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Abstract Different multi-fidelity surrogate (MFS) frameworks
have been used for optimization or uncertainty quantification.
This paper investigates differences between variousMFS frame-
works with the aid of examples including algebraic functions
and a borehole example. These MFS include three Bayesian
frameworks using 1) a model discrepancy function, 2) low fi-
delity model calibration and 3) a comprehensive approach com-
bining both. Three counterparts in simple frameworks are also
included, which have the same functional form but can be built
with ready-made surrogates. The sensitivity of frameworks to
the choice of design of experiments (DOE) is investigated by
repeating calculations with 100 different DOEs. Computational
cost savings and accuracy improvement over a single fidelity
surrogate model are investigated as a function of the ratio of the
sampling costs between low and high fidelity simulations. For
the examples considered, MFS frameworks were found to be
more useful for saving computational time rather than improv-
ing accuracy. For the Hartmann 6 function example, the maxi-
mum cost saving for the same accuracy was 86 %, while the
maximum accuracy improvement for the same cost was 51%. It
was also found that DOE can substantially change the relative
standing of different frameworks. The cross-validation error ap-
pears to be a reasonable candidate for estimating poor MFS
frameworks for a specific problem but it does not perform well
compared to choosing single fidelity surrogates.
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Discrepancy function

Nomenclature
δ A discrepancy data set for given ρ

(δ=yH−ρyLc).
δ(x) An unknown true value of a discrepancy

function value at x.
δ̂ xð Þ A predictor for a discrepancy function value at

x.
Δ(x) A prior model (GP model) for predicting a

discrepancy function value at x for Bayesian
MFS frameworks. Note that a discrepancy
function can be a function for given ρ.

Δ(x)|δ An updated discrepancy function model with a
discrepancy data set.

λ A roughness parameter vector.
θ A calibrated parameter vector (a constant

vector).
ρ A scalar for a low fidelity function.
σ A process standard deviation.
ξ(x) A vector of shape functions.
b A coefficient vector (a constant vector).
q A calibration variable vector (a variable

vector).
x An input variable vector (a variable vector).
y A data set.
y(x) An unknown true function value at x.
ŷ(x) A surrogate predictor for a function value at x.
Y(x) A prior model for predicting a function at x for

Bayesian frameworks and Kriging surrogate.
A prior model is a fitted GP model (Z(x)) pa-
rameterized with a linear polynomial trend
function, which approximates the true func-
tion, and the corresponding uncertainty in the
trend function. The parameters of a prior model
are found by samples for maximum
consistency.
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Y(x)|y An updated model with a data set. The trend
function and the corresponding uncertainty of
a prior model are updated with samples.

yH A high fidelity data set.
yh
i The i-th data point of a high fidelity data set.
yH(x) An unknown true high fidelity function value

at x.
ŷH(x) An MFS predictor for a high fidelity function

value at x.
YH(x) A prior model (GPmodel) for predicting a high

fidelity function value at x for Bayesian MFS
frameworks. This model can be a linear com-
bination of a low fidelity model and a discrep-
ancy function model.

YH(x)|yH,yL An updated high fidelity model with low and
high fidelity data sets.

yL A low fidelity data set.
yL
c A low fidelity data set at locations common to

those of high fidelity data points.
yl
i The i-th data point of a low fidelity data set.
yL(x) An unknown true low fidelity function value at

x.
ŷL(x) An MFS predictor for a low fidelity function

value at x.
ŷL(x,θ) An MFS predictor for a low fidelity function

value at x for a given calibrated parameter
vector θ.

YL(x) A prior model (GP model) for predicting a low
fidelity function value at x for Bayesian MFS
frameworks.

YL(x,θ) A prior model (GP model) for a prediction of a
low fidelity function value at x for a given
calibrated parameter vector θ.

YL(x)|yL An updated low fidelity model with a low fi-
delity data set.

1 Introduction

Surrogate models, also known as meta-models, have been
used as a cheap approximate model, which can be built with
several dozens of samples. However, for many high fidelity
simulations, the cost for obtaining enough number of samples
for achieving reasonable accuracy is high. Multi-fidelity sur-
rogate (MFS) models have been developed to compensate for
expensive high fidelity samples with cheap low fidelity sam-
ples. Although, several Gaussian process (GP) based
BayesianMFS frameworks have been introduced, the benefits
of the Bayesian frameworks over simple frameworks have
been rarely studied. In addition, the performances of different
frameworks have been rarely compared, which is the main
focus of this paper.

MFS frameworks based on a discrepancy function are
built by combining a low-fidelity simulation (or surrogate)
with a discrepancy surrogate, which models the difference
between low and high fidelity sample sets. Discrepancy-
based MFS frameworks have been used in design optimi-
zation to alleviate computational burden. For example,
Balabanov et al. (1998) used linear regression to combine
coarse and fine finite element models, while Mason et al.
(1998) used 2D and 3D finite element models as a low and
high fidelity model, respectively, for aircraft structural op-
timization. The same approach was used to combine aero-
dynamic prediction from a cheap linear theory with expen-
sive Euler solutions for aircraft aerodynamic optimization
(Knill et al. 1999). A Bayesian discrepancy-based MFS
using GP was introduced by Kennedy and O’Hagan
(2000). The Bayesian model allows to incorporate prior
information (Kennedy and O’Hagan 2000; Qian and Wu
2008). Co-Kriging (Sacks et al. 1989; Lophaven et al.
2002) provides an equivalent surrogate to the Bayesian
formulation with a non-informative prior and has good
computational characteristics (Forrester et al. 2007; Kuya
et al. 2011; Han et al. 2012; Le Gratiet 2013). Note that the
discrepancy function based MFS frameworks can handle
data from more than two fidelities.

Model calibration is another strategy for building MFS by
fitting a low fidelity surrogate with tuned parameters which
improve agreement between the surrogate and high fidelity
sample set. A simple framework is to find parameters that
minimize the discrepancy between a calibrated low fidelity
surrogate and high fidelity sample set (Zheng et al. 2013).
GP-based Bayesian calibration frameworks were also intro-
duced (Kennedy and O’Hagan 2001a; Higdon et al. 2004;
Bayarri et al. 2007; McFarland et al. 2008). The Bayesian
frameworks find the best calibration parameters that are the
most statistically consistent with high fidelity samples
(McFarland et al. 2008; Prudencio and Schulz 2012). A com-
prehensive Bayesian MFS model that uses both calibration
and discrepancy was proposed by Kennedy and O’Hagan
(2001a) offering greater flexibility, although this is the most
complex framework.

The objectives of this paper are: (1) to review the charac-
teristics and differences of GP-based Bayesian and simple
MFS frameworks, (2) to investigate the performance of MFS
frameworks in terms of accuracy and predictability of error,
and (3) to investigate the performance of prediction sum of
squares (PRESS) based on cross validation errors as a surro-
gate performance estimator. The paper is organized as follows.
Section 2 presents MFS frameworks used in this paper.
Section 3 describes the methodology of the investigation and
metrics. Section 4 presents numerical examples, followed by
discussions in Section 5. Each section is intended to be self-
explanatory such that skipping earlier sections does not ham-
per reading later sections.
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2 Multi-fidelity surrogate frameworks

The first objective of this paper is to review the differences
between MFS frameworks based on three commonly used
approaches: using (1) a model discrepancy function, (2) a
low fidelity model parameter calibration and (3) a combina-
tion approach. We considered three simple MFS frameworks
and three Bayesian frameworks using those approaches. The
simple frameworks refer to frameworks that build an MFS
using any surrogate. For example, Balabanov et al. (1998)
used a polynomial response surface MFS that is the sum of a
low fidelity surrogate and a model discrepancy surrogate. The
characteristics, assumptions of the considered frameworks
and their differences will be described in the following
subsections.

All Bayesian MFS frameworks are based on Gaussian
Process (GP) for modeling their prediction uncertainties.
Alternatively, we have simple frameworks that construct an
MFS with regular single fidelity surrogates. In order to mini-
mize the effect of the choice of surrogate for the simple frame-
works, we use Kriging surrogates, which are also based onGP.
Furthermore, the combination of Kriging and the simple dis-
crepancy framework is a special case of the Bayesian discrep-
ancy framework.

The Bayesian variant of Kriging shares many features for
modeling prediction uncertainty and fitting processes with the
Bayesian MFS. We therefore start by describing the Bayesian
Kriging surrogate so as to help understanding the Bayesian
MFS frameworks.

2.1 Bayesian Kriging surrogate

Kriging surrogate is a well-known generalized linear regres-
sion model based on GP (Sacks et al. 1989; Martin and
Simpson 2005; Lophaven et al. 2002; and Ryu et al. 2002).
Not surprisingly, there is a parallel effort to derive a Kriging
surrogate model using Bayesian techniques. The mathemati-
cal form of Bayesian Kriging surrogate is identical to that of
the generalized linear regression model for non-informative
prior (Lophaven et al. 2002; O’Hagan 1992). Bayesian
Kriging surrogate provides a prediction with errors in a form
of t distribution (O’Hagan 1992). The mean and standard de-
viation of the t distribution represent the Kriging predictor and
the prediction uncertainty, respectively. The Kriging predictor
is expressed as

ŷ xð Þ ¼ E Y xð Þ
���y� �

ð1Þ

where Y(x) is a prior GP model and Y(x)|y is the updated
model with sample set y.

