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Abstract Optimization for structural crashworthiness and en-
ergy absorption has become an important topic of research
attributable to its proven benefits to public safety and social
economy. This paper provides a comprehensive review of the
important studies on design optimization for structural crash-
worthiness and energy absorption. First, the design criteria
used in crashworthiness and energy absorption are reviewed
and the surrogate modeling to evaluate these criteria is
discussed. Second, multiobjective optimization, optimization
under uncertainties and topology optimization are reviewed
from concepts, algorithms to applications in relation to crash-
worthiness. Third, the crashworthy structures are summarized,
from generically novel structural configurations to industrial
applications. Finally, some conclusions and recommendations
are provided to enable academia and industry to become more
aware of the available capabilities and recent developments in
design optimization for structural crashworthiness and energy
absorption.
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1 Introduction

1.1 Motivation of crashworthiness optimization

Motorization brings two significant challenges to the modern
society. Firstly, road and vehicle safety becomes increasingly
important, which has notably heightened legislative require-
ments by introducing more effective protective systems to the
vehicle. Secondly, there is an ever-growing concern in envi-
ronment and sustainability, which largely push up the
lightweighting standards to reduce fuel consumption. For
these reasons, the automotive industry has devoted a substan-
tial effort to deliver more crashworthy vehicles for addressing
these two competing issues concurrently.

Vehicle crash brings increasing concerns from socioeco-
nomic aspects. Each year vehicle crash leads to about 1.2
million deaths and many more injuries worldwide, becoming
one of the biggest public health issues facing modern society.
In USA, the most motorized country, for example, the crash-
induced fatality has remained at a considerably high level,
though certain reduction, over the past decade (Fig. 1), leading
to the direct annual cost of US$277 billion, equivalent to near-
ly US$900 per head or 1.9 % of real Gross Domestic Product
(GDP) of the country (http://www.nhtsa.gov/). Fig. 1 also pro-
vides the fatality data in China, a rapidly developing motori-
zation country. A total of 58,539 people were killed in acci-
dents in 2013 (http://www.stats.gov.cn/.) Such high
socioeconomic burden places increasing attention in road
and vehicle safety. As an important means, crashworthiness
design of vehicle structures has proven highly effective,
through which at least 43 % of potential fatalities could have
been prevented and much more injuries avoided as per the
study by O’Neill (2009), making crashworthiness research
and development draw growing interest over recent years.
For example, front rails of automobiles and trains (Fig. 2) have
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been extensively studied to protect passengers from fatal or
severe injuries during the collision. To rate crashworthiness of
vehicle, the new car assessment program (NCAP) was
established to provide consumers with comparative ratings.
In many ways, NCAP has largely lifted the standard of con-
sumer’s expectation and vehicle crashworthiness, virtually
making all the new vehicles become five-star (highest) in or-
der to enter the market (O’Neill (2009)).

On the other hand, lightweighting of the vehicle has been
driven by emergent concerns in fuel consumption (over 1
billion Liters per day for light vehicles such as passenger cars)
and environment due to rapid motorization (Davis et al.
(2013)). The statistics show that the fuel consumption is di-
rectly proportional to vehicle weight; specifically, 10% reduc-
tion of weight could lead to 6–8 % saving in fuel consumption
(Zhang et al. (2007b)). Furthermore, lightweighting increases
the range of the vehicle, which is a determinant for the use of
the electric vehicle (EV). Lured by such a heightening require-
ment, a series of recent articles in Nature and Science clearly
indicated a replenished research interest and significant en-
deavor in pursuing lightweight materials and structures (Kim
et al. (2015)). Yet the question remaining to be addressed is
whether their crashworthiness meets the requirements or there
is a solution in balancing crashworthiness and lightweighting
most effectively. Over the past two decades, design optimiza-
tion has been developed as a powerful tool to seek a highest

possible crashworthiness and lightest possible structure for
various vehicles.

1.2 Theme of this review

In general, a problem of crashworthiness optimization can be
formulated mathematically as:

min f xð Þ
s:t: g xð Þ ≤ 0

xL ≤ x ≤ xU

8<
: ð1Þ

where f(x) and g(x) are the objective vector and constraint
vector, respectively. x denotes the vector of design variables.

This review of literature will be conducted based on (1) as
follows. (1) classification of crashworthiness criteria adopted
in various optimization objectives and constraints; (2) formu-
lations of crashworthiness criteria (objectives and constraints)
for optimization; (3) optimization strategies for size, shape
and topology under single-/multiobjective with/without un-
certainties; and (4) applications of crashworthiness optimiza-
tion, ranging from novel structural configurations, such as
sectional profile of energy absorbers, to entire vehicular and
other engineering structures.

2 Design criteria for crashworthiness and energy
absorption

2.1 Classification of crashworthiness criteria

2.1.1 Injury-based metrics

From a biomechanics point of view, occupants’ responses to a
crash can be measured by such indices as head injury criteria
(HIC), chest acceleration, chest deflection and femur loads
under impact (Du Bois et al. (2004)). These indices are affect-
ed by the vehicle crash pulse (CP), the magnitude of intrusion
(Intr) into the occupant compartment, restraint system, and
vehicle interiors. Among them, CP and Intr are the direct
consequences of structural crashworthiness. As a variant of
Intr, intrusion velocity (IntrV) is also utilized as a design

Fig. 1 Fatalities caused by motor vehicle crashes in USA and China

Energy absorbers

Fig. 2 Energy absorbers in
automobile/train structures
(Marsolek and Reimerdes (2004))

1092 J. Fang et al.



criterion in the literature. In general, a high acceleration im-
plies a large impact force exerted on occupants and can result
in a high risk of injury to occupants. For this reason, peak
acceleration (amax) and peak crash force (Fmax) during impact
are extensively employed as design criteria for optimization.
Table 1 in Appendix summarizes commonly used injury-
based metrics in literature.

2.1.2 Energy-based metrics

The crashworthy structures are expected to absorb as much
energy as possible so as to reduce the kinetic energy transmit-
ting to the occupants. Hence, the amount of energy absorption
(EA) has been drawn exhaustive attention by researchers.

EA dð Þ ¼
Z d

0
F sð Þds ð2Þ

where F(s) is the instantaneous impact force at the crash dis-
tance s and d the total crash displacement concerned for mea-
suring the energy absorption.

