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Abstract A statistical procedure for calibration and vali-
dation is addressed as an industrial application for the
analysis problem of piston insertion into the housing in
the pyrotechnically actuated device. Three parameters are
identified in the model that affect the solution greatly but
they are not known a priori. Bayesian approach is
employed to calibrate these parameters in the form of
distributions, which account for the uncertainty of the
model and test data. In order to validate the model, similar
new problems are introduced, analyzed and tested for val-
idation purpose. As a result, the predictions in the new
problems are found to work equally well as in the calibra-
tion problem, which suggests that it is useful in the sub-
sequent new design without additional test procedure.

Keywords Statistical uncertainty . Elasto-plastic insertion .

Calibration . Validation . Bayesian approach .MarkovChain
Monte Carlo

1 Introduction

A Pyrotechnically Actuated Device (PAD) performs criti-
cal functions for aerospace and defense systems such as
stage separation, wing deployment and propulsion con-
trol. There are many different PADs such as pin-puller,
cable cutter, pyro-valve and so on. Among those, pyro-
valve is considered in this study, which consists of pyro-
technic pressure chamber, piston and housing as illustrat-
ed in Fig. 1. The role of the valve is to open a gas or
liquid flow. By combustion of a self-contained energy
source in the pyrotechnic chamber, pressure is generated
to insert piston into the housing and triggers intended
mission. The housing is designed to absorb the kinetic
energy of piston and prevent bouncing back by introduc-
ing interference between the piston and housing. Due to
its critical mission in the aerospace and defense system,
very high reliability is required but the evaluation is dif-
ficult because it is single use device. Too weak pyrotech-
nics or too much interference may cause failure of the
piston to reach the end and mission abort. As the number
of tests are limited due to the single use nature, modeling
and simulation is useful to assess the reliability of current
design and new development. The whole computational
model requires complicated time-dependent analysis in-
cluding the burning of solid explosive to form gas within
the actuator, expansion of the gas to the chamber, and
insertion of the piston into the housing by gas pressure.
The coupling of combustion energy to piston–housing de-
formation by the gas pressure is also necessary. Few lit-
eratures are available on this analysis, with the application
to a couple of variants such as pyro-valve (Braud et al.
2007; Paul and Gonthier 2010) and pin puller (Jones et al.
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1994). In their analyses, comprehensive mathematical
model was formulated by coupling the explosive combus-
tion, pressure generation and piston-housing deformation.
As a result, a set of one-dimensional equations are devel-
oped to determine the pressure history and piston dis-
placement during the operation. A closed form elasto-
plastic solution is incorporated for the piston insertion
into the housing by assuming them as a series of thin
disks with interference fit and their material behavior as
linear strain hardening. While the mathematical model
approach facilitates extensive parametric study with con-
venience, its value is limited due to the lack of reality.

In this study, we focus on the elasto-plastic piston-
housing deformation which is one of the important parts
of the whole computational model. Inaccurate analysis of
this may lead to the insufficient insertion or excessive
deformation of the piston into the housing leading to cat-
astrophic failure. The deformation is investigated in more
realistic manner by employing the finite element software
ANSYS to analyze the contact and nonlinear material be-
havior during the insertion. Although the deformation
takes place instantaneously within a fraction of second,
the process can be assumed as quasi static because the
influence of the inertia to the stress is marginal as was
mentioned in (Braud et al. 2007). For this purpose, an
interested part given by the rectangle of Fig. 1b is con-
sidered to conduct the quasi-static elasto-plastic analysis
during the piston insertion into the housing. The finite
element model, however, has still inaccuracy problems
that limits its use in practice: the finite element analysis
(FEA) model has errors due to modeling only an interest-
ed part of the whole structure, and usually some unknown
input parameters exist in the model. Typical resolution is
to conduct real test and determine unknown parameters of
the model to match with the actual test data, which is
known as model calibration. In traditional approach, the
calibration process has been explored in a deterministic
sense without accounting for the uncertainties of the
modeling inaccuracy, measurement errors and insufficient
test data, which may lead to wrong conclusions. In order
to account for these uncertainties, statistical approach has
been studied by a number of literatures. In a fundamental
work, Kennedy and O’Hagan (2001) proposed a compre-
hensive formulation with the title of Bayesian calibration,
which was followed by many other groups (e.g., Higdon
et al. 2004; Bayarri et al. 2012). If we restrict the litera-
ture to the material parameters identification, numerous
papers are still available that have addressed Bayesian
calibration. Only a few are referenced in this paper to
illustrate the applications. Marwala et al. (2005) applied
the method to the finite element model updating in the
frequency response analysis of the aluminum beam.
Gang et al. (2012) estimated unknown parameters of alloy
material in their viscoplastic model of solder joint analy-
sis. Sankararaman et al. (2011) presented a method for
calibration and validation of fatigue crack growth model
and applied to the surface cracking of a cylindrical
component. Straub and Papaioannou (2014) have pro-
posed structural reliability methods to improve MCMC
sampling and applied to the parameter identification in a
dynamic system and Bayesian updating of a random field
of a geotechnical site.