Figure 1a illustrates a prior GP model with a quadratic
trend function ŷ(x), which is the mean function, and two stan-
dard deviation intervals (blue-colored region). The prior

model characterizes the trend and prediction uncertainty,
where hyper parameters are estimated for the best consistency
of the GP model with samples. Figure 1b shows a Kriging
prediction and two standard deviation intervals obtained by
updating the GP model Y(x) in Fig. 1a with sample set y.

A GP model typically includes a linear combination of

shape functions term ξ xð ÞTb as a trend function and a normal
random variable Z(x) ~N(0,σ2), which models the prediction
uncertainty of the trend function, as

Y xð Þ ¼ ξ xð ÞTbþ Z xð Þ ð2Þ
where ξ xð Þ is a given vector of shape functions (e.g. polyno-
mials), and b is a coefficient vector. The prediction uncer-
tainties at two points x and x′ are assumed to be correlated
via a covariance function. A common covariance function is

cov Z xð Þ; Z x
0

� �� �
¼ σ2exp − x−x

0
� �T

Ω x−x
0

� �� �
ð3Þ

where Ω is a diagonal matrix Ω=diag(λ1,…,λn) denotes a
diagonal matrix with n elements. For example, the (1,1) ele-
ment ofΩ is λ={λ1, λ2,…,λn}

T is a vector of hyper param-
eters defining roughness via regulating the range of correla-
tion for n dimensional x, and σ is the process standard devia-
tion determining the magnitude of the error.

Fitting a Kriging surrogate ŷ(x) has two steps: (1) a prior
GP model is fitted to samples by estimating hyper parameters
{b,σ,λ} using the maximum a posteriori estimation which
takes a mode of the posterior distribution for the best hyper
parameter estimates, and (2) the prior GP model is updated
with samples using the formula of conditional distributions for
a multivariate normal distribution. For details about the pro-
cesses, readers are referred to O’Hagan (1992) and Rasmussen
(2004).

2.2 Discrepancy function based frameworks

2.2.1 Simple discrepancy MFS framework

This framework provides a convenient way of fitting an MFS
with any surrogate model. The MFS employs two surrogates,

ŷL(x) and δ̂ xð Þ, which approximate the low fidelity function
and the discrepancy, respectively, as

ŷH xð Þ ¼ ρŷL xð Þ þ δ̂ xð Þ ð4Þ

where ρ is a regression scalar minimizing the discrepancy
between the scaled low fidelity surrogate ρŷL(x) and the high
fidelity sample set at the common sampling points, where
sample locations for high and low fidelities are the same.
Note that modeling ρ as a function for inputs is an active
research area (Fischer and Grandhi 2014, 2015).
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2.2.2 Simple discrepancy MFS framework with Kriging
surrogate

The combination of the simple framework and Kriging surro-
gates provides a special case of the GP based Bayesian dis-
crepancy framework. This is because Kriging surrogates can
be interpreted as single fidelity surrogates constructed with a
GP based Bayesian framework as shown in Section 2.1. Since
the low fidelity Kriging surrogate is constructed with a low
fidelity sample set and the discrepancy Kriging surrogate is
constructed with discrepancy between a low and high fidelity
sample sets at common points, by using (1) (4) can be rewrit-
ten as

ŷH xð Þ ¼ ρE YL xð Þ
���yL� �

þ E Δ xð Þ
���δ� �

ð5Þ

where yL is a low fidelity data set; δ=yH−ρyLc is a discrepan-
cy sample set; yL

c is a low fidelity data set at locations common
to those of high fidelity data points; yH is a high fidelity data
set; and ρ is a regression scalar. We assume that the high
fidelity model evaluated in a subset of the low fidelity evalu-
ation points. Figure 2a shows low and high fidelity samples
and the discrepancy sample set of the example has four ele-
ments obtained from the differences between high fidelity
samples, and second, fourth, fifth and seventh low fidelity
samples, respectively. YL(x) and Δ(x) are GP models for the

low fidelity and discrepancy function, and YL(x)|yL and
Δ(x)|δ are the corresponding GP models updated based on
the sample sets. Note that the two GP models are expressed in
different symbols but their functional form may be the same.
For example, the two GP models can have the same linear
polynomial trend functions and Gaussian correlation
functions.

Figure 2a shows high and low fidelity samples with the
corresponding functions. Figure 2b shows the prediction
and the uncertainty of two standard deviations based on
the samples. The variance of the total prediction uncer-
tainty from the two surrogates is the sum of the two var-
iances (that is the sum of the squares of the two standard
errors). That is, the prediction uncertainty is measured by
calculating square root of sums of squared standard errors
of low fidelity and discrepancy Kriging surrogates. The
root-mean-square-error (RMSE) was calculated using
1000 equally spaced points over [0,1]. Note that the high
fidelity samples are a subset of the low fidelity sample set,
from which discrepancy samples are obtained as a differ-
ence between them.

In the simple framework, the MFS is constructed with
three steps: (1) the low fidelity Kriging surrogate is con-
structed with the low fidelity sample set, (2) the regres-
sion scalar ρ is determined by minimizing errors between
the low fidelity surrogate and high fidelity sample set,
and (3) a Kriging surrogate of the discrepancy function is

(a) Estimating the trend function and hyper 
parameters for a prior GP model using samples 

(b) Updating the prior GP model (Kriging 
surrogate) using samples 
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Fig. 1 Two steps of constructing
a Kriging surrogate with five
samples
x = {0.10,0.30,0.56,0.74,0.98}. a
Prior GP model with a quadratic
trend function and 2σ intervals. b
Kriging prediction and 2σ
intervals after updating GP model

(a) A low and high fidelity functions and samples
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(b) MFS fit (RMSE=0.89 for =1.8)

Fig. 2 An MFS built with the
simple framework. High and low
fidelity DOEs are XH= {0.54,
0.75, 0.43, 0.23} and XL= {0.08,
0.23, 0.34, 0.43, 0.54, 0.63, 0.75
0.94}. a A low and high fidelity
functions and samples. bMFS fit
(RMSE= 0.89 for ρ= 1.8)
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fitted using the difference between low and high fidelity
sample set at the common sampling points. Note that the
simple framework allows one to use any surrogate in-
stead of Kriging, and even to use a different surrogate
for the low fidelity fit and discrepancy fit.

2.2.3 Bayesian discrepancy MFS framework

The previously presented combination of the simple frame-
work and Kriging surrogate can be generalized using GP
based Bayesian approach, introduced by Kennedy and
O’Hagan (2000) and Qian and Wu (2008). Note that this
Bayesian framework provides equivalent predictions to the
co-Kriging surrogate (Forrester et al. 2007; Le Gratiet 2013)
with no prior information. This section gives emphasis to de-
scribing the difference between the GP based Bayesian dis-
crepancy framework and the combination of the simple frame-
works and Kriging.

The high fidelity GP model is defined as a linear combina-
tion of two GP models YL(x) and Δ(x) as

YH xð Þ ¼ ρYL xð Þ þΔ xð Þ ð6Þ
where ρ is a regression scalar. Bayesian framework up-
dates the GP model with the high and low fidelity sample
sets. The mean of the updated GP model is used as pre-
dictor of the high fidelity response. The predictor is
expressed as

ŷH xð Þ ¼ E YH xð Þ
���yH ; yL� �

ð7Þ

The GP models have the same form as in (2), which is
composed of a trend function and a prediction uncertainty
modeled with a GP random process. The GP models have
the hyper parameters {bL, σL, λL} for the low fidelity
model and {bδ,σδ,λδ} for the discrepancy function mod-
el. The random processes of the two models are assumed
to be independent (Kennedy and O’Hagan 2000).

When DOE samples are restricted such that a high fidelity
sample set is a subset of a low fidelity sample set, the Bayesian
discrepancyMFS becomes similar to the simple framework. It
can be built by sequentially updating a low fidelity and dis-
crepancy GP models. This sampling scheme also eases the
computational burden of the full Bayesian approach since it
allows sequential estimation of parameters. Hyper parameters
of the low fidelity model are estimated first, and then, those of
the high fidelity model and the regression scalar ρ are estimat-
ed. With the sampling restriction, (7) can be rewritten as

ŷH xð Þ ¼ ρE YL xð Þ
���yL� �

þ E Δ xð Þ
���δ� �

ð8Þ

Note that the low fidelity model is updated by using only
the low fidelity sample set since high fidelity data set has no

effect on predicting the response of the low fidelity function.
When the GPmodels of the Bayesian framework and those for
Kriging surrogates of the simple framework are the same, the
two frameworks make identical predictions about the low fi-
delity function.

The fitting process of the Bayesian discrepancy MFS
takes two steps: (1) fitting the low fidelity GP model to
low fidelity sample set by estimating the low fidelity
hyper parameters and updating the GP model, and (2)
fitting the discrepancy function GP model to the samples
at the common points. With the sampling restriction, the
MFS is the sum of these two updated models as (8)
which is equivalent to the updated model of (6).