To take into account the mass efficiency, the specific ener-
gy absorption (SEA) defined as the EA per unit mass has also
been widely used.

SEA dð Þ ¼ EA dð Þ
M

ð3Þ

where M is the mass of the structure.
Other criteria in relation to energy absorption capacity in-

clude the crash load efficiency (CFE), defined as the ratio of
the mean crash force (Favg) to peak force Fmax; and the load
uniformity (LU), which is a reciprocal of CFE.

CFE dð Þ ¼ Favg dð Þ
Fmax dð Þ � 100% ð4Þ

LU dð Þ ¼ Fmax dð Þ
Favg dð Þ � 100% ð5Þ

Favg dð Þ ¼ EA dð Þ
d

ð6Þ

The usage ratio (UR) of the energy absorber can also be
employed to assess the crashworthiness,

UR dð Þ ¼ d
l
� 100% ð7Þ

where l is the total length of the structure. The effective crash
distance deff is calculated as the deformation at which
CFE(d)×UR(d) has the maximum value (Hanssen et al.
(2000)). Then, the other criteria can be calculated during the
displacement from 0 to deff.

In order to maximize the material usage, topology optimi-
zation often seeks internal energy density (IED) of each

element to be as uniform as possible over the whole design
domain. Table 2 in Appendix summarizes the energy-based
metrics in literature.

2.2 Remarks on design criteria

Note that the selection of design criteria prior to optimization
has been considered critically important in order to obtain a
most ‘beneficial’ optimal design. However, the researchers
have not reached a consensus yet to date. For example,
Marzbanrad and Ebrahimi (2011) and Shakeri et al. (2007)
preferred a long effective distance to make full use of the
energy-absorbing capacity, whereas the others (e.g. Fang
et al. (2014a), Shi et al. (2013a), Shi et al. (2013b), Wang
and Shi (2014)) preferred a short effective distance with the
expectation of a lowest possible intrusion. Taking the front
side rails in frontal impact as an example, if they deform too
much, the passenger compartment might be intruded severely
by the engine booth. On the other hand, if the rails crash a
short distance, only a little kinetic energy can be dissipated
through progressive deformation and thus high deceleration
could be yielded. Also some researchers (e.g., Zhang et al.
(2008), Bi et al. (2010)) constrained Favg above a certain level
to maintain high energy absorption, while others (e.g., Zarei
and Kroger (2006), Yang and Qi (2013), Zarei and Kroger
(2008a), Zarei and Kroger (2008b), Toksoy and Güden
(2011)) suggested to keep Favg at a low level to reduce the
risk of occupant injury. Horstemeyer et al. (2009) compared
the two different criteria under side impact, i.e. the energy
absorption of collapsed components and an injury-based met-
ric (in terms of accelerations) of the dummy. They revealed
that the injury-based design, which differs a lot from the
energy-based design, could achieve a much safer structure.
The uniform internal energy density (IED) criterion in topol-
ogy optimization was also challenged by Witowski et al.
(2012) because uniform IED only represents the whole struc-
ture absorbs energy uniformly, rather than the maximum
amount of EA in the whole structure.

For industrial applications, the selection of design criteria is
closely related to the loading scenario considered (please see
Section 5.2 for further details). As the ultimate goal of crash-
worthiness optimization is to ensure the passenger’s safety, it
can be more judicious to consider the damage of the dummy
during crashes although its modeling is fairly complicated
(Horstemeyer et al. (2009)). When it comes to the safety com-
ponents used in real world, more realistic loading conditions
and design criteria should be considered altogether to realize
their required functionality in a context of the entire vehicle
system. For example, design criteria under more realistic
loads, such as lateral bending (Kim et al. (2002), Xiang et al.
(2006), Zarei and Kroger (2008b), Zhang et al. (2009), Fang
et al. (2014b) ) and oblique loads (Reid and Reddy (1986),
Zarei and Kroger (2008a), Qi et al. (2012), Tarlochan et al.
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(2013), Zhang et al. (2014b)) should also be taken into ac-
count for crashworthiness design of crashing components. In
addition, from the practical point of view, it is recommended
that the roles of each safety component/system should be an-
alyzed based on the whole vehicle safety (Zhu et al. (2016)).
As such, the design criteria can be integrated to achieve the
best performance of the vehicular structure as a whole.

3 Formulations of crashworthiness criteria
in optimization

3.1 Analytical functions

It is indispensable to formulate the crashworthiness perfor-
mance quantitatively for optimization. The first approach is
perhaps to develop proper analytical models of these perfor-
mance criteria with respect to design variables (Chen (2001),
Kim (2002), Hanssen et al. (2001), Kim et al. (2002)). For
example, Chen (2001) derived the closed-form theoretical ex-
pressions of EA during a bending collapse and combined
compression/bending deformation for a thin-walled beam
with a ultralight filler. Kim (2002) derived the analytical func-
tion of SEA and then incorporated it into the optimization of a
multi-cell tube. Hanssen et al. (2001) used several formulas in
terms of foam density, wall thickness, column width, wall
material strength and total component length to optimize the
square column with foam filler. Note that analytical functions
can only be applied to such tubes with simple geometries (e.g.,
square and circular tubes) subject to strong mechanical as-
sumptions, and was more extensively used at earlier days
when the computational resources were not affordable to ac-
complish the crashing simulation for design optimization.

3.2 Direct coupling with finite element analysis

With the increasing computational capacity, numerical
methods, represented by nonlinear finite element analysis
(FEA), have proven effective to predict the crashworthiness.
The question is if it is possible to directly couple FEA with
optimization algorithms for crashworthiness problems. Or,
whether is it realistic to iteratively call FEA evaluations in
the optimization process. Mathematical programming-based
structural optimization often requires gradient information of
the objectives and constraints to determine a searching
direction towards an optimal solution. In a very early work,
Yang et al. (1994) showed that it is feasible but fairly costly to
conduct the optimization for crash simulations, where the de-
sign sensitivities were calculated by using the forward finite
difference method with 1 % step size for each design variable.
For highly nonlinear problems, the simulated responses often
contain numerical noise, making it difficult to calculate gradi-
ents accurately (Zabaras et al. (2003)).