In the Bayesian calibration approach, it is common to
employ Gaussian stochastic model to approximate the
original computer model as well as its bias from the

(a) cross section view at initial setup

(b) side view after the operation

Fig. 1 Cross section and side view of pyro-valve
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experimental points by incorporating the correlation be-
tween the points. Then the unknown hyper parameters
are estimated as a joint posterior distribution using the
Bayes’ rule. The likelihood of the field data is given by
multivariate normal distribution with the mean at the bias
added computer model and the covariance function given
by the correlation matrix and variance parameters. Once
the model is calibrated, it is applied to a new problem,
and the predicted distributions are validated by the corre-
sponding new test data. The overall process is illustrated
in the Fig. 2 (Oberkampf and Roy 2010). In this study,
same statistical approach is employed for the elasto-
plastic model of piston insertion into housing in order to
obtain close agreement with the actual test data. But, more
simple strategy is employed to facilitate practical engi-
neering applications. The original computer model is ap-
proximated by the Gaussian process model only in a de-
terministic sense, which is also known as Kriging surro-
gate model. The uncertainty due to this approximation is
ignored since it is more likely much smaller than the
others. Then the calibration process becomes the estima-
tion of the unknown input model parameters, degree of
correlation of the bias and the measurement error based
on the test data.

The outline of this paper is as follows. In section 2,
computational model is addressed that evaluates the re-
sistance force during the piston insertion into the hous-
ing, in which the three unknown parameters are identified
to be calibrated based on the test data. In section 3, over-
all process of calibration and validation is carried out,
which includes the Kriging surrogate model, calibration
of the unknown parameters by Bayesian approach,

Markov Chain Monte Carlo (MCMC) simulation to ex-
plore their posterior distributions, and predictive valida-
tion via new problems and their test data. Conclusions
are given in section 4.

2 Computational model

2.1 Computation modeling of piston – housing
deformation

Finite element model is constructed with axisymmetric elements
to evaluate the piston insertion into the housing with interfer-
ence, of which the geometry is shown in Fig. 3. The piston is
pressed from the top end of housing skirt at point 1 down to the
bottom end at point 4, 4.5 mm apart from point 1. The defor-
mation is considered as quasi-static in this model in order to
calibrate and validate the axial resistive force obtained from
the inert, quasi-static compression test. In ANSYS,
PLANE182 with 4 nodes is employed for the solid elements.
TARGE169 and CONTA171 are employed for the contact anal-
ysis with elasto-plastic deformation under friction. As a result,
resistance force of the housing is obtained in terms of the piston
displacement from the point 1 to 4 under this assumption.

Since the actual piston diameter may be slightly less
than that the inner bore of housing within tolerance limit
at initial position (or before actuation), the piston may
begin contact with the housing at some distant point 2
in practice, from which the frictional resistance force is
created. As the piston proceeds further, it meets protruded
part of the housing from point 3, which is made to ensure
the piston absorption by the housing and prevent

Fig. 2 Overall process of
calibration and predictive
validation
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bouncing back. An inert, quasi-static compression test re-
sult of resistance force in terms of piston displacement is
illustrated in Fig. 4.