Note that Bayesian frameworks including this frame-
work can incorporate a priori information for reducing
the prediction uncertainty of an MFS through prior dis-
tributions for the hyper parameters. However, unlike
physical parameters, where prior distributions can be ob-
tained from experience, experience is rarely useful for
selecting hyper parameters. Indeed, Co-Kriging, which
is an MFS framework equivalent to the Bayesian dis-
crepancy framework, has become popular even though
it cannot incorporate prior distributions of hyper param-
eters. There is also an issue of objectivity in prior distri-
butions in Bayesian estimation. In this paper, we use
unbounded constant non-informative priors for hyper pa-
rameters for the Bayesian discrepancy MFS framework
and the other Bayesian frameworks. For details about the
hyper parameter estimation and the updating processes,
readers are referred to Kennedy and O’Hagan (2000).

2.2.4 Difference between the simple and Bayesian
discrepancy frameworks

It is difficult to see how the combination of the simple
framework and Kriging surrogates and the Bayesian dis-
crepancy framework would make different predictions
with the same sample sets from (5) and (8). An impor-
tant difference, which is not explicitly shown in the
equations, is in determining the regression scalar, ρ.
The simple framework determines ρ by maximizing the
agreement between the scaled low fidelity fit and the
high fidelity sample set. The Bayesian framework basi-
cally estimates ρ together with other hyper parameters of
the discrepancy model as (7). Consequently, the Bayesian
framework does not in general find ρ for maximizing the
agreement.

To illustrate the difference between the two frameworks the
high fidelity function used in Fig. 2 is employed again. The
low fidelity function is a half of the high fidelity function plus
a linear term, which compensates for the large difference be-
tween the two, as shown in Fig. 3.
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We use linear trend functions for the low and discrep-
ancy GP models for the Bayesian framework and the
Kriging surrogates for the simple framework. When ρ is
estimated apart from the discrepancy, it needs to compen-
sate for both the factor of two and the linear term. This
results in a complicated discrepancy that cannot be ap-
proximated well with a small number of high fidelity
samples. On the other hand, when both ρ and the discrep-
ancy are estimated together, it is possible to take advan-
tage of the simplicity of the true discrepancy.

Figure 4 shows the difference. Figure 4a and b present
the two MFS predictions, Fig. 4c and d show the low
fidelity function predictions from the Bayesian framework
and the low fidelity Kriging surrogate for the simple
framework, respectively. Figure 4e and f show the corre-
sponding discrepancy predictions. The Bayesian frame-
work yields an almost perfect fit, whereas the simple
framework yields a bad prediction with an unrealistic pre-
diction uncertainty estimation. As in (5) and (8), with the
same GP models and DOE, the two frameworks provided
identical predictions of the low fidelity function. The sig-
nificant difference comes from the discrepancy function
predictions. The simple framework found the regression
scalar of 0.5 to maximize the agreement of the scaled low
fidelity fit to the high fidelity samples, while the Bayesian
framework found 2 that gives a simple linear discrepancy
function. As shown in the low fidelity function formula in
Fig. 3, the discrepancy function becomes a linear function
by multiplying 2 on the low fidelity function. Therefore,
the two frameworks made different estimations for the
regression scalar and the discrepancy predictions.

This example possibly has an important implication for the
simple framework with other surrogates. The essence is to find
a ρ that will make the discrepancy yH- ρyL favorable to the
discrepancy surrogate. For the simple framework with
Kriging surrogate model, finding such a ρ could maximize
the accuracy of the discrepancy surrogate. For that purpose,
we may use a formulation that finds ρ minimizing RMSE of

the trend function for the discrepancy yH- ρyL. With this for-
mulation, the simple framework would find ρ=2, which leads
to a linear discrepancy function that can be fitted exactly with
the linear trend function of the discrepancy Kriging surrogate.
With this approach, an equivalent surrogate to the surrogate
from the Bayesian framework can be built with the simple
framework.

2.3 Calibration based frameworks

Calibration has been widely used to improve the predict-
ability of a simulation by tuning physical parameters for
the best agreement with samples from experiments
(Kosonen and Shemeikka 1997; Owen et al. 1998; Lee
et al. 2008; Coppe et al. 2012; Yoo and Choi 2013).
MFS uses calibration to improve the prediction of a low
fidelity simulation with samples from a high fidelity sim-
ulation (Ellis and Mathews 2001; Zheng et al. 2013). As
with the previous discrepancy MFS frameworks, MFSs
can be built with calibration.

In this paper, we first present a simple MFS framework
using a surrogate-based calibration, followed by the
Bayesian calibration framework based on a GP model. As
with the previous discrepancy frameworks, we use a Kriging
surrogate for the simple framework.

2.3.1 Simple calibration MFS framework

The simple calibration framework is to construct an MFS
using a surrogate for a low fidelity model and to find the
best model parameters for maximizing the agreement with
high fidelity sample set. The calibrated high fidelity re-
sponse is expressed as

ŷH xð Þ ¼ ρŷL x;θð Þ ð9Þ
where Kriging surrogate is used for ŷL(x,q). We use a
symbol q to denote variables for calibration parameters
and θ for their values when calibrated. The calibrated
parameter vector θ is obtained by minimizing the sum
of squared discrepancies as

θ ¼ argmin
q

X
i¼1

nH

E ρYL xih; q
� ����yL� �

−yih
� �2

ð10Þ

where xh
i is the location of the ith high fidelity sample and

nH is the number of high fidelity samples. In this paper, a
Kriging surrogate is used to construct a low fidelity sur-
rogate for the simple calibration MFS framework, and the
best calibration parameters can be obtained based on (10).
Finally an MFS is obtained by substituting the parameters
into (9).
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Fig. 3 High and low fidelity models to show the benefit of estimating ρ

and δ̂ xð Þ simultaneously. High and low fidelity DOEs are XH= {0.00,
0.36, 0.59, 0.82} andXL= {0.00, 0.15, 0.36, 0.49, 0.59, 0.71, 0.82, 0.99}

1034 Park et al



2.3.2 Bayesian calibration MFS framework

The Bayesian MFS framework makes inference about yH(x)
based on both low and high fidelity sample sets (McFarland
et al. 2008; Prudencio and Schulz 2012). A prediction is made
by obtaining the mean of updated high fidelity GPmodel as in
(7). The high fidelity GP model is defined using the low fidel-
ity model and a regression scalar ρ as

YH xð Þ ¼ ρYL x;θð Þ ð11Þ

As in the previous discrepancy Bayesian framework, the
high fidelity GP model needs to be fitted to the samples for
best consistency. To include the effect of calibration into the
model, the low fidelity GP model is a function of x and q as
the expression of Kriging surrogate for the previous simple
framework. The low fidelity model is the sum of a trend

function and a normal distribution ZL(x,q) ~N(0,σL
2). The cor-

relation function of ZL(x,q) with n dimension of x and m
dimension of q is defined as the product of two separate cor-
relation functions.

cov ZL x; qð Þ; ZL x
0
; q

0
� �� �

¼ σ2Lexp − x−x
0

� �T
Ωx x−x

0
� �� �

exp − q−q
0

� �T
Ωq q−q

0
� �� �

ð12Þ

whereΩx andΩq are diagonal matrices.Ωx=diag(λx,1,…,λx,n)
and Ωq=diag(λq,1,…,λq,m) denote diagonal matrices with n
and m elements, respectively.

For details about the hyper parameter estimation process,
readers are referred to McFarland et al. (2008) and Prudencio
and Schulz (2012).

(a) ( )ˆHy x and 2  based on the Bayesian 
framework (RMSE=0.3 for =2.0)  

(b) ( )ˆHy x and 2  based on the simple 
framework with Kriging surrogate (RMSE=4.2  

for =0.5)  

(c) ( )ˆLy x and 2  based on the Bayesian 
framework 

(d) ( )ˆLy x and 2  based on the simple 
framework with Kriging surrogate 

(e) ( )ˆ xδ and 2  based on the Bayesian 
framework 

(f) ( )ˆ xδ and 2  based on the simple framework 
with Kriging surrogate 
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Fig. 4 An example of a
substantial difference between the
Bayesian and simple frameworks:
The Bayesian discrepancy
framework significantly
outperforms the simple
framework by finding ρ that
makes the discrepancy more
suitable to be fitted (as shown in
(e)) rather than initially finding ρ
by minimizing discrepancy
between high fidelity samples and
low fidelity function as shown in
(f). a ŷH(x) and 2σ based on the
Bayesian framework
(RMSE= 0.3 for ρ= 2.0). b ŷH(x)
and 2σ based on the simple
framework (RMSE= 4.2 for
ρ= 0.5). c ŷL(x) and 2σ based on
the Bayesian framework. d ŷL(x)
and 2σ based on the simple

framework. e δ̂ xð Þ and 2σ based

on the Bayesian framework. f δ̂
xð Þ and 2σ based on the simple
framework
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2.4 Comprehensive frameworks

The most flexible and widely used Bayesian comprehensive
framework is the Bayesian calibration framework with a dis-
crepancy function model, which is also known as Kennedy
and O’Hagan framework (Kennedy and O’Hagan 2001a, b).
The framework uses a GP model with Bayesian approach by
considering the cross-interaction between the low fidelity and
discrepancy function models. As a counterpart, we also de-
scribe a simple framework which builds an MFS using
Kriging surrogates while ignoring the cross-interaction. To
distinguish the two, we refer them as a simple comprehensive
framework and a Bayesian comprehensive framework.