To overcome this difficulty, gradient-free or namely zeroth-
order methods, which do not need gradient information, seem
to be more suitable. Of them, population-based algorithms
such as Monte Carlo simulation (MCS) methods, simulated
annealing (SA) and genetic algorithms (GA) could be a useful
choice. The advantage of gradient-free methods is that they
may converge to the global optimum. However, computation-
al cost could be prohibitive as they often require a large num-
ber of function evaluations before convergence, and there is
no universally good criterion to determine the convergence. A
practical compromise is to limit the number of nonlinear FEA
runs by the predefined population size and number of
generations, which may however make it difficult to yield a
global optimum.

Nevertheless, in an industrial context, the mathematical
optimum may be of less practical interest while an efficient
improvement is intended. In this regard, Rzesnitzek et al.
(2002) proposed a two-stage optimization method for crash-
worthiness problems, in which the first stage conducts a sto-
chastic optimization using MCS for a large number of design
variables to acquire an optimal solution away from the initial
design and identify a small number of significant design
variables. Redhe et al. (2004) pointed out that the stochastic
optimization should not be used for problems with less than
10-15 design variables; and the more design variables the
problem has, the more efficient the stochastic optimization
is. In the multidisciplinary optimization of car bodies,
Duddeck (2008) recommended to couple population-based
algorithms with FEA for the design of the frontal impact prob-
lem, which has a highly non-regular crash responses due to
high nonlinearity and bifurcations. More recently, Xu et al.
(2014) used the benchmark problems to conduct direct cou-
pling based optimization. From their study, when sufficient
computational resources are available, direct coupling method
could be promising in terms of the performance and feasibility
of optimization. Xu et al. (2015) developed a data mining-
based strategy to improve the efficiency of population-based
algorithms. The historic information was utilized to identify
and eliminate low-quality and repetitive designs based on
clustering analysis. The algorithm considers both the explor-
ative search at the earlier stage and exploitative search at the
later stage. The authors also recommended using larger pop-
ulation and fewer generations to take advantages of parallel
computing.

Besides, the equivalent static load (ESL) method (Choi and
Park (1999), (Kang et al. (2001), Shin et al. (2007), Park
(2011)) offers a simplified and approximate approach to the
evaluation of crashworthiness performance. The applications
can be found in Jeong et al. (2008), Jeong et al. (2010), Yi
et al. (2012) and Lee et al. (2015). The major advantage of
ESL is that a nonlinear crashworthiness problem is converted
to a linear static problem, which is much cheaper and more
stable, computationally. However, its limitations are also
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obvious due to the intrinsic nature of simplifications and as-
sumptions (Witowski et al. (2012)).

3.3 Surrogate modeling

In crashworthiness optimization, direct coupling method
may be inefficient (if not impossible) since iterative non-
linear FEA during optimization usually require enormous
computational efforts and take the high risk of premature
simulation failure prior to a proper convergence. As a
result, surrogate models (or metamodels) are more often
used as an alternative for formulating the design criteria in
terms of an explicit function of design variables in ad-
vance of optimization, which has proven an effective
and sometimes a unique approach (Wang and Shan
(2007), Forrester et al. (2008)). The idea of surrogate
modeling is to construct an approximate function based
upon a series of sampling evaluations, in which design
space is typically sampled using the design of experiment
(DoE) methods (Fig. 3). Then, the FEA is performed at
these sample points to establish surrogate models with a
certain confidence of approximation for crashworthiness
optimization.

3.3.1 Polynomial response surface (PRS) model

In many cases, the polynomial basis functions are found sim-
ple yet effective to establish a surrogate model. For example, a
quadratic PRS model can be expressed as (Montgomery
(1996)),

ŷ xð Þ ¼ b0 þ
Xn
i¼1

bixi þ
Xn
i¼1

biix2i þ
Xn−1
i¼1

Xn
j>i

bi jxix j ð8Þ

where b0, bi, bii and bij are the unknown coefficients, xi is the i-
th design variable, and n is the total number of design vari-
ables. ŷ(x) is the approximation to the actual value y(x) from
FEA.

Considering the fact that the number of unknown coeffi-
cients is ns = (n+1)× (n+2)/2, it is recommended to generate
more than twice more samples than ns to prevent overfitting of
coefficients, which implies the number of design variables in
PRS model can be critical for determining the computational
cost. To address this issue, stepwise regression (Draper and
Smith (1981), Yang et al. (2000), Gu et al. (2001)) can be
implemented to screen the terms in PRS that have relatively
little contribution to the design criteria.

3.3.2 Radial basis function (RBF) model

Radial basis function model was developed for scattered mul-
tivariate data interpolation by using a series of basis functions
that are symmetric and centered at each sampling point. Radial
basis functions are typically formulated as (Hardy (1971)):

ŷ xð Þ ¼
Xm
j¼1

c jp j xð Þ þ
X
i¼1

ns

λiφ r x; xið Þð Þ ð9Þ

where m is the number of the polynomial terms, cj is the
coefficient for polynomial basis function pj(x), and ns is the
number of sample points. λi is the weighted coefficient for the
term for the i-th variable, r(x,xi) is the Euclidean distance
expressed in terms of ‖x ‐xi‖. φ(r) is the radial basis function.

3.3.3 Kriging (KRG) model

The Kriging model (Sacks et al. (1989)) was originally devel-
oped for mining and geostatistical applications involving spa-
tially and temporally correlated data. The KRGmodel is com-
posed of a global model f(x) and a local departure Z(x):

y xð Þ ¼ f xð Þ þ Z xð Þ ð10Þ
where y(x) is the unknown function of interest, f(x)
models the global trend of the function of interest, and
Z(x) models the correlation between the points by a sto-
chastic process whose mean is zero and variance is σ2.

(a) (b)

x2

x1

P1

P2

x1
x2

P1 P2

ŷ

1 2ˆ ( , )f x x=y

Fig. 3 Surrogate modeling: (a)
Design of experiment, (b)
Construction of surrogate models
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Z(x) provides local deviations, and the covariance be-
tween different points is modeled as:

Cov Z xið Þ; Z x j
� �� � ¼ σ2R R xi; x j

� �� � ð11Þ

where R is a correlation matrix defined by correlation
function R xi ; x jð Þ as follows:

R xi; x j
� � ¼ exp −

Xn
k¼1

θk xki −x
k
j

��� ���2
" #

ð12Þ

where θk is the unknown correlation parameter used to fit
the model, and xi

k and xj
k are the k-th components of sam-

ple points xi and xj, respectively.