Materials of the piston and housing are STS630 and
STS303, of which the elastic constants are 197 and 195GPa,
respectively and Poisson ratio is 0.3 in common. Their mea-
sured curves in the form of true strain and true stress are given
in Fig. 5. Note that the piston is much stronger than the
housing.

2.2 Unknown input parameters

During the analysis, there exist several uncertain parameters
that may greatly affect the resulting solutions. First, the fric-
tion coefficient μ between the piston and housing is not easily
identified because of many factors such as surface condition
and magnitude of contact force. Second, since the model is a
cutout of interested part of the structure, there is uncertainty
for the corresponding boundary conditions, which are at the
top end and lower right end of the housing. Fictitious elements
are added to account for this, and the finite element model is
made as shown in Fig. 6. There may be a number of ways to
account for this uncertainty such as introducing equivalent
spring elements. In this study, elements with square shape
are just added at each boundary as shown in Fig. 6 only to
use them as the equivalent spring at the boundary. Then the
elastic moduli, EU and EL at the additional elements are the
unknowns as well. Consequently, the three parameters are
treated as the unknowns and estimated based on the test data.

3 Calibration & validation

3.1 Experiments and baseline analyses

Three types of pyro-valves named as A to C are prepared,
which differs in dimensions and size but has parametrically
same configuration, as shown in the Table 1. Critical geometry
factors affecting the resistance force are the radius and fillet
radius of the piston, and radius and shape of the skirt of the
housing as shown in the Fig. 3. Note that the dimensions are
normalized due to the proprietary reasons. Also, the radii pro-
file of the housing from point 1 to 4, which is the critical part
in the analysis, is not given by the primitive geometry but by
the actual measured data over a finite interval. Due to the
machining tolerance, the actual shapes of the housing differ
slightly with each other. This actual geometry is accounted for
in the analysis model and solution.

Inert, quasi-static compression tests are conducted using an
Instron 5582 capable of 100MN. The upper end of the piston is
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Fig. 4 Typical test result of elasto-plastic insertion

Fig. 5 True stress–strain curve of piston and housing materials

Fig. 3 Axisymmetric geometry model of piston and housing with critical
geometry factors affecting the resistance force
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pushed down by a specially designed cylindrical ram at a con-
stant rate of 2.54 mm/min. The resistance force is recorded as a
function of displacement. For each of the types, 5 tests are
made. Among the valves, predicted result for the type A is
given in the Fig. 7, with the three parameters μ, EU and EL set
arbitrarily at 0.5, 195GPa respectively. Also, the five test results
are superimposed. As expected, the model does not match the
test data due to the unknown parameters. The parameters
should therefore be calibrated but should account for the uncer-
tainties due to the FE modeling and the variance of test data.

3.2 Kriging surrogate model

When the computation is not trivial as in this FEA which
involves contact and plasticity, surrogate model that ap-
proximates the original response is usually employed to
save the computational cost. Because the original response
does not include error in itself, we can construct the

surrogate model such that it passes the response, i.e., it
interpolates the response values. In this study, the Kriging
model is constructed in terms of the three unknown input
parameters. In order to generate design of experimental
(DOE) points in the model, Latin Hypercube Sampling
(LHS) method is used. LHS points with n= 25 are generat-
ed including the corner points over the range of three pa-
rameters as given in Fig. 8. Kriging model is constructed
using the FE analyses results at these points. Since the re-
sponse is the resistance force as a function of displacement
z, the model is constructed at discrete displacement points
with equal interval of 0.125 mm in the range 2 ~ 4.5 mm as
shown in Fig. 9. Consequently, total of K = 20 Kriging
models are obtained as a function of three parameters

ŷ zk jxð Þ ¼ ŷ zk jμ;EU ;ELð Þ; k ¼ 1;…;K ð1Þ
where x are the input parameters μ,EU and EL, and zk is the
k’th displacement point, and ŷ denotes the Kriging re-
sponse. At any displacement point, the Kriging model is
constructed as a function of x as follows (Martin and
Simpson 2005).