2.4.1 Simple comprehensive MFS framework

This framework applies the simple calibration framework first
and fits the remaining difference with the simple discrepancy
function framework with Kriging surrogates as

ŷH xð Þ ¼ ρŷL x;θð Þ þ δ̂ xð Þ ð13Þ
where ρ and ŷL(x,θ) are obtained as in the simple calibration

framework and δ̂ xð Þ is constructed with a Kriging surrogate
using the discrepancy between the high fidelity sample set and
ρŷL(x,θ).

2.4.2 Bayesian comprehensive MFS framework

The prediction of the Bayesian MFS is the mean of the pos-
terior distribution obtained by updating the high fidelity model
as in (7). The high fidelity model yH(x) is composed of the
discrepancy function model and the low fidelity model. These
two models are assumed to be independent. The high fidelity
GP model is expressed as

YH xð Þ ¼ ρYL x;θð Þ þΔ xð Þ ð14Þ

This comprehensive framework provides great flexibility,
while it has the largest number of hyper parameters and model
parameters. Therefore, the weakness of this framework is to
estimate such many parameters simultaneously. Since it can
be impractical to estimate all parameters simultaneously, it is
possible to estimate them in groups (Kennedy and O’Hagan
2001a; Bayarri et al. 2007). For details about the estimation
processes and the posterior distribution, readers are referred to
Kennedy and O’Hagan (2001a, b).

2.5 Comparison between MFS frameworks using model
calibration

In this section, we compare four MFS frameworks (two cali-
bration and two comprehensive frameworks) via the example

presented in the discrepancy function based framework sec-
tion. The low and high fidelity functions defined in Fig. 3 were
used in this section. The constants of the low fidelity function
were replaced with calibration parameters and the low fidelity
function is expressed as yLT(x, θ1, θ2) = 0.5yHT(x) +
θ1(x−0.5) + θ2. Thus ρ=2, θ1 =0 and θ2 =0 yield the exact
high fidelity function for calibration based MFS frameworks
with discrepancy function. The bounds of [0,10], [−5,5] and
[1.5, 2.5] for θ1, θ2 and ρ were used, respectively.

A constant trend function was used for the low fidelity GP
models and Kriging surrogates for the simple frameworks, and
a linear polynomial trend function was used for discrepancy
function GP models with the Gaussian correlation function.
We generated 30 low fidelity samples in {x, θ1, θ2} space
using Latin hypercube sampling (LHS) as shown in Fig. 5.
Four high fidelity samples were independently generated by
LHS and then low fidelity sample evaluation points were up-
dated using the nearest neighbor sampling. This process was
repeated 100 times to generate 100 different low and high
fidelity sets. The MFS frameworks were analyzed for each
set of points. The differences between the simple and
Bayesian frameworks were minor for most of the 100 sets,
but for some sets they were substantial. Here, one case that
shows the most notable difference is presented with a high
fidelity sample set for xH={0.06, 0.35, 0.69, 0.9}

T. Figure 6
compares the performance of four frameworks with the iden-
tified values of calibration parameters.

Figure 6a shows the simple calibration MFS. Even if the
identified model parameters (θs) are very close to the exact
values, the fitted MFS is not correspondingly close to the true
high fidelity function due to a finite number of samples used to
construct the low fidelity surrogate. The 2σ shaded region is
twice the standard error of the predicted high fidelity response,
which is obtained by multiplying ρ and standard error of the
low fidelity Kriging surrogate based on (9). Note, however,
that the uncertainties in the calibrated parameters are not taken
into account in this shading.

A notable difference between the simple and Bayesian cal-
ibration frameworks is that the Bayesian frameworksmake the
prediction to pass exactly through the high fidelity samples
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xθ
1

θ 2

Fig. 5 Thirty low fidelity samples in {x, θ1, θ2} space generated by Latin
Hypercube Sampling
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while the simple frameworks do not. In Fig. 6a and c, the
predictions do not pass the high fidelity samples exactly.
Thought the difference is not visible in the figure. The char-
acteristics are reflected in their prediction variances that the
prediction variances of the Bayesian frameworks are zero
values at high fidelity samples but those of the simple frame-
works are nonzero values.

The Bayesian comprehensive framework has a distinct
characteristics of tuning parameters compared to other frame-
works. In terms of RMSE, the Bayesian comprehensive
framework significantly outperforms other frameworks.
However, the Bayesian comprehensive framework drew very
different parameters from the exact ones, while other frame-
works came close to the exact values. This is because of the
presence of the discrepancy function model in the framework.
When ρ=2, the discrepancy function becomes a linear poly-
nomial. Since the Bayesian comprehensive framework can
perfectly fit the linear discrepancy, it tunes parameters in order
to give a best fit regardless the tuned parameters maximize the
agreement of the low fidelity model or not, while other frame-
works tune parameters to maximize the agreement.

2.6 Design of experiments for MFS surrogate frameworks

For simple discrepancy function based frameworks, the sam-
pling condition that the low fidelity sample set is a super set of
the high fidelity sample set is common to observe model dis-
crepancy at common points (Balabanov et al. 1998 andMason
et al. 1998). The same assumption is favored by the Bayesian
framework (Kennedy and O’Hagan 2000).

The nearest neighbor sampling takes two steps. Firstly it
generates independent initial low and high fidelity sampling
points using LHS. In the second step move each low-fidelity
point to the nearest high fidelity sampling point (Le Gratiet
2013). Figure 7 shows an example of 40 low fidelity and 20
high fidelity sampling points based on the nearest neighbor
design.

Another sampling strategy for achieving the sampling con-
dition is the nested design sampling, which was initially de-
veloped as a space filling technique for adding samples to an
existing sample set as a way to ensure optimal coverage of the
union of two sample sets (Jin et al. 2005). This strategy can be
applied to generate low and high fidelity sampling points.
Sampling points for fitting a low fidelity surrogate is generat-
ed using LHS and additional sampling points are generated by
maximizing the minimum distance between all existing and
new points. The union of the existing sampling point set and
the additional sampling points is the low fidelity sampling
point set and the additional sampling point set is the high
fidelity sample set.

These two sampling strategies provide low and high fidel-
ity sample sets that satisfy the sampling condition of the high-
fidelity sampling points being a subset of the low-fidelity
sampling points. In this paper, the nearest neighbor design is
used for the discrepancy function based frameworks for the
numerical examples.

For calibration frameworks, the low-fidelity samples in-
clude both input variables and calibration parameters, while
the high-fidelity samples need to select only input variables.
We generated low fidelity sampling points using LHS in the

(a) Simple calibration MFS fit (RMSE=0.38 for 
1=0.0, 2=0.1, =2.0) 

(b) Bayesian calibration MFS fit (RMSE=0.36 
for 1=0.0, 2=0.1, =1.9) 

(c) Simple comprehensive MFS fit 
(RMSE=0.37 for 1=0.0, 2=0.1, =2.0) 

(d) Bayesian comprehensive MFS fit 
(RMSE=0.21 for 1=5.4, 2=4.5, =2.0) 
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Fig. 6 Multi-fidelity surrogates
with model calibration: This
example shows that the Bayesian
comprehensive MFS framework
finds parameters different from
the other frameworks. a Simple
calibrationMFS fit (RMSE= 0.38
for θ1 = 0.0, θ2 = 0.1, ρ= 2.0). b
Bayesian calibration MFS fit
(RMSE= 0.36 for θ1 = 0.0,
θ2 = 0.1, ρ= 1.9). c Simple
comprehensive MFS fit
(RMSE= 0.37 for θ1 = 0.0,
θ2 = 0.1, ρ= 2.0). d Bayesian
comprehensive MFS fit
(RMSE= 0.21 for θ1 = 5.4,
θ2 = 4.5, ρ= 2.0)
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dimensions of the input variables and the calibration parame-
ters. Then high fidelity sampling points were generated in the
dimensions of the input variables using LHS. The coordinates
of the low fidelity sampling points in the dimension of the
input variables were adjusted using the high fidelity sampling
points and the nearest neighbor sampling technique. Figure 8
shows the low and high fidelity sampling points for 2 input
variables and 1 model parameter for a calibration based MFS
framework. Figure 8a shows 40 low fidelity samples obtained
from LHS and Fig. 8b shows the 40 samples projected on the
input dimensions and 20 high fidelity sampling points obtain-
ed by the nearest neighbor sampling.

3 Performance measures for MFS frameworks

In this section, we describe performance measures for com-
paring MFS frameworks. Since the performance of surrogates
varies for different design of experiments (DOE), we collect
statistics of frameworks for 100 different DOEs randomly
generated using the nearest neighbor design. We evaluate the
accuracy of an MFS model for given cost and the cost for
given accuracy as well as the variability in these measures.

Since the cross validation error has been considered as a useful
performance measure for surrogates (Sanchez et al. 2008;
Acar and Rais-Rohani 2009; Viana et al. 2009), we investi-
gated whether it can also be employed for MFSs to rank the
frameworks. We ranked frameworks for a given DOE using
their cross validation errors and compared the rank to the
actual ranks based on their RMSEs, which is our reference
accuracy metric.