3.3.4 Artificial neural network (ANN) model

Artificial neural network is a powerful method to formulate
the relationship between a set of input variables and output
results in complex systems (Zurada (1992)). It is composed of
some parallel numerical computing units, namely neural ele-
ments. The neural elements are linked according to specific
topological network functions. Thus, a neural model will be
defined by using connection weights and biases parameters.
These parameters are trained from the training sample data set
by using specific optimization algorithm, which adjusts the
values of the weights between elements. The training data
consists of pairs of design variables and output responses.

Other types of surrogate models used in crashworthiness
optimization include support vector regression (SVR) (Smola
and Schölkopf (2004)) and multivariate adaptive regression
splines (MARS) (Friedman (1991)) etc.

3.3.5 Comparison of different surrogate models

Regarding the selection of surrogate models, researchers have
provided some general guidelines, which may also be useful
in crashworthiness optimization. Simpson et al. (2001) point-
ed out that PRSworks well in the problemswith<10 variables
and the problems with random errors. They also claimed that
ANN should be good for very large design problems (~10,000
variables) while KRG is able to handle the problems with<50
variables. Jin et al. (2001) compared surrogate models under
multiple modeling criteria. RBFwas found most insensitive to
DoE sample size in most situations in terms of accuracy and
robustness, while KRG is very sensitive to the noise because it
interpolates the sample data.

There have been some comparative studies of surrogate
models in relation to crashworthiness problem in literature
(e.g., Fang et al. (2005), Forsberg and Nilsson (2006), Zhu
et al. (2009) , Shi et al. (2012)). For instance, Fang et al.
(2005) compared quadratic PRS and RBF for fitting
nonlinear responses in a frontal collision and found that PRS

was able to produce a satisfactory approximation to EA, while
the RBF models performed better to approximate amax. Also,
the RBF models can yield more accurate optimization results.
Forsberg and Nilsson (2006) compared the linear PRS and
KRG with the same updating scheme in the region of
interest. KRG was found to enable to improve the sequential
behavior of the optimization algorithm at earlier iterations of
the optimization process. However, KRG could be
problematic if a constraint was violated after several
iterations and linear PRS seemed more easily to find a
feasible solution. Shi et al. (2012) proposed to select the best
surrogate model using a Bayesian metric under data uncertain-
ty, thereby determining a proper sample size for large scale
real-life problems. It can be concluded that the selection of a
surrogate model is largely case dependent. In other words, no
unique surrogate model is able to produce the most accurate
result for all cases (Yang et al. (2005)). Furthermore, the most
accurate surrogate model may not necessarily provide the
most promising optimum (Song et al. (2013)). Therefore, the
concurrent use ofmultiple surrogate models are recommended
by Song et al. (2013) to seek for a better optimum since the
time of constructing surrogate models is negligible compared
to that of acquiring DoE data. Another practice of using mul-
tiple surrogates is to construct ensembles of surrogate models
as follows.

3.3.6 Ensemble of surrogates

Typically, obtaining data required for developing surrogate is
computationally expensive, and the use of an ensemble was
first introduced by Bishop (1995) to take full advantage of all
the individual surrogates to extract as much information as
possible with a relatively low computational cost. Using the
weighted-sum formulation, the ensemble of surrogates can be
expressed as:

ŷEns xð Þ ¼
XN
i¼1

ωi xð Þŷi xð Þ ð13Þ

where ŷEns(x) denotes the predicted response by the ensemble
of surrogates ŷi(x), N is the number of the individual surrogate
in the ensemble, ŷi(x) and ωi(x) are the surrogate response and
the corresponding weight factor of the i-th surrogate models,
respectively.

To determine the weight factors for surrogate models, dif-
ferent strategies have been developed. Zerpa et al. (2005) set
the values of the weight factors for each surrogate model to be
inversely proportional to the estimate of the prediction vari-
ance. Goel et al. (2007) proposed a heuristic weight scheme
based on the generalized mean square cross-validation error
(GMSE). Viana et al. (2009b) proposed to select the weight
factors following an approach based on minimizing the mean
square error. Acar and Rais-Rohani (2009) proposed an
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optimal weighted surrogate approach to determining the
weight factors via optimization. The difference between the
last two is that Acar and Rais-Rohani’s approach obtains the
weights through an optimization process, while Viana’s ap-
proach obtains the weights through an analysis expression
(Zhou et al. (2011)). Note that while the determination of
proper weight factors associated with individual surrogates
can be based upon global and/or local measures (Acar
(2010b)), the above-mentioned strategies used the global
method (i.e., ωi(x) = ωi). The more sophisticated local
methods, in which ωi(x) varies over the design space, were
also proposed by Acar (2010b).

When coming to crashworthiness optimization, ensembles
of surrogates have also shown their advantages over individ-
ual surrogates (Acar (2010b); Acar and Solanki (2009a);
Hamza and Saitou (2012); Pan and Zhu (2011a); Yin et al.
(2014a)). For example, Acar and Solanki (2009a) examined
ensembles of surrogates in two cases of offset frontal and side
impacts and found that for all crash responses of interest the
ensemble of surrogates outperformed all individual
surrogates. Pan and Zhu (2011a) demonstrated that forming
an ensemble of surrogates could help avoid a misleading op-
timum in a design optimization of vehicle roof structures.

The ideal scenario for using ensembles of surrogates would
be that individual surrogates have different prediction values
but similar overall prediction accuracies on the entire design
domain, so that prediction errors cancel out when aggregation
of the prediction is performed. That is to say, one should
ensure the accuracy and diversity of individual surrogates to
better make advantage of surrogate ensembles. Unfortunately,
surrogates with a comparable accuracy were found often high-
ly correlated (Viana et al. (2009a)). One should also keep in
mind that when applying ensembles of surrogates to crash-
worthiness optimization, the global accuracy is less interesting
than the ability to lead to the global optimum (Viana et al.
(2014)).