ŷ xð Þ ¼ f 0βþ r0R−1 Y−Fβð Þ ð2Þ
where Y are the FE analysis results at the DOE points of x,
which are denoted by X. β and f(x) are the regression co-
efficients and trial functions for global approximation, re-
spectively. The matrix F is the trial function values at these
DOE points, i.e., F= f(X). The matrix R denotes the corre-
lation usually defined by a Gaussian type function:

R xi; x j
� � ¼ exp −

d
h

� �2
( )

; d ¼ xi−x j
�� ��; i; j ¼ 1;…; n ð3Þ

where xi, xj denote the individual DOE points, d is the dis-
tance between the two points, and h is an arbitrary

Fig. 7 Comparison of actual test data and analysis result by arbitrary
values of three parameters

Table 1 Normalized dimensions of five types of pyro-valves

Critical geometry factors Type A Type B Type C

Piston radius 1.000 1.141 1.134

Piston fillet radius 1.000 1.095 1.857

Piston taper angle 1.000 0.500 0.250

Radius at top of housing skirt 1.000 1.138 1.132

Radius at bottom of housing skirt 1.000 1.270 1.210

Fig. 6 Finite element modeling of piston and housing with fictitious
elements
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correlation parameter which affects the smoothness of the
model. Function r(x) is the correlation between the current
point x and the set of DOE points X, i.e., r(x) =R(x,X).
Note here that f and r are the functions of current point x
with the length being the number of trial functions, Y is the
vector with length n, F,R are the matrices with size n, and β
are the constants for f. In this study, constant is employed
for the trial function f and β. The correlation parameter h is
0.01, which is chosen as large as possible such that the
approximation is sufficiently smooth but not so large as to
cause singularity of R matrix. In this study, the input x and
the response y denote the three parameters and resistance
force at each displacement point given by (1), respectively.

The accuracy of the Kriging model is examined by leaving
one out cross validation, in which the prediction error sum of

squares (PRESS) and the determination coefficient defined as
follows (Myers et al. 2002).

R2
PRESS ¼ 1−

PRESS
SST

;

PRESS ¼ ∑
n

i¼1
e2 i;i−1ð Þ ¼ ∑

n

i¼1
yi−y

⌢
i;i−1ð Þ

� �2
; SST ¼ ∑

n

i¼1
yi−y
� �2 ð4Þ

where yi, ŷi,i − 1, PRESS and SST are the Kriging response with
all DOE points included, the Kriging response with one point
left out, sum of squares of the leave-one-out cross validation
errors and the total variability in the response, respectively. The
equation states that if R2 is close to 1, the accuracy of the model
is good. TheR2 values for Krigingmodel are calculated at every
displacement point, from which the minimum is chosen as the
accuracy indicator. As a result of calculation for the types A to
C, the minimum R2 is found to be 0.951 for the Kriging model
at 5th displacement point of the type C, which indicates favor-
able accuracy in view of surrogate approximation. The accura-
cy of the model is further examined by adding 10 new experi-
mental points that are not at the existing DOE points which are
generated again by LHS. The points are specified as squares in
Fig. 8. In this case, the determination coefficient is defined
based on the classical regression as follows.

R2
regression ¼ 1−

SSE
SST

; SSE ¼ ∑
m

i¼1
yi−ŷi
� �2

ð5Þ

where m denotes the number of DOE points for model ac-
curacy evaluation. As a result, the minimum R2 is found to
be 0.959 at 11th displacement point of the type B, better
accuracy than the PRESS. Therefore, we can conclude that
the error due to the introduction of surrogate model may be
negligible and use the Kriging model instead of the original
FEA model without uncertainty.