3.1 Measures of accuracy

MFSs are fitted to function values at n sample points. We can
measure the accuracy of an MFS using the root mean square
error (RMSE) integrated over the sampling domain. We use
Monte Carlo integration with ntest test points as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ntest

X
i¼1

ntest

yih;test−ŷH xih;test

� �� �2s
for i ¼ 1;…ntest ð15Þ

where xh,test
i and yh,test

i are the sampling point vector and the
high fidelity function value of ith test point. Note that RMSE is
only possible to calculate when the true function is available.

(a) 40 low fidelity samples for 2 input variables 
(x1 and x2) and 1 calibration parameter (q)

(b) Projected 40 low fidelity samples (blue 
circles) and 10 high fidelity samples (red crosses) 

on the x1-x2 plane
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Fig. 8 Low fidelity samples
(blue) and high fidelity samples
(red) using nearest neighbor
sampling used for the calibration
based frameworks. a 40 low
fidelity samples for 2 input
variables (x1 and x2) and 1
calibration parameter (q). b
Projected 40 low fidelity samples
(blue circles) and 10 high fidelity
samples (red crosses) on the x1-x2
plane

(a) 40 low fidelity (blue and green crosses) and 
10 high fidelity (red circles) sampling points; 

the green crosses (nearest neighbors of the high 
fidelity sampling points) are replaced with the 

high fidelity sampling points 

(b) Updated 40 low fidelity sampling points 
(blue crosses) and 10 high fidelity sampling 

points (red circles) obtained using the nearest 
neighbor sampling technique 
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Fig. 7 The nearest neighbor
sampling for the discrepancy
function based frameworks. a 40
low fidelity (blue and green
crosses) and 10 high fidelity (red
circles) samples; the green crosses
(nearest neighbors of the high
fidelity sampling points) are
replaced with the high fidelity
samples. b Updated 40 low
fidelity samples (blue crosses)
and 10 high fidelity samples (red
circles) obtained using the nearest
neighbor sampling technique
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3.2 Cross validation errors

Among all available frameworks, how to select the best
framework or how to filter out bad frameworks is an im-
portant question. Since the cross validation error performs
well for selecting surrogates (Viana et al. 2009), it is also
considered here for the MFS frameworks. For single fi-
delity surrogates, a leave-one-out cross validation error is
the error measured at a sample point using the surrogate
constructed with all samples except for the point. By re-
peating this process for every sample, we can estimate n
cross validation errors, and the RMSE of a surrogate can
be estimated by calculating the global cross-validation
error measure called PRESS using cross validation errors
(Viana et al. 2009).

Since the discrepancy MFS frameworks use samples
with the sampling restriction that a high fidelity sampling
point set is a subset of a low fidelity sampling set, a cross
validation error of a discrepancy MFS is obtained by leav-
ing out both low and high fidelity samples at a common
point (Le Gratiet 2013). For the calibration based frame-
works, since the low fidelity sample set has dimensions
for input variables and calibration parameters while the
high fidelity sample set has dimensions for only input
variables. For example, Fig. 8 shows a low sample set
for input variables x1 and x2, and calibration parameter q
and a high fidelity sample set for input variables. We
leave out only high fidelity samples for obtaining cross
validation errors. Therefore, the number of cross valida-
tion errors is same as that of high fidelity samples. The
RMSE of an MFS framework is estimated by calculating
PRESS as

PRESS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nH

X
i¼1

nH

e2i

s
ð16Þ

where ei is the cross validation error by leaving out the ith

high fidelity sample.
Instead of omitting one sample point at a time, it is

possible to exclude a group of samples at a time. k-fold
cross validation error randomly divides the sample set
into k subsets and one of the subsets is left out to calculate
a cross validation error. For k-fold cross validation, nH/k
cross validation errors in (16) are simultaneously obtained
from k repetitions instead of nH repetitions for the one
leaving out strategy. For example, with 10 high fidelity
samples divided into 5 sets as {(x1, x2), (x3, x4),…,
(x9, x10)}, cross validation errors e1 and e2 are obtained
by calculating the errors against the surrogate constructed
with remaining four groups of samples. This process is
repeated five times to obtain all the cross validation errors
and PRESS. We implement a strategy to divide samples

into k-folds using a “maximin” criterion (maximization of
the minimum inter-distance) (Viana et al. 2009), which is
used in the following numerical examples. Note that we
use unbounded constant non-informative priors for the
Bayesian frameworks. Therefore the influence of error in
a priori information is excluded in the constructed MFSs
and the same for PRESS.

4 Numerical examples

In this section, we statistically evaluate the performances
of frameworks based on randomly generated DOEs. The
Hartmann 6 function and the borehole function were used
for the statistical study of frameworks. The statistical
study of the previously presented 1D example is also pre-
sented in Appendix A. Hartmann 6 function is an algebra-
ic function with 6 input variables. The Borehole function
is a physical function with 3 input variables initially de-
veloped to calculate the flow of water through a borehole
drilled from the ground surface through two aquifers.

We refer the frameworks and their variants with labels,
which are presented in Table 1. First letters “S” and “B”
indicate that a framework uses simple framework using
ready-made surrogates or Bayesian framework, respec-
tively. Then correction approaches are indicated by “C”
and “D” for calibration and discrepancy function, respec-
tively. For the comprehensive frameworks, which use
both approaches, we use the letters together as “CD”. To
test the effect of including a regression scalar ρ in a
framework, we compared MFSs constructed with and
without ρ. We remove the scaling effect of using a regres-
sion scalar by applying ρ= 1 to a framework. The last
letter “R” indicates that ρ is included in a framework.

Table 1 Acronyms of
frameworks used Framework Label

Low fidelity surrogate L

High fidelity surrogate H

Simple discrepancy SDR

SD (ρ= 1)

Bayesian discrepancy BDR

BD (ρ= 1)

Simple calibration SCR

SC (ρ= 1)

Bayesian calibration BCR

BC (ρ= 1)

Simple comprehensive SCDR

Bayesian comprehensive BCDR
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4.1 Hartmann 6 function

MFS frameworks are often employed to reduce computational
cost and/or to improve accuracy. In this section, we examine
MFS frameworks with three factors that affect the perfor-
mance: 1) total computational budget, 2) high-to-low sample
evaluation cost ratio, and 3) high-to-low sample size ratio.

Table 2 shows combinations of low and high fidelity
samples for given total budget and cost ratio. Since the
key question in MFS is whether low fidelity simulations
would reduce the cost of high fidelity simulations, the
total computational budget is expressed in terms of the
number of high fidelity samples. For example, 56H de-
notes that we have computational budget for evaluating
56 high fidelity samples. Sample cost ratio tells how
many low fidelity samples can be evaluated for the cost
for a single high fidelity sample. For example, cost ratio
of 4 means that 4 low fidelity samples can be evaluated
with the budget for evaluating a single high fidelity sam-
ple. For that ratio, a total budget of 56H can be used for
either 56 high fidelity samples, or 224 low fidelity sam-
ples, or mixes of the two such as the 36 high-fidelity and
80 low fidelity samples shown in Table 2. These combi-
nations are expressed with the numbers of high (nH) and
low (nL) fidelity samples, such as 36/80. We selected
mixes ranging from spending most of the budget on
high-fidelity simulations (36/80), to spending most of it
on low fidelity simulation (6/200).

We use the Hartmann 6 function over [0.1,1] for all dimen-
sions as a high fidelity function and an approximated function
as a low fidelity function. As we did for the previous example,
for each case, we generated 100 different DOEs using the
nearest neighbor sampling and LHS. RMSE was calculated
based on 10,000 test points which give an accurate RMSE
estimate. Among 100 RMSEs, the median RMSE was chosen
as a representative value. Amedian RMSE is the RMSE great-
er than lower 50 % RMSE population. Also median is less

sensitive to extreme values than mean. For the comparison’s
sake, the same test points were used to calculate the RMSEs
for different DOEs.

The high fidelity function of this example, Hartmann 6
function, is

f H xð Þ ¼ −
1

1:94
2:58þ

X4
i¼1

αiexp −
X6
j¼1

Ai j x j−Pi j
� �2 ! !

ð17Þ

where α ¼ 1 1:2 3 3:2f gT are model parameters, and
the following A and P matrices are constant:

A ¼
10 3 17 3:5 1:7 8
0:05 10 17 0:1 8 14
3 3:5 1:7 10 17 8
17 8 0:05 10 0:1 14

0
BB@

1
CCA and P

¼ 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

0
BB@

1
CCA
ð18ÞThe low fidelity function is

f L xð Þ ¼ −
1

1:94
2:58þ

X4
i¼1

α
0
i f exp νið Þ

 !
and νi

¼ −
X6
j¼1

Ai j x j−Pi j
� �2 ð19Þ

where α
0 ¼ 0:5 0:5 2:0 4:0f gT and fexp(x) is the ap-

proximation function of the exponential function which is
expressed as

f exp xð Þ ¼ exp
−4
9

� �
þ exp

−4
9

� �
xþ 4ð Þ
9

� �9

ð20Þ

Note that the total function variation of the Hartmann 6
function is 0.33 and the RMSE of the low fidelity function
with respect to the high fidelity function is 0.11. That means
the maximum RMSE of a surrogate based solely on low fidel-
ity samples is 0.11. The RMSEwas obtained using 10,000 test
points.