3.3.7 Efficient global optimization

When performing a surrogate-based optimization, a basic as-
sumption is that the surrogate model is sufficiently accurate
and all we need to do is to find the optimum design using the
established surrogate model (Forrester and Keane (2009)).
However, the surrogate model constructed using initial sam-
ples will probably not be accurate in the local region of the
final optimum. It is common to exploit this local region by
sequentially positioning additional samples inside. These infill
points are then used to update the surrogate model until the
optimum converges to the final location properly, which
seems to be attractive to more accurately locate a local opti-
mum rather than the true global optimum (Forrester and
Keane (2009)).

On the other hand, exploring design space is a strategy to
increase the global accuracy of a surrogate model. It is
straightforward to add sequential samples to the sparse regions
of design space. If error estimates are available for the surro-
gate model, those points with large errors can be a candidate
for increasing the accuracy of the surrogate. For example,
Chen et al. (2014) and Sun et al. (2014a) used the maximum
mean squared error of KRGmodel to determine new sampling
points in the framework of sequential optimization.

Considering both exploitation and exploration, Efficient
Global Optimization (EGO) (Schonlau (1998)) has been pro-
posed to add new sampling points iteratively which contribute
toward global optimization. The EGO algorithm uses KRG
models because they provide not only the surrogate prediction
but also error estimates. The expected improvement (EI) is
maximized to find the sequential sampling points at each iter-
ation as (Schonlau (1998)),

EI xð Þ ¼ f min−ŷ xð Þ
� �

Φ
f min−ŷ xð Þ

ŝ xð Þ

 !
þ ŝ xð Þϕ f min−ŷ xð Þ

ŝ xð Þ

 !
if ŝ xð Þ > 0

0 if ŝ xð Þ ¼ 0

8>><
>>:

ð14Þ
where ϕ(⋅) and Φ(⋅) denote the probability density and the
cumulative distribution functions of the standard normal dis-
tribution. ŝ(x) is the KRG prediction error, which is also called
as the mean squared error. If ŝ(x) >0, the first term in . (14) is
the difference between the current minimum and the predicted
value multiplied by the probability that y(x) is smaller than the
current best fmin. Therefore, the first term becomes large when
ŷ(x) is likely smaller than fmin. The second term is the standard
deviation of y(x) multiplied by the probability density at y-
(x) = fmin. This term becomes great when there is a high un-
certainty of the prediction (which probably appears far away
from the existing samples as the KRG model goes exactly
through samples). To take into account the constraints, . (14)
can be multiplied by the probabilities P(g(x) ≤ 0) to obtain the
constrained version of EI (EIc) so that each constraint is met.

EI c xð Þ ¼ EI xð ÞP g xð Þ ≤ 0ð Þ ð15Þ

Schonlau (1998) proposed to generate sequential sam-
pling scheme by maximizing EI to yield the sequential
points. This criterion balances the exploration of design
space and exploitation of the local region around an opti-
mum, which has been applied to the crashworthiness de-
sign of a cylindrical tube by Lee et al. (2002). The EI
criterion assumes that KRG model parameters were esti-
mated accurately based on the existing sample data.
Otherwise, the iteration process could converge very
slowly or even not at all (Forrester and Keane (2009)).
Besides, since a KRG model often underestimates the un-
certainty, extra care should be taken to avoid the prema-
ture termination by setting an overly stringent threshold.
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Another extension of EGO is the multiobjective versions of
EI, which were established recently (e.g., Keane (2006),
Shimoyama et al. (2013), Couckuyt et al. (2014)). Unlike
the definition of single objective EI in (14) and (15),
multiobjective EI could become cumbersome as the dimen-
sion of the objective function increases.

Traditionally, EGO adds one single point to the sample set
at a time, which may not be thought efficient when computa-
tional resources are available for parallel computing and the
main concern is the wall-clock time (rather than the number of
simulations). To take advantage of parallel computing capa-
bilities, Schonlau (1998) sought the global maximum of the EI
criterion and then temporarily added the KRG predicted value
at this point to sample data (assuming that the model is correct
at this location). The KRG model is then constructed with the
sample data and the maximization of EI criterion is continued
to seek other new samples until a predefined number of new
samples has been obtained. Sobester et al. (2004) proposed to
locate a number of maxima of EI (which is usually extremely
multimodal) using either a gradient-based optimization algo-
rithm with multiple restarts or a genetic algorithm with
clustering and sharing. Then, those locations of the maxima
can be evaluated in parallel and the process is repeated until
convergence. Viana et al. (2013) proposed a multiple surro-
gate efficient global optimization algorithm to add multiple
samples per optimization cycle, in which uncertainty esti-
mates of other models was imported from the KRG model.
However, these parallel versions of EGO have not been sub-
stantially validated for their effectiveness in crashworthiness
optimization. Hamza and Shalaby (2014) used three infill
criteria to generate new multiple samples, and their
algorithm was successfully applied to a crashworthiness
problem after being tested on four benchmark mathematical
functions. Most recently, Haftka et al. (2016) conducted a
comprehensive survey on parallel surrogate-assisted global
optimization and the interested readers are strongly recom-
mended to acquire more insightful information from this
article.

3.3.8 Successive surrogate modeling (SSM)

The general idea of the EGO is to add sequential sampling
points iteratively at the regions of interest so that the accuracy
of surrogate models is improved locally and globally. The
other option for sequential sampling is to use successive re-
sponse surface method (SRSM or successive surrogate model-
ing, SSM) (Kurtaran et al. (2002)), in which the region of
interest (RoI) is gradually shrunk to a smaller area around
the optimum by panning and zooming within the design space
(original RoI) during the iterations (Fig. 4).