Fig. 8 LHS points over the range
of three parameters

Fig. 9 Kriging surrogate model at points with equal distance
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3.3 Calibration and prediction by Bayesian inference

In this section, a procedure for model calibration is addressed
based on the Bayesian inference approach in order to account
for the associated uncertainties, which is to estimate the un-
known input parameters conditional on the test data. The pro-
cedure is based on the Bayes’ rule as given by Kennedy and
O’Hagan (2001), in which the field data are assumed by the
combinations of the computer model, bias that incorporates
the correlation of the measurements and measurement error:

Y zkð Þ ¼ ŷ zk jxð Þ þ b zk jσb
2

� �þ ε σ2
� �

; k ¼ 1;…;K ð6Þ

where Y, ŷ, b and ε are the observed data, Kriging model, bias
(a.k.a. discrepancy term) and measurement error at the k’th
displacement point, respectively. Usually the bias is defined
by multivariate normal distribution with zero mean as follows
(Higdon et al. 2004):

b zjσb2
� �eN 0;σb

2Q
� �

; Q ¼ Q z; z0ð Þ ð7Þ

where σb
2 is the variance of the matrix, andQ is the correlation

matrix responsible for the smoothness of connection between
the two displacement points, usually defined by a Gaussian
type function:

Qi j ¼ exp
zi−z j
� �
h2

2
 !

; i; j ¼ 1;…;K ð8Þ

As was mentioned in (3), the parameter h is responsible for
the degree of smoothness. The value is given as 0.1 for the
bias. Note that the bias is introduced to represent the model
inadequacy by accounting for the correlation that truly exists
between the measurements at the 20 displacement points.
Note also that although the assumption of multivariate normal
distribution for the bias can be quite restrictive and not neces-
sarily the representative of the other sources of uncertainties, it
may not have a significant effect on the resulting calibration
and are introduced in several literatures (Kennedy and
O’Hagan 2001; Bayarri et al. 2012). Then the bias added
computer model may represent the field data more closely
by adjusting the gap between the model and field data. The
measurement error ε, which represents the uncertainty due to
the replication, is assumed to follow the independent and iden-
tical normal distribution with the variance σ2, i.e.,

εeN 0;σ2
� � ð9Þ

In the Bayesian framework, the unknown parameters are
given by the posterior distribution based on the given obser-
vation data as follows.

P xjYð Þ∝L Yjxð ÞP xð Þ ð10Þ

where L(Y|x) is the likelihood of observed data Y conditional
on the given parameters x, P(x) is the prior distribution of x,
and P(x|Y) is the posterior distribution of x conditional on Y.
The goal of the Bayesian technique is to improve the knowl-
edge on the unknown parameters x using the observation Y.
As more data are provided, the posterior distribution is used as
the prior in the next step and the distribution is updated to
more confident information. The procedure to obtain the pos-
terior distribution P(x|Y) consists of proper definition of the
probability distribution for the likelihood and prior. Assuming
no prior knowledge for the parameters, the parameters for the
posterior PDF of this study consist of the three unknown pa-
rameters x and the two variances σb

2 and σ2. Then the PDF is
given by (Gelman et al. 1996)

P x;σb
2;σ2jY� �

∝ Rj j−1
2exp −

1

2
Y−ŷ Zjxð Þ
n oT

R−1 Y−ŷ Zjxð Þ
n o	 


ð11Þ

where

R ¼ σb
2Qþ σ2I ð12Þ

In the equation, the symbols Z and Y denote the set of
displacement points and their corresponding set of observa-
tion data, respectively. Since the number of the displacement
points K is 20, and number of replications nr is 5, Y and Z
consists of 100 data points. The size of matrix R and Q are
100×100.

Usually, the posterior PDF of the parameters are deter-
mined in the form of samples such that they satisfy (11).
This will be addressed in the next section. Once we obtain
the samples of the parameters from the posterior PDF based
on the existing observed data, we can use this in the prediction
of a new analysis problem. In practice, this is to compute the
prediction Y ~zð Þ at a new point ~z using the following equation
(i.e., Gelman et al. 1996)

~Y ¼ Y ~z
� �

¼ ŷ ~zjx
� �

þ bp ~zjσb
2

� �
þ ε σ2
� � ð13Þ

where

bp ~zjσb2
� �eN E bpð Þ; var bpð Þð Þ;

E bpð Þ ¼ σb
2Q1

TR−1 Y−ŷ Zjxð Þ
� �

var bpð Þ ¼ ~Q−σb
2Q1

TR−1Q1

� �
σb

2
ð14Þ

where ~Q denotes the correlation between the set of new points
~zi and~z j, andQ1 is between the new point ~z and existing set of
points Z. Every sample set of the parameters are used to com-
pute the prediction Ỹ in this equation, which in turn constitutes
a distribution. Then the upper and lower bounds, which we
call the predictive interval (PI) of Y are obtained based on a
given confidence level.