Bounds of [0.5, 1.5] were used for SDR, BDR, SCR, BCR,
SCDR and BCDR, which use a regression scalar. For the
frameworks using calibration, α3

′ and α4
′ were selected as

model parameters to be calibrated. The bounds of [1, 6] and
[2, 7] were used for the parameters. Note that we use 0.5 and
0.5 for α1

′ and α2
′ , respectively. We only calibrate α3

′ and α4
′ to

simulate a common situation that we cannot afford to calibrate
all parameters.

Table 2 Cases of sample cost and size ratios combinations for two total
computational budgets (Hartmann 6 function example)

Total
budget

Sample
cost ratio

Sample size ratio nH/nL

56H 4 36/80, 26/120, 16/160, 6/200

10 49/70, 46/100, 42/140, 35/210, 28/280, 21/350,
14/420, 7/490

30 48/240, 46/300, 44/360, 42/420, 40/480, 38/540,
28/840, 18/1140

28H 4 18/40, 13/60, 8/80, 3/100

10 22/60, 19/90, 16/120, 13/150, 10/180, 7/210,
4/240

30 24/120, 22/180, 20/240, 18/300, 16/360, 14/420,
10/540, 6/660, 4/720
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Figure 9 shows the effect of sample ratio on the median of
RMSE using (15) for the cases of total computational budgets
56H and 28Hwith cost ratio of 30. A similar trend is observed
for the cost ratio of 10, which is shown in Fig. 13 in
Appendix B. Figure 9a and b compare the median RMSE of
the best frameworks selected from the discrepancy function-
based frameworks and the frameworks using calibration to
that of the single fidelity surrogates. The red and black dashed
lines represent the median RMSEs of the single high fidelity
and low-fidelity Kriging surrogates, respectively. The median
RMSEs were obtained from Kriging surrogates constructed
with randomly generated 100 DOEs using LHS. For the single
fidelity surrogates, total budget was used to achieve samples
of one fidelity; there is no effect of sample-size ratio. With a
cost ratio of 30, we can afford 56×30=1680 low fidelity

simulations which give us a median RMSEs close to the true
RMSE of 0.11 for exact low-fidelity function. This means,
that for such high-cost ratio we can expect better accuracy
from low fidelity surrogates than high fidelity surrogates.
Figure 9c and d present the median RMSE of the discrepancy
function based frameworks and Fig. 9e and f present that of
the frameworks using calibration.

The overall observation about results with the total budget
of 56H and 28H are similar. All the MFS frameworks were
better in terms of median RMSEs than the Kriging surrogates
using only low or high fidelity samples for most of sample size
ratios. BDR framework performed best for mostly sample size
ratios less than 0.1. The frameworks using calibration
outperformed BDR for small sample ratios while the perfor-
mance of BDR rapidly decreased as sample size ratio

(a) Best frameworks for 56H total budget  (b) Best frameworks for 28H total budget  

(c) Discrepancy based frameworks for 56H 
total budget  

(d) Discrepancy based frameworks for 28H total 
budget  

(e) Frameworks using calibration for 56H total 
budget  

(f) Frameworks using calibration for 28H total 
budget  

0 0.05 0.1 0.15 0.2
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Sample size ratio (n
H

/n
L
)

M
ed

ia
n 

R
M

S
E

L
H
BDR
BCDR

0 0.05 0.1 0.15 0.2

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

Sample size ratio (n
H

/n
L
)

M
ed

ia
n 

R
M

S
E

L
H
BDR
BCDR

0 0.05 0.1 0.15 0.2
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Sample size ratio (n
H

/n
L
)

M
ed

ia
n 

R
M

S
E

SD
SDR
BD
BDR

0 0.05 0.1 0.15 0.2
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Sample size ratio (n
H

/n
L
)

M
ed

ia
n 

R
M

S
E

SD
SDR
BD
BDR

0 0.05 0.1 0.15 0.2
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Sample size ratio (n
H

/n
L
)

M
ed

ia
n 

R
M

S
E

SCR
SCDR
BC
BCR
BCDR

0 0.05 0.1 0.15 0.2

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Sample size ratio (n
H

/n
L
)

M
ed

ia
n 

R
M

S
E

SCR
SCDR
BC
BCR
BCDR

Fig. 9 Median RMSEs for
different sample size ratios and
cost ratio of 30. a Best
frameworks for 56H total budget.
b Best frameworks for 28H total
budget. c Discrepancy based
frameworks for 56H total budget.
d Discrepancy based frameworks
for 28H total budget. e
Frameworks using calibration for
56H total budget. f Frameworks
using calibration for 28H total
budget
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decreased. Each framework had an optimal sample size ratio.
For this example, the optimal sample size ratio of BDR was
around 0.1 and those of the frameworks using calibration were
much lower than that. Note that, for the sample size ratio 0, the
median RMSE of each framework converged to that of low
fidelity surrogates. Note that for a cost ratio of 30, most of the
budget was still spent on high-fidelity simulations for sample
size ratio larger than 0.33.

For this example, combination of full Bayesian approach
and a regression scalar ρ improved accuracy of the discrepan-
cy function-based frameworks significantly. For all cases, the
performance of BDR was significantly better than that of BD,
SD and SDR. That means applying Bayesian (BD to BDR)
without ρ or the other way (SDR to BDR) did not make no-
ticeable improvement but combination of Bayesian and ρ
works for this example. BCDR worked generally well among
the frameworks using calibration. For 28H and cost ratio of
10, BDR performs best for sample size ratio larger than 0.13
and BCDR performs best for sample size ratio less than 0.13.

SCR outperformed BCR for small sample size ratios
(≤0.1), while the two behaved similarly for larger ratios.
BCDR outperformed SCDR for almost all the diagramed sam-
ple size ratios. Unlike the discrepancy based frameworks, the
effect of a regression scalar ρ was limited for the frameworks
using calibrations. Unlike the discrepancy based frameworks,
the effect of a regression scalar ρ was limited for the frame-
works using calibrations.

Each framework had its break-even sample size ratio where
the median RMSE of an MFS framework becomes smaller
than the best low fidelity median RMSE. The break-even
sample size ratio decreased as the total budget decreased.
For 56H and cost ratio of 10, most of breaking even points
were within the sample size ratios 0.4 and 0.8 while, for 28H
and cost ratio of 10, breaking even points were within the
sample size ratios 0.2 and 0.4. That means securing enough
number of low fidelity samples was important for this exam-
ple. Little benefit was expected by applying MFS frameworks
for large sample size ratios.

In this paper, cost saving of an MFS framework is calcu-
lated by calculating computational cost to achieve the equiv-
alent median RMSE. For example, the low fidelity median

RMSE of BDR for the case of 56H and 30 cost ratio is
0.059. Since such low level of median RMSE cannot be
achieved with the low fidelity surrogate, we calculated the
number of high fidelity samples that provides an equivalent
median RMSE.

Figure 10a shows boxplots of RMSEs of 100 Kriging sur-
rogates built with 100 different high fidelity sample sets,
which were randomly generated using LHS. Figure 10b
shows the corresponding median RMSE graph in terms of
the number of high fidelity samples.We obtain the cost saving
using Fig. 10b. For example, the best median RMSE of BDR
for the case of 56H and 30 cost ratio is 0.059 based on Fig. 9c.
We calculate the number of high fidelity samples which gives
0.059 in the graph which is 320H. The BDR framework can
achieve the equivalent median RMSE with 56H, so the cost
saving is −83 %.

Table 3 shows the summary of the results for different
cases. For each case, we selected the best frameworks in
terms of median RMSE. Commonly, frameworks using
calibration performed best for small sample size ratio,
and BDR performed generally well. Best frameworks for
different sample size ratio ranges are presented. For ex-
ample, for the combination of total budget 56H and cost
ratio of 4, BC is the best framework for the sample size
ratio smaller than 0.1, and BDR is the best for larger than
0.1. The maximum median RMSE improvement and the
cost saving in the corresponding ranges were also present-
ed. The median RMSE of an MFS framework is a func-
tion of the sample size ratio. We found the minimum
median RMSE of each framework over all considered
sample size ratios. For each MFS framework, the differ-
ence between its minimum median RMSE and the median
RMSE of Kriging surrogates using only high fidelity sam-
ples was calculated and considered as maximum median
RMSE reduction. Cost savings are then calculated by
finding how many high fidelity samples for Kriging sur-
rogates are needed to achieve the same minimum median
RMSE was calculated. Note that the median RMSEs of
MFS frameworks were smaller than the RMSE of the low
fidelity function that is the minimum achievable RMSE
with only low fidelity samples.
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This example shows that the benefit of employing MFS
frameworks for saving computational cost was higher than
for improving the accuracy. MFS frameworks are mostly ben-
eficial for high cost ratios. The observed maximum cost sav-
ing is −86% for the case of 28H total budget and 30 cost ratio.
The maximum RMSE improvement is −51 % and the corre-
sponding best median RMSE is 0.055. The MFS frameworks
are generally useful for high cost ratio cases.