In the successive surrogate modeling method, the center of
RoI at the (k+1)-th iteration is the optimum x(k)* of the k-th
iteration, and its size of RoI is a fraction of the size of the k-th

iteration. The fraction parameter λi for the i-th design variable
is calculated based upon the distance between the optimum
and the center of the current RoI:

λ kþ1ð Þ
i ¼ ηþ γ−ηð Þ

x kð Þ*
i − x kð Þ

il þ x kð Þ
iu

� �
=2

��� ���
x kð Þ
iu −x kð Þ

il

� �
=2

ð16Þ

T h e m a x i m u m v a l u e o f λ i
( k + 1 ) ( λ ( k +

1) =maxλi
(k+1) (i=1,..,n)) is applied to all design variables

during the iterations. Then, the lower and upper bounds of
the i-th design variable of (k+1)-th subregion can be deter-
mined by:

x kþ1ð Þ
il ¼ max x kð Þ*

i −λ kþ1ð Þ x kð Þ
iu −x kð Þ

il

� �
=2; x 0ð Þ

il

n o
x kþ1ð Þ
iu ¼ min x kð Þ*

i þ λ kþ1ð Þ x kð Þ
iu −x kð Þ

il

� �
=2; x 0ð Þ

iu

n o
8<
: ð17Þ

where xil
(0) and xiu

(0) are the lower and upper bounds of the entire
design space.

While SSM has been demonstrated to be able to iden-
tify the optimum region for various crashworthiness prob-
lems (Kurtaran et al. (2002), Craig et al. (2005), Liang
and Le (2009), Liu et al. (2014)), iterative resampling in
SSM might be prohibited in practice as crashworthiness
simulations are rather expensive computationally.
Implementation of inherited Latin hypercube design
(Wang (2003)), which is a technique to inherit previous
sample points, might help reduce the required number of
sample points in subsequent iterations. The other limita-
tion might be that the continuity between subsequent ap-
proximations is not well guaranteed and the information
obtained at the previous iterations is difficult to be taken
into account (Naceur et al. (2006)). With recent develop-
ments in high-performance computing (HPC), parallel
computing has become a trend in optimization. Thanks
to its parallel nature within each iteration, the speed and

Fig. 4 Updating process of RoI
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efficiencies of SSM can be realized by using multiple
resources (Sheldon et al. (2011)). Recently, Stander
(Stander (2012), Stander (2013)) extended SSM to solve
multiobjective optimization problems by introducing a
Pareto Domain Reduction (PDR) technique. Irregular
sub-regions of the Pareto optimal front were used as sam-
pling domains, which shrunk iteratively to explore the
neighborhood of the Pareto optimal front. This technique
was demonstrated to have a comparable accuracy to the
direct genetic algorithm while using a much smaller num-
ber of simulations.

For readers’ reference, Table 3 in Appendix summarizes
the studies on surrogate modeling techniques used in the lit-
erature for crashworthiness optimization.

4 Optimization strategies

4.1 Multiobjective optimization (MOO)

Like most real-life engineering applications, crashworthi-
ness optimization can be often characterized by a number
of design criteria. In the literature, many crashworthiness
optimization articles have dealt with multiple design ob-
jectives. Due to conflicts between these objectives, often a
rational approach to such a problem is to generate a set of
solutions (namely Pareto solutions) that provide accept-
able overall performance in terms of all these objectives
rather than a single one. These solutions are compared
using the non-dominated approach which does not intro-
duce preference on any of objective functions in prior. In
this approach, solution x(1) dominates solution x(2) if: (1)
x(1) is feasible and x(2) is not, or both of them are infea-
sible but x(1) is closer to the feasible boundary; or (2)
feasible solution x(1) is not worse than feasible solution
x(2) in all the objectives and x(1) is strictly better than x(2)

in at least one objective (Coello et al. (2004)). Otherwise,
none of the solutions dominates the other and they are
both non-dominated.

Currently, there appear to be two popular ways of deal-
ing with multiobjective optimization in crashworthiness
problems. Firstly, one can formulate a combined cost
function F(x) to indirectly represent the contributions of
multiple objectives through a single function; and then
performs a single objective optimization (Forrester and
Keane (2009)). In this approach, the linearly weighted
sum technique is the most commonly-used formulation
in crashworthiness optimization, as:

F xð Þ ¼
X k

i¼1
wi f i xð Þ; 0≤wi≤1;

X k

i¼1
wi ¼ 1 ð18Þ

where wi is the weighting factor (to emphasize the relative
importance) of the i-th objective function fi(x).

Secondly, one can conduct the multiobjective optimi-
zation using population-based algorithms directly without
formulating a combined cost function, of which
multiobjective particle swarm optimization (MOPSO)
(Raquel and Naval (2005)) and non-dominated sorting
genetic algorithm II (NSGA-II) (Deb et al. (2002)) are
two popular algorithms frequently used in crashworthi-
ness problems. Table 4 in Appendix summarizes the pre-
vious works on crashworthiness optimization with multi-
ple objectives and Fig. 5 displays the percentage of the
different optimization methods used in the literature,
where MOGA stands for general multi-objective genetic
algorithm and NSGA-II is a special version of MOGA. It
is noted that more than 60 % publications have adopted
the direct evolutionary algorithms to seek non-dominated
solutions.

Although it is of considerable limitation to generation
of preferable Pareto solutions, combined cost function
me thods s t i l l con t r i bu t ed to a round 40 % of
multiobjective crashworthiness optimization in the litera-
ture for its simplicity. Note that a linear weighted sum
method is impossible to obtain a proper solution in the
non-convex portions on the Pareto frontier. Theoretical
reasons for this deficiency have been given by Das and
Dennis (1997) and Messac et al. (2000b). If nonlinear
weighted sum method is used, this limitation might be
avoided but the form of the function to be used is difficult
to decide consistently. In addition, in the linear weighted
sum method, varying the weighting factor from 0 to 1
homogeneously cannot guarantee an even distribution of
Pareto points. Das and Dennis (1997) illustrated the nec-
essary conditions for a series of weighted sum interactions
to create an even spread of points on the Pareto curve in
the objective space.

In crashworthiness optimization, lightweighting of
structure and its crashing performance are frequently con-
flictive, and design criteria (e.g. SEA and Fmax,) could
also strongly compete with each other during optimization
(e.g., Khakhali et al. (2010), Fang et al. (2014b)). Under
this circumstance, generating a complete representation of
non-dominated Pareto solutions in objective space is
meaningful and could provide insightful information for
decision-making.