In this study, two cases are examined in the calibration
process: one is to include the bias which is to account for
the model inadequacy by incorporating the correlation of
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the measurements between the displacement points. The
other is to ignore the bias, by assuming the computer
model truly represents the reality as long as the model
parameter values are exact.

3.4 MCMC simulation

Even if the expression of posterior distribution is available as a
product of likelihood and prior in (11), the shape of the distri-
bution can only be estimated by calculating its values at dif-
ferent points. A primitive way is to compute the values of PDF
at a grid of points after identifying the effective range and to
calculate the value of the posterior distribution at each grid
point. This method, however, has several drawbacks, such as
the difficulty in selecting the location, spacing, and scale of the
grid points. In addition, it becomes computationally expensive

when the number of updating parameters increases. MCMC
simulation is a computationally effective alternative which
generates a chain of samples to plot the PDF. The
Metropolis–Hastings algorithm is a common choice for
MCMC simulation; it is summarized in (15).

1: Initialize x 0ð Þ

2: For i ¼ 0 toN−1
−Sample ueU 0; 1ð Þ
−Sample x*eq x*jx ið Þ

� �
−If u < min 1 ;

P x*ð Þq x ið Þjx*� �
P x ið Þð Þq x*jx ið Þð Þ

( )
;

x iþ1ð Þ ¼ x*

−else
x iþ1ð Þ ¼ x ið Þ

ð15Þ

Table 2 Sample statistics of MCMC simulation and deterministic optimum for types A ~C

Type μ EU (GPa) EL (GPa)

Mean Optimum 95 % PI Mean Optimum 95 % PI Mean Optimum 95 % PI

A 0.178 0.168 [0.145, 0.221] 3.162 3.302 [2.707, 3.669] 108.428 116.665 [95.336, 127.403]

B 0.175 0.178 [0.129, 0.233] 3.289 3.449 [2.695 3.881] 113.795 112.353 [98.905, 129.536]

C 0.164 0.162 [0.149, 0.236] 3.644 3.296 [2.682, 3.909] 85.020 119.499 [64.318, 116.960]

UE LE

b

Fig. 10 Result histograms of MCMC simulation for type A and C
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For convenience of notation, the symbol x in this equation
is defined to include all the parameters in the posterior PDF in
(11), i.e., the three unknown parameters x and the variances
σb

2 and σ2. x(0) are the initial values of the parameters to be
estimated, N is the number of iterations or samples, U(0,1) is
the uniform distribution in the interval of [0,1], P(x) is the
posterior distribution, and q(x*|x(i)) is an arbitrarily chosen
proposal distribution. Uniform or Gaussian distribution at
the current point with finite length or scale are the normally
chosen. A uniform distribution is used in this study for the
sake of simplicity. Then, x* becomes a uniform distribution
centered at x(i) with the interval of ± w, where w is a vector for
setting the sampling interval. If the sample x* is not accepted
as an (i+1)th sample, the ith sample becomes the (i+1)th sam-
ple; that is, the particular sample is doubly counted.

3.5 Result of MCMC simulation

MCMC simulation is carried out to obtain the posterior
distributions of three parameters and the two variances
based on the test data. The resulting histograms of the
estimated parameters are given with 10,000 samples for
the types A in Fig. 10. The distributions reflect the uncer-
tainties of the parameters that are caused by the model and
measurement errors. In the Fig. 10, the values by determin-
istic optimization are given as well by the dotted line,
which are obtained by minimizing the root mean square
errors (RMSE) between the model and test data, i.e.,

min
x

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nrK
∑
K

k¼1
∑
i¼1

nr

yki −ŷ zk jxð Þ
� �2s

ð16Þ

The sample statistics are also found in the Table 2, in which
the mean, 95 % predictive interval (PI) and deterministic op-
timum of the parameters are given for all three type models.