4.2 Borehole function

In this section, we examine the MFS frameworks with a phys-
ical example, the flow of water through a borehole penetrating
two aquifers. We considered the combinations of low and high
fidelity samples for given total budget and cost ratio shown in
Table 4. The same notation is used for total budget, cost ratio
and sample size ratio as with the previous example.

The model for the flow was obtained based on assump-
tions of steady-state flow from the upper aquifer into the
borehole and from the borehole into the lower aquifer, no

groundwater gradient, and laminar, isothermal flow
through the borehole (Morris et al. 1993). The flow rate
through the borehole in m3/yr for given conditions was
obtained as

f H Rw; L;Kwð Þ ¼ 2πTu Hu−Hlð Þ

ln R
.
Rw

� �
1þ 2LTu

ln R
.
Rw

� �
R2
wKw

þ Tu

T l

0
@

1
A

ð21Þ

We assume that the flow rate fH(Rw, L, Kw) is calculat-
ed for input variables Rw, L, and Kw defining the
dimensions and conductivity of a borehole and the other
environmental parameters were measured and given. The
input variables and parameters of the function are
presented in Table 5. The values of the parameters were
set to the nominal values of interest ranges of the param-
eters. Morris et al. (1993) presents the interest ranges of
the parameters.

Table 3 Summary of the statistical studies (Hartmann 6 function example)

Total computational budget 28H

Cost ratio 4 10 30

Best single fidelity surrogate (median RMSE) L (0.136) L (0.121) L (0.114)

For sample size ratio ≥0.1 <0.1 ≥0.13 <0.13 ≥0.08 <0.08

Best frameworks (min. median RMSE) BDR (0.125) BC (0.12) BDR (0.11) BC (0.09) BDR (0.08) BCDR (0.075)

Max. median RMSE reduction in % −8 % a −12 % −9 % −26 % −30 % −34 %

Max. cost saving in % (number of HF
samples for equivalent median RMSE)

−59 % b (68) −62 % (74) −69 % (90) −81 % (144) −85 % (182) −86 % (203)

Total computational budget 56H

Cost ratio 4 10 30

Best single fidelity surrogate (median RMSE) L (0.123) L (0.115) L (0.113)

For sample size ratio ≥0.1 <0.1 ≥0.1 <0.1 ≥0.07 <0.07

Best frameworks (min. median RMSE) BDR (0.095) BC (0.1) BDR (0.077) BCDR (0.075) BDR (0.059) BCDR (0.055)

Max. median RMSE improvement in % −23 % −19 % −33 % −35 % −48 % −51 %

Max. cost saving in % (number of HF
samples for equivalent median RMSE)

−56 % (128) −51 % (114) −71 % (192) −72 % (203) −83 % (320) −85 % (364)

a The minimum median RMSE for the case of 28H and cost ratio of 4 is 0.125 and that of the best single fidelity surrogate is 0.136, so that maximum
median RMSE reduction was calculated as (1–0.125/0.136)*100
b The number of high fidelity samples to achieve the same minimum RMSE is 68H, the corresponding cost saving is calculated as (1-28H/68H)*100

Table 5 Input variables and environmental parameters

Input Description

Rw= [0.05, 0.15] m Radius of borehole

L = [1120,1680] m Length of borehole

Kw= [1500,15000] m/year Hydraulic conductivity of borehole

Parameters

R = 25050 m Radius of influence

Tu = 89335 m2/year Transmissivity of upper aquifer

Hu = 1050 m Potentiometric head of upper aquifer

Tl = 89.55 m2/year Transmissivity of lower aquifer

Hl = 760 m Potentiometric head of lower aquifer

Table 4 Cases of sample cost and size ratios combinations for three
total computational budgets (Borehole function example)

Total budget Sample cost ratio Sample size ratio

5H 10 4/10, 3/20, 2/30

30 4/30, 3/60, 2/90

10H 10 8/20, 7/30, 6/40, 5/50, 4/60, 3/70, 2/80

30 9/30, 8/60, 7/90, 6/120, 5/150, 4/180,
3/210, 2/240
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The borehole functionwas used as a high fidelity function and
we selected a low fidelity function from a literature (Xiong et al.
2013). The RMSE of the low fidelity function with respect to the
high fidelity function is 15.0. The low fidelity function is
expressed as

f L Rw; L;Kwð Þ ¼ 5Tu Hu−Hlð Þ

ln R
.
Rw
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For all frameworks, regression scalar (ρ) bounds of [0.5,
1.5] were used. Hu and Hl were selected as model parameters
to be tuned since the flow rate is sensitive to them. [800, 1200]

and [600, 1000] were used as the bounds of the parameters, Hu

and Hl, respectively.
Figure 11 shows the effect of sample ratio on the me-

dian of RMSE for different cases. The cases of total com-
putational budgets 5H and 10H with cost ratio of 30 are
shown. Figure 11a and b show the median RMSE of the
best frameworks, and the red and black dashed lines rep-
resent the median RMSEs of 100 single low and high
fidelity Kriging surrogates, respectively. The median
RMSE of low fidelity surrogates is almost the same with
the RMSE of the low fidelity function of 15.0 for this
case. That means the low fidelity surrogates have almost
the same error as the exact low fidelity function. For 10H

(a) Best frameworks for 10H total budget (b) Best frameworks for 5H total budget 

(c) Discrepancy based frameworks for 10H 
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cases, high fidelity surrogates outperform low fidelity
surrogates in terms of the median RMSE.

The discrepancy function based MFS frameworks with a re-
gression scalar gave more accurate surrogates in terms of median
RMSE, especially for small sample size ratio as in the previous
example. Figure 11 show that BDR and SDR frameworks sig-
nificantly outperformed the other frameworks for all sample size
ratios. This shows that the effect of applying full Bayesian treat-
ment was minimal. The frameworks using a regression scalar,
BDR and SDR, significantly outperformed the rest, and the
Bayesian treatment did not matter. Similarly, Fig. 11e and f show
that there was no noticeable difference between Bayesian and
simple frameworks using calibration. For this example, the effect
of a regression scalar ρwas significant since the other discrepan-
cy based frameworks with ρ=1, BD and SD, were significantly
outperformed by BDR and SDR. For the frameworks using cal-
ibration, there was little effect of having a regression scalar ρ.
This is because the same scaling effect can be achieved through
calibration of Hu and Hl. Note that the median RMSE behaviors
of cost ratio of 30 from Fig. 11 and for cost ratio of 10 were
similar. The median RMSE of cost ratio of 10 is given in Fig. 14
in Appendix B.

Table 6 summarizes the results for all the cases in Table 4.
The performance of BDR and SDR were significantly better
than other frameworks using calibrations. The median RMSE
improvements were higher than cost savings but still the effect
of cost saving was significant. The effect of having a regres-
sion scalar was significant while applying full Bayesian ap-
proach had little effect for the discrepancy function based
frameworks. The borehole function is a simple monotonically
increasing function in the domain of input variables. For a
simple function, discrepancy based approaches were better
than frameworks using calibration and gains of applying
Bayesian framework are limited.

4.3 Predicting the performance of the frameworks based
on PRESS

The previous sections showed the performance of the
frameworks based on the median of randomly generated
100 DOEs. We have observed, however, that even if one
MFS is superior in most DOEs, it can perform poorly for
others. Thus a performance prediction for a given problem
and DOE would help to choose a proper MFS framework.
Since PRESS is considered as a good performance predic-
tor for surrogate models (e.g. Viana et al. 2009; Viana and
Haftka 2009), we examined if PRESS can predict the per-
formance of MFS frameworks. We selected sample ratios
and predicted the ranking of all the frameworks based on
their PRESS. Then we evaluated the predictability by
comparing the predicted best framework to actual best
framework based on RMSEs for each DOE. We counted
how many cases out of the 100 DOEs PRESS made right
predictions and obtained the success rate in those two
measurements.