MOGA
33%

MOPS
28%

O
Combined 

cost 
function

39%

Fig. 5 Percentage of MOO methods used for crashworthiness
optimization in literature
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4.2 Optimization under uncertainties

4.2.1 Definition of optimization under uncertainties

Most (if not all) real-life engineering problems involve some
degree of uncertainties in loading conditions, material proper-
ties, geometries, manufacturing tolerances and actual usage,
etc. It must be pointed out that usually a deterministic optimi-
zation tends to push a design toward one or more constraints
until the constraints become active, thereby leaving no room
for accommodating various uncertainties. Therefore,
reliability-based optimization (RBO), which aims to seek a
reliable optimum by converting the deterministic constraints
into probabilistic counterparts representing that probability of
design infeasibility is restricted to a pre-specified level, has
been widely applied to engineering problems. As shown in
Fig. 6a, let xd represent the deterministic optimum and xre
represent the reliable optimum in the design space (x1-x2
space), which is divided into infeasible and feasible regions
by the constraints. Since the deterministic optimum xd is lo-
cated on the boundary of the constraint, it may fall to the
infeasible region when uncertainties are present. On the other

hand, the reliable optimum xre moves away to create a gap
from the boundary of the constraint so that it can still be within
the feasible region when uncertainties are present.

Moreover, conventional design likely leads to a large scat-
ter of optimal performance due to uncertainties, which may
not only cause significant fluctuations from the desired per-
formance, but also increase life-cycle costs, including inspec-
tion, repair and other maintenance expenses (Fang et al.
(2015a)). Thus, the concept of robust design optimization
(RDO) is to reduce the scatter of the structural performance
without eliminating the source of uncertain variability. This
approach has drawn increasing attention for solving real-
world problems recently (e.g. Park et al. (2006), Beyer and
Sendhoff (2007), Yao et al. (2011)). As shown in Fig. 6b, let
the x-axis represent the uncertain parameter, e.g., random de-
sign variable or noise factor, and the vertical axis represents
the value of an objective function f(x) to be minimized. Of
these two optimal solutions xd and xro as pointed, x2 is con-
sidered more robust as a variation of±Δx in the design vari-
able and/or noise factor does not alter the objective function
too much (Δfro <<Δfd). On the contrary, xd appears highly
sensitive to the parametric perturbation and often cannot be
recommended as a design in practice, even though it has a
better nominal value than xro. It is noted that a robust-based
optimization places more emphasis on the stability of the ob-
jective, while a reliability-based optimization pays more atten-
tion to the feasibility of the constraint.

To accommodate uncertainties, reliability-based optimiza-
tion (RBO) has been adopted in crashworthiness problems. A
general RBO problem can be expressed mathematically as:

min f xð Þ
s:t: P g xð Þ ≤ 0ð Þ ≥Rt

xL ≤ x ≤ xU

8<
: ð19Þ

where Rt denotes the reliability level and P(⋅) stands for the
probability function of satisfying the constraints (g(x)≤0).

It is commonly acknowledged that a robust design was
firstly proposed by Japanese engineer Genichi Taguchi,
named as the Taguchi method to improve the quality of
manufactured goods and makes the product performance less
sensitive to variations of variables beyond the control of de-
signers. A general robust design optimization (RDO) problem
can be formulated mathematically as:

min F μ f xð Þ;σ f xð Þ� �
s:t: g xð Þ≤0

xL≤x≤xU

8<
: ð20Þ

where μf(x) and σf(x) are the vectors of mean and standard
deviation of the objectives, respectively.

(a)

(b)

Fig. 6 Illustrations of design optimization with uncertainties (a)
Reliability-based optimization (RBO) and (b) Robust design
optimization (RDO)
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To enhance a design in terms of both reliability and robust-
ness, RBO and RDO can be combined and referred to as
reliability-based robust design optimization (RBRDO), which
can be formulated as:

min F μ f xð Þ;σ f xð Þ� �
s:t: P g xð Þ≤0ð Þ ≥Rt

xL≤x≤xU

8<
: ð21Þ

In the literature, design for six sigma (DFSS) can be
regarded as a special case of RBRDO. Six sigma is a
quality philosophy involving the statistical tools within
a structured methodology for gaining the knowledge
needed to achieve better, faster and less expensive prod-
ucts than competitors (Breyfogle III (2003)). The term
sigma refers to as standard deviation (σ), measuring the
dispersion of a set of data around the mean value (μ) of
the data.

While the six sigma approach aims to reduce the num-
ber of defects, DFSS offers a powerful tool to optimize
the products in a cost-effective and simple fashion to meet
the customer’s requirements (Antony (2002)). The two
goals in DFSS are: (1) striving to maintain performance
within acceptable limits consistently (reliability); and (2)
striving to reduce performance variation and thus increase
robustness. With this concept, (21) can be revised as

min μ f xð Þ þ 6σ f xð Þ
s:t: μg xð Þ þ 6σg xð Þ≤0

xL≤x≤xU

8<
: ð22Þ

4.2.2 Methods of uncertainty analysis in optimization

Monte Carlo simulation The problems defined in
(19)–(22) involve a procedure to obtain the values of
probabilistic objectives and constraints. One of the effec-
tive yet simple approaches could be Monte Carlo simula-
tion (MCS). Using a large number of samples, Monte
Carlo simulation allows the estimation to the probability
of feasibility as follows,

P g xð Þ ≤ 0ð Þ ¼ 1

Q

XQ
i¼1

I xð Þ ð23Þ

whereQ is the total number of samples and I(x) is an indicator
function defined as

I xð Þ ¼ 1 if g xð Þ ≤ 0
0 if g xð Þ > 0

	
ð24Þ

Note that in (23), Q independent sets of design vari-
ables are obtained from sampling techniques on the basis

of the probability distribution of input random variables.
Thus, MCS is also referred to as sampling-based method
(Helton et al. (2006)). MCS is also a conventional method
of quantifying robustness (Yao et al. (2011)), allowing
determining the means and standard deviations of objec-
tives in . (19)- (21).

μ f xð Þ ≅

X Q

i¼1
f xið Þ

Q

σ2
f xð Þ≅ 1

Q−1

XQ
i¼1

f xið Þ−μ f xð Þ
� �2

8>>>>><
>>>>>:

ð25Þ

If xi is independent, the laws of large numbers allow us to
achieve any degree of accuracy by increasingQ. The accuracy
of MCS estimation can be quantified with the standard error
defined as:

err ¼ σ f xð Þffiffiffiffi
Q

p ð26Þ

The error is, therefore, unrelated to the problem dimension
(i.e., the number of design variables), which is very appealing
for large-scale problems. And the error is proportional to
1=

ffiffiffiffi
Q

p
, implying that the improvement of accuracy by one

order of magnitude will require 100 times more samples.
Such computational cost can be prohibitive in the application
for complex and highly nonlinear problems such as crashwor-
thiness analysis.