From the results, following observations are made.
First, the distributions enclose the deterministic optimum
at close to their means, which means that by using the
distribution solutions, we can obtain not only the point
estimations but also their uncertainties in the form of con-
fidence limits. Second, while the distributions of the other
parameters are well behaved, i.e., narrow and relatively
sharp, that of EL is not good. This is because the contri-
bution of EL to the response is much smaller than the
others. This is evidenced by the sensitivity study of the
resistance force with respect to the three parameters.
Using the standard deviations obtained from each distri-
butions, the percentages of RMSE variation are calculated
by varying each of the parameters by 2 standard devia-
tions and results are given in Table 3 for the group 1. It is
found that EL affects the resistance force much less than
the other two, which means that the estimated distribution
can be wider and ill-behaved than the others. Third, the
calibrated solutions for the two parameters μ and EU from
each of the types A~C are different each other as can be
seen in the Table 2 (means of μ and EU vary in the range
0.164 ~ 0.175 and 3.13 ~ 3.60GPa, respectively, which are
not small), which states that the solution for μ and EU

may not be unique. The reason may be attributed to the
correlation between the two parameters. This is evidenced
by the correlation values between the three parameters,
which is given in Table 4 for the types A~C. High cor-
relations are found between μ and EU as opposed to the
other two. The high correlation can also be seen by draw-
ing the sample points of MCMC simulation in Fig. 11.
Due to this nature, there may be no unique solution for

Fig. 11 Correlation plot of μ and EU

Table 3 Sensitivity
study results for the
group 1

Type RMSE Sensitivity (%)

μ EU EL

A 1.42 21 23 6

B 1.09 32 25 8

C 1.86 27 29 13

Table 4 Correlation
value between the three
parameters for types
A ~C

Type μ&EU μ&EL EU&EL

A −0.7319 −0.1895 0.1705

B −0.7853 −0.2047 0.2139

C −0.6199 −0.2451 0.1774

Mean −0.7124 −0.2131 0.1873
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the two parameters, and the solution may be different
every time we calibrate. Nevertheless, the predictive dis-
tribution is the same regardless of this difference, as can
be found in the next section.

The above results are those including the bias and its associ-
ated variance σb

2 that reflects the correlation of measurements
between the displacement points. We can also go through the
sameprocessby ignoring this,which is todetermine theposterior
distributions of the three parameters and the variance σ2 of the
measurement error only. The resulting distributions are almost
the same as those with σb

2, hence, are not presented here.

3.6 Validation of the prediction

In order to validate that the calibrated model is useful, the
predicted distribution should be made for a couple of new
problems and compared with their test data. For this purpose,
cross validation is carried out, in which the parameters calibrat-
ed by the types A to C are applied one at a time to obtain the
predicted distributions of the other two types. Then the results
are validated by comparing the PI of the resistance force and
test data together. If all the test data are enclosed within the PI,
the model is regarded as valid and useful in the new problem.

Calibration Validation

Type A Type B Type C

Type B Type A Type C

Type C Type A Type B

Fig. 12 Cross validation of three types A ~C by comparing the predictive interval and test data: result with bias
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In Fig. 12, the PIs and test data for the three type models
are plotted. The most left figures are the predictive distri-
bution for the calibrated model, whereas the right two are
those for the other two models. As expected, it is obvious
that all the PIs for the calibrated model enclose the test data
very closely with narrow widths because the predictions
are made for the same model, and include the correction
of the bias that represents the discrepancy between the test
data and model. Applying the calibrated parameters to the
other two types, however, the PIs of the predictions do not
enclose the data well. The reason is due to the application

of bias that was used to match with the test data of the
calibrated model into the different models. This can be
explained by (14) in which the Y denotes the test data
made for the calibration model, not for the new validation
model. Therefore, the approach including the bias that con-
siders the correlation of measurements between the dis-
placement points is not recommended. On the other hand,
the PIs and test data by ignoring the bias and correlation
are plotted in Fig. 13. The PIs of the predictions to the
other two types enclose the test data successfully, although
the PI widths are wider than those with the bias.