Table 7 shows the performance of PRESS for the
Hartmann 6 function example. 10/560 and 20/240 were

Table 6 Best frameworks for
different sample size ratios and
the corresponding cost saving
(Borehole function example)

Total computational budget 5H

Cost ratio 10 30

Best single fidelity surrogate (median RMSE) L (15.0) L (15.0)

Best frameworks (min. median RMSE) SDR (0.4) BDR (0.5) SDR (0.00) BDR
(0.08)

Max. median RMSE improvement in % −97 % −97 % −100 % −100 %

Max. cost saving in % (number of HF samples
for equivalent median RMSE)

−84 %
(32)

−83 % (30) >− 95 %
(>100)

−90 % (50)

Total computational budget 10H

Cost ratio 10 30

Best single fidelity surrogate (median RMSE) H (6.1) H (5.7)

Best frameworks (min. median RMSE) SDR (0.02) BDR
(0.07)

SDR (0.00) BDR
(0.05)

Max. median RMSE improvement in % −100 % −99 % −100 % −99 %

Max. cost saving in % (number of HF samples
for equivalent median RMSE)

−85 %
(70)

−80 % (51) >− 90 %
(>100)

−81 % (55)

Table 7 The numbers of cases out of 100: the predicted best/worst
framework is among actual best 1, 2 and 3 (Hartmann 6 function
example, 9 possible frameworks)

Correct
best/worst

Within best/worst 2 Within best/worst 3

10/560 Best 15 26 43

Worst 28 49 60

20/240 Best 16 36 49

Worst 20 47 62
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selected since they were the optimal sample size ratio for
the total budget of 28H and the cost ratio of 30 for BCDR
and BDR, respectively. 10-fold cross validation errors
were used to predict the ranks of the frameworks. We
predicted the best and worst frameworks for a given
DOE based on PRESS. We checked if the selected best
or worst frameworks are within the actual best 1, 2 and 3
or worst 1, 2 and 3 frameworks in terms of RMSE (out of
the 9 frameworks investigated here). For 10/560, PRESS
predicted the actual best framework for only 15 DOEs out
of 100 DOEs. Note that the cases for best 2 include the
cases for best 1. Table 7 shows that the rate of making
right prediction based on PRESS is not high. The chance
that the predicted best framework is within the actual best
3 is 43 % and the chance that the predicted worst frame-
work is within the actual worst 3 is 60 %. Also there is
little difference between the two cases of 10/560 and 20/
240. The performance of the frameworks for the sample
size ratio 10/560 and 20/240 were competitive except SD,
SDR and BD based on Fig. 9. The result tells us that
PRESS could not rank the frameworks accurately.

Table 8 shows the predictive performance of PRESS for the
borehole function example. We considered 5/50 for the total
budget of 10H and the cost ratio of 10. As Fig. 11 shows, BDR
and SDR significantly outperform the other frameworks and
the PRESS performs much better than the Hartmann 6 func-
tion example.

5 Concluding remarks

In this paper, we attempted to provide insight on three Bayesian
MFS frameworks and the corresponding simple frameworks
based on approaches using 1) an additive discrepancy function,
2) calibration of low fidelity simulations, and 3) a comprehen-
sive approach using both. We also examined the effect of the
regression scalar ρ applied for MFS frameworks. The frame-
works were examined with a 6DHartmann 6 algebraic function
and a 3D Borehole physical function.

The MFS frameworks were more potent for reducing com-
putational cost rather than improving accuracy, especially for
the Hartmann 6 function. The phenomenon was more obvious
for the Hartmann 6 function than the borehole function. For the
Hartmann 6 function, the discrepancy based MFS framework

could build MFS surrogates equivalent to Kriging surrogates
based on only high fidelity samples in terms of median RMSE
with 14 % of the computational cost for the single fidelity
Kriging surrogate (equivalent to 86 % cost saving). The maxi-
mum accuracy improvement over high fidelity Kriging surro-
gates is 51 % reduction in median RMSE. For the borehole
function, the accuracy improvement is better than computation-
al cost saving but the difference is marginal compared to the
huge difference between the corresponding quantities for the
Hartmann 6 function. The Bayesian discrepancy framework
performed generally the best. However, performance of the
framework deteriorated rapidly when the number of available
high fidelity samples was low. In contrast, for the Hartmann 6
function, the Bayesian calibration framework performed reli-
ably well for the case of few high fidelity samples and
outperformed the Bayesian discrepancy framework. Since the
discrepancy between the low and high fidelity functions was
muchmore complex for the Hartmann 6 function than the bore-
hole function, the discrepancy function prediction with few
high fidelity samples had huge error for the Hartmann 6 func-
tion. Using a regression scalar ρ was particularly beneficial for
the discrepancy based frameworks. For the Borehole function
example, the presence of the scalar led to significant difference
in the quality of an MFS and there is little benefit of using
Bayesian framework.

We also found substantial differences in performance
between frameworks for different DOEs, which raised
the question whether PRESS based on cross validation
errors can help us choose the best framework. We found
that the usefulness of PRESS is limited. It is not as helpful
as it is for single fidelity surrogates.

Finally, the Bayesian frameworks were compared to the
simple frameworks using Kriging surrogates. One of the
advantages of the simple frameworks, is that they can be
much more readily implemented with existing surrogates.
This may compensate for the relatively small advantage
observed from the Bayesian frameworks.

This paper focuses on predicting the response of a high
fidelity model with aid of a single low fidelity model
using the MFS frameworks. However, high fidelity
models can hardly be perfect, a higher fidelity model
may need to be considered to measure the error of the
high fidelity model. Alternatively, only a general knowl-
edge of the magnitude of the error in the high-fidelity
model is available. The knowledge can be useful to avoid
trying to reduce the error of the MFS much below the
high fidelity error.
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Table 8 The numbers of cases out of 100: the predicted best/worst
framework is among actual best 1, 2 and 3 (Borehole function example)

Correct
best/worst 1

Correct
best/worst 2

Correct
best/worst 3

5/50 Best 100 – –

Worst 45 72 78
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Appendix A: Statistical study of the 1-D function
with 100 DOEs

The 1D function examples presented in the main text were
selected to illustrate differences between frameworks be-
cause they exhibit distinctive differences. The Bayesian
discrepancy function gave a significantly better prediction
than the simple prediction and the Bayesian comprehen-
sive framework gave very different calibration results than
the other frameworks using calibration. The results were
observed from the selected DOEs from randomly generat-
ed 100 DOEs. In this section, we show statistical repre-
sentation for all 100 DOEs. The same trend functions and
parameter bounds were used for fitting MFSs. For gener-
ating samples, we intendedly increased randomness by
allowing a small number of iterations for LHS for initial
low and high fidelity samples to see various cases.

Figure 12a presents the 100 RMSEs of the discrepancy
based frameworks, SDR and BDR in the form of a
boxplot. The center red line indicates the median (50 %)
and the bottom and top of boxes are lower (25 %) and
upper (75 %) quartiles of 100 RMSEs. The default dis-
tances of upper and lower whiskers between the upper and
lower quartiles are 1.5w where w is the inter quartile dis-
tance which is the distance between upper and lower quar-
tiles. If maximum or minimum samples are within the
default bounds, whiskers are adjusted. Samples out of
the default bounds are considered as outliers and they
indicated with red crosses. The Bayesian discrepancy
framework significantly outperforms the simple discrep-
ancy framework statistically. The median RMSEs of BDR
and SDR are 3.5 and 0.6, respectively. The correlation
coefficient of the RMSEs of the two frameworks is 0.25
which is weak that one bad DOE for one framework may
be a good DOE for the other. However, the mean and
standard deviation of BDR are significantly smaller than
SDR that SDR is better than BDR for a few DOEs with
negligible difference. The means of regression scalar ρ
of SDR and BDR are 0.54 and 1.92, respectively.
That tells the ways of estimating ρ are responsible for

the difference. There was weak correlation between
RMSEs of the two frameworks but the worst DOEs for
BDR are also bad DOEs for SDR RMSEs. The worst and
the second worst RMSEs of BDR are 6.7 and 4.5 and the
corresponding RSMEs of SDR are respectively 5.8 and
4.3.

Figure 12b shows box plots of the frameworks using
calibration, SCR, BCR, SCDR and BCDR. In terms of
median RMSE, all frameworks show similar performance.
Table 9 shows the correlation coefficients between
RMSEs of the four frameworks. Unlike the previous dis-
crepancy frameworks, they have very strong correlations.
That means that a good DOE for one is highly likely to be
a good DOE for the others that a good DOE is a necessary
condition for constructing a good MFS. We searched for a
DOE that was good for a framework and bad for another,
but we could not find a single such DOE from the 100
DOEs.

Appendix B: Median RMSEs for Different Sample
Size Ratios

In the previous example section, only the median RMSEs
for cost ratio of 30 were presented for both the Hartmann
6 function example and the borehole function example
since there is no noticeable difference in the behavior
between cost ratios of 30 and 10. In this appendix, the
median RMSEs for cost ratio of 10 are presented in
Fig. 13 for the Hartmann 6 function example and in
Fig. 14 for the borehole function example.

Table 9 Correlation
coefficients between 100
RMSEs of the four
frameworks

BCR SCDR BCDR

SCR 0.9 0.9 0.8

BCR 0.9 0.9

SCDR 0.9

(a) Frameworks using a discrepancy function (b) Frameworks using calibration
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(a) Best frameworks for 56H total budget  (b) Best frameworks for 28H total budget  
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Fig. 13 Median RMSEs for
different sample size ratios and
cost ratio of 10. a Best
frameworks for 56H total budget.
b Best frameworks for 28H total
budget. c Discrepancy based
frameworks for 56H total budget.
d Discrepancy based frameworks
for 28H total budget. e
Frameworks using calibration for
56H total budget. f Frameworks
using calibration for 28H total
budget
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(a) Best frameworks for 10H total budget (b) Best frameworks for 5H total budget 

(c) Discrepancy based frameworks for 10H 
total budget 

(d) Discrepancy based frameworks for 5H total 
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(f) Frameworks using calibration for 5H total 
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Fig. 14 Median RMSEs for
different sample size ratios and
cost ratio of 10. a Best
frameworks for 10H total budget.
b Best frameworks for 5H total
budget. c Discrepancy based
frameworks for 10H total budget.
d Discrepancy based frameworks
for 5H total budget. e
Frameworks using calibration for
10H total budget. f Frameworks
using calibration for 5H total
budget
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