Figure 8. The failure
point {Fy, Fz}={1489, 1489} is determined by randomly
generating the limit-state function in equation (9). The
seven maximum stresses are evenly distributed between
{Fy, Fz}={1000, 1000} and the failure point.

Based on the synthetic element test data, the true error
function and the corresponding 1-sigma representing the
prediction uncertainty were predicted. The updated GP
model êupd(Fy,Fz) is shown in Figure 10. Figure 10(a)
shows the predicted error based on the maximum stresses
from the synthetic element test data using a GP model.
Figure 10(b) shows the uncertainty in the error prediction.
The white circles represent the seven measured stress
points. Since we assume no measurement error, the

Figure 8. Load path of an element test.
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predicted errors on the data points are true errors and the
prediction uncertainties are zeros.

Since a single-element test reveals the true error on a
single load path, other load combinations still have cal-
culation uncertainty. The uncertainties around the mea-
sured points are almost zero and it increases as distance
between a stress calculation point and the load path
increases. It is observed that the uncertainty in the pre-
dicted error is significantly reduced compared to the
initial error of its standard deviation of 0.1.

With the updated GP model, the safety envelope is
re-calculated using the following updated limit state

Ĝ Fy,Fz

� �
= t̂c � 1� êupd Fy,Fz

� �� �
te, calc Fy,Fz

� �
ð22Þ

Figure 11 shows the safety envelope using the GP
model in equation (22). It shows that the safety envel-
ope covers a larger region than the safety envelope
without element tests in Figure 7. That is, incorporat-
ing an element test can significantly reduce the calcula-
tion uncertainty. The reason of the asymmetric failure

envelope is that the predicted error function in Figure
10(a) is asymmetric.

Figure 12(a) and (b) shows a comparison between
the true PF function along Fy=Fz line and the corre-
sponding PF function extracted from the probabilistic
classification shown in Figures 7(b) and 11(b), respec-
tively. The horizontal axis is the magnitude of the load
Fu =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

y +F2
z

q
. The true distribution was calculated

analytically by substituting the true load distribution in
equation (8) and the true stress function defined in
equation (20) using the limit-state variable in equa-
tion (9). The comparison shows that (1) the element test
significantly increases the safety envelope (from 1800 to
2090N) by reducing calculation error and (2) the esti-
mated PF function makes a good estimation but it is
more conservative than the true PF function.

Statistical analysis of conservativeness

The previous section explains the proposed approach to
build a safety envelope with one set of coupon and

Figure 9. Stress functions: (a) true stress and (b) calculated stress.

Figure 10. Estimated error function and the corresponding uncertainty: (a) predicted error and (b) uncertainty in the predicted error.
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element tests. In order to demonstrate that the pro-
posed approach ensures conservativeness under test
variability, the above-mentioned process of estimating
a safety envelope is repeated with randomly generated
test sets. Coupon and element test data were generated
using the true material strength distribution and the
true stress function. We consider that case when a
single-element test is performed on the load path of
Fy=Fz. We generated 10,000 test sets and calculate the
load envelope on the load path. We found that for 737
out of 10,000 test sets, the estimated load envelope is
greater than the true load envelope of 2088N (see
Figure 13). The suggested modeling approach provides
a conservative estimate of load envelope as it was
intended.

Concluding remarks

In this article, we presented a method of estimating a
safety envelope of structural element, which provides
tolerance load satisfying the target probability for a

given load combination. The probabilistic classification
method with latent function is used to build a safety
envelope. The proposed method considers epistemic

Figure 11. A safety envelope obtained using the updated error function: (a) limit-state samples and (b) safety envelope for PF = 0.1.

Figure 12. A comparison between true and estimated PFs: (a) before element test and (b) after element test.

Figure 13. A histogram of calculated load envelope for the
true load envelope of 2088 N.
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uncertainties, calculation uncertainty and sampling
uncertainty in coupon tests, in estimating a prior safety
envelope. The prior envelope is then updated with ele-
ment tests, which are carried out for reducing the calcu-
lation uncertainty. A cantilever structure is employed as
a structural element to demonstrate the proposed
method. It is shown that the safety envelope tends too
conservative due to a large epistemic uncertainty.
However, after including element test, the epistemic
uncertainty is significantly reduced, and the safety envel-
ope was enlarged that the load tolerance for a given
load combination was increased by more than 20%.
Without including element tests, the safety envelope was
overly conservative. It is found that the proposed safety
envelope is close to the true safety envelope and yet
maintains conservativeness in the level of 93%, which is
very close to the target PF of 90%. Incorporating infor-
mation from element tests into estimating safety envel-
ope is critical for reducing design conservatism.

GP is used to calculation uncertainty, and the GP
model is updated using Bayesian inference with element
test results. It is shown that even one element test can
significantly reduce the epistemic uncertainty in
calculation.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial
support for the research, authorship, and/or publication of
this article: This work benefited from the US Department of
Energy, National Nuclear Security Administration,
Advanced Simulation and Computing Program, as a
Cooperative Agreement under the Predictive Science

Academic Alliance Program, under Contract No.
DE-NA0002378.

References

1. Kwak BM and Kim JH. Concept of allowable load set

and its application for evaluation of structural integrity.
Mech Struct Mach 2002; 30: 213–247.

2. Wang H, Kim NH and Kim Y-J. Safety envelope for the

load tolerance and its application to fatigue reliability

design. J Mech Des: T ASME 2006; 128: 919–927.
3. Guidelines for property testing of composites. In: Com-

posite materials handbook, vol. 1 (MIL-HDBK-17-1F).

Washington, DC: US Department of Defense, 2002,
pp.8–23, https://www.lib.ucdavis.edu/dept/pse/resources/

fulltext/HDBK17-1F.pdf
4. Noh Y, Choi KK, Lee I, et al. Reliability-based design

optimization with confidence level under input model
uncertainty due to limited test data. Struct Multidiscip O

2011; 43: 443–458.
5. Villanueva D, Haftka RT and Sankar BV. Accounting

for future redesign in the optimization of an integrated

thermal protection system. In: 20th AIAA/ASME/AHS

adaptive structures conference, Honolulu, HI, 23–26 April

2012. Reston, VA: AIAA.
6. Acar E, Haftka RT and Kim NH. Effects of structural

tests on aircraft safety. AIAA J 2010; 48: 2235–2248.
7. Ripley BD. Pattern recognition and neural networks.

Cambridge: Cambridge University Press, 2007.
8. Rogers S and Girolami M. A first course in machine

learning. Boca Raton, FL: CRC Press, 2012.
9. Rasmussen CE and Williams CKI. Gaussian processes for

machine learning. Cambridge, MA: MIT Press, 2006.

10. Park CY, Kim NH and Haftka RT. How coupon and ele-
ment tests reduce conservativeness in element failure pre-

diction. Reliab Eng Syst Safe 2014; 123: 123–136.
11. Dawid AP. Properties of diagnostic data distributions.

Biometrics 1976; 32: 647–658.
12. Wackerly D, Mendenhall W and Scheaffer RL. Mathe-

matical statistics with applications. 6th ed. Pacific Grove,
CA: Duxbury Press, 2001.

Park and Kim 11

 by guest on September 8, 2016ade.sagepub.comDownloaded from 

https://www.lib.ucdavis.edu/dept/pse/resources/fulltext/HDBK17-1F.pdf
http://ade.sagepub.com/