On the other hand, the minimum sampling size required for
the desired reliability level P(g(x) ≤ 0 ), as suggested by Tu
et al. (1999), is:

Q ¼ 10

1‐P g xð Þ≤0½ � ð27Þ

which indicates that for a 10 % estimated probability of fail-
ure; about 100 function evaluations (e.g., nonlinear FEA runs
in crashworthiness analysis) are required with some confi-
dence on the first digit of failure prediction. To verify an event
having a 1 % failure probability; about a 1000 structural anal-
yses are required, which would be usually considered too
expensive and some alternatives may be needed.

To apply MCS to crashworthiness optimization, the use of
surrogate models has been advocated by many researchers
(e.g., Acar and Solanki (2009b), Fang et al. (2014a), Gu
et al. (2001), Gu et al. (2013), Khakhali et al. (2010), Koch
et al. (2004), Lönn et al. (2011), Shi et al. (2013b)). After
validation, the surrogate models can be used to evaluate the
function values with a very large number (e.g., up to millions)
of times around each design point at a relatively low compu-
tational cost.

In conventional design optimization, the accuracy of a sur-
rogate model is a major concern because the purpose of a
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surrogate model is to find the optimum function value. In
reliability analysis, however, the region where the limit state
changes its sign, as in (23), is more important than the value of
the function itself. Therefore, it is more important to identify
the feasible region that satisfies the constraint conditions than
accuracy in predicting function values. Ramu et al. (2007)
explored the situation when the function is insensitive to input
variables, the error in reliability tends to be amplified due to a
relatively large error in identifying the failure (infeasible)
region.

When surrogate models are used for reliability analysis,
random variables are selected as input. For design optimiza-
tion, on the other hand, design variables are selected as input
to the surrogate models. When the mean of a random variable
is used as a design variable, it is possible to use the surrogate
model for both reliability analysis and design optimization. In
many cases, however, the design variables are different from
random variables. In such a case, it is necessary to extend the
dimension of surrogate models to include both design and
random variables (Qu and Haftka (2004)).

The main issue in surrogate models is the accuracy. Once
an accurate surrogate model is available, any method can be
applied to calculate reliability or to perform RBDO because
the function evaluation using the surrogate model is extremely
cheap. Therefore, the conventional MCS can be used to cal-
culate the reliability. However, due to sampling uncertainty,
using the conventional MCS can cause some difficulties in
calculating sensitivity information during RBDO. Lee et al.
(2011) proposed a method of calculating sensitivity using
score functions especially when input variables are correlated.

Approximate moment approach (AMA)When a function is
linear and input variables are normally distributed, the function
is also normally distributed. In such a case, it is much easier to
calculate the reliability.When a function is mildly nonlinear, it is
possible to approximate the function as a linear or a quadratic
function. Taylor series methods can be implemented to approx-
imate statistical moments of system output. The statistical ap-
proximations of f(x) using the first-order and second-order
Taylor’s expansions are expressed in (28) and (29), respectively:

μ f xð Þ ≅ f xð Þ
x

σ2
f xð Þ≅

Xn
i¼1

∂ f xð Þ
∂xi

� �
x
σ2
xi

8>><
>>: ð28Þ

μ f xð Þ ≅ f xð Þ
x
þ 1

2

Xn
i¼1

∂2 f
∂x2i

� �
x

σ2
xi

σ2
f xð Þ≅

Xn
i¼1

∂ f xð Þ
∂xi

� �
x
σ2
xi þ

1

2

Xn
i¼1

Xn
j¼1

∂2 f
∂xi∂x j

� �2

x
σ2xiσ

2
x j

8>>>>><
>>>>>:

ð29Þ

where σ2
xi represents the variances of the i-th variable xi and x

denotes the mean of the variable vector. To analytically eval-
uate the statistical information using (28) and (29), function
f(x) should be known. However, such a function f(x) may not
probably be easy to derive for various crashworthiness
criteria. Again, surrogate models can serve as an alternative
to approximating f(x) (e.g. Sun et al. (2014a), Sinha (2007),
Chen et al. (1996)). This could lead to significant improve-
ment in computational efficiency. However, it might be prob-
lematic as the combination of these two kinds of approxima-
tion methods (i.e., Taylor’s expansions and surrogate models)
could cause inaccurate results. Alternatively, derivatives of
responses with respect to random variables can be solved by
numerical methods (i.e. finite difference methods). Note that
(n+1) and (n+1)(n+2)/2 analyses are needed for the first and
second order Taylor’s expansions, respectively. Therefore,
Taylor’s series approximations will become more expensive
with increasing n, but can still be more efficient than MCS
(Koch et al. (2004)). Other drawbacks of AMA can be found
in Youn and Choi (2004b).

Dual surrogate model (DSM) Following the work by
Vining and Myers (1990), dual surrogate models (DSM)
have been used in crashworthiness (e.g., Sun et al. (2011),
Lönn et al. (2010)) in which two surrogate models are
created, one for the mean and the other for the variance
or standard deviation of a response. Two types of vari-
ables are considered in such a system: namely design
(controllable) variables and noise (uncontrollable) vari-
ables (Jin et al. (2003)). For constructing DSMs, a cross
product array needs to be generated, where design vari-
ables are arranged in the inner array while noise variables
in the outer array. In each set of design variables, the
simulation is repeated several times to capture the mean
and standard deviation of responses. Then, they are
approximated as the functions of the design variables
using surrogate modeling for the optimization. One issue
of this approach is how to reasonably generate the outer
array to capture accurate statistical information in an
efficient manner. Besides, only noise variables can be
uncertain and design variables are assumed to be
deterministic, which could limit spectrum of applications
whose uncertainties in design variables may not be
neglected. For this purpose, Aspenberg et al. (2012) pro-
posed a method to use global and local surrogate models
for constructing DSMs, in which uncertainties in both
design variables and noise variables can be considered.

Most probable point based reliability analysis In addition
to the above-mentioned quantification methods for uncer-
tainty, the most probable point (MPP