Calibration Validation

Type A Type B Type C

Type B Type A Type C

Type C Type A Type B

Fig. 13 Cross validation of three types A ~C by comparing the predictive interval and test data: result without bias
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Nevertheless, the model calibration is valid and useful for
the new models without having to run the test for valida-
tion. From these findings, it is acknowledged that the un-
certainty of the model error cannot be explicitly considered
but only incorporated within the measurement error.

In the validation, area metric given by the CDF difference
which is introduced in (Ferson et al. 2008) is also a good
measure due to the advantage of quantitative evaluation. The
concept is illustrated in Fig. 14, and defined as follows.

Ad ¼ d F; Snð Þ ¼ ∫∞−∞ F xð Þ−Sn xð Þj jdx ð17Þ
where y is the resistance force, and F and Sn denote its CDF
by predictive distribution and multiple tests, respectively.
Since we have 20 displacement points and response
values, the maximum area metrics is chosen for the vali-
dation. The results are given in Table 5, in which the area
metric from the calibrated model is used as the reference
and the ratio of the other two of the predictive validation
are used as a relative measure of validation accuracy. If
the values are similar or greater by small value in the
other two predictions, the ratio is close to 1 and, the mod-
el is regarded as successfully validated, and is allowed to
use for the next new case.

4 Conclusions and discussions

In this work, a statistical method for calibration and val-
idation is proposed to develop a reliable computational
model that is close to the test data. The method is applied
to the problem of piston insertion into the housing in the
pyro-valve device. Computational model is developed to
carry out elastoplastic and contact analysis during the pis-
ton movement into the housing. Surrogate model is devel-
oped to save computational time, which is a function of
three unknown parameters that are to be calibrated based
on the test data. By employing Bayesian approach and
Markov Chain Monte Carlo (MCMC) simulation, the pos-
terior distributions of the unknown parameters are esti-
mated efficiently. In order to examine that the calibrated
model hold true in the similar new analyses, additional
problems are introduced, analyzed and tested for valida-
tion purpose. Several observations are found in this study.

First, there may be some correlated nature between the
unknown parameters as in the case of μ and EU in this study.
The prediction in the new problem, however, works equally
well although we are not able to find out unique parameters.

Second, some parameters may exhibit ill-conditioned dis-
tribution such as EL in this study. This is due to the lower
contribution of the parameter to the response, and may be of
little concern.

Third, the introduction of bias and correlation in the cali-
bration may lead to overfitting problem that may match close-
ly the test data for the calibration model but may not be the
case for the different models. In order to avoid this, it is sug-
gested to ignore the bias and correlation in the calibration, and
estimate the unknown input parameters and variance of the
measurement error only, although the PI widths may be wider
to some degree than those with the bias. In some sense, this is
counterintuitive in that the addition of correlation of the mea-
surement error as the bias in the calibration does not provide
better accuracy of calibration. The reasons may be attributed
to: (1) other sources of uncertainties (e.g. other model param-
eters than the ones considered in this study) that were not
explicitly considered may have effect on the calibration. (2)
the correlation model for the bias may not have appropriately
represented the problem.

As a conclusion, the method is found useful and validity of
the model is ensured, which suggests its use in the subsequent
new design with similar configuration. There are still limita-
tions in this approach, which is the problem of to what extent
the developed model is valid. There is no quantitative guide-
line and this should be the topic of future study. Nevertheless,
as long as the new design remains in the same parametric
configuration, the method can be worth applying for the sake
of time and cost.

Fig. 14 CDF area difference between test data and predictive distribution
data

Table 5 Comparison of
the normalized
maximum area metrics
for types A ~C

Type A Type B Type C

Type A 1.000 1.030 1.165

Type B 1.197 1.000 1.219

Type C 1.511 1.068 1.000
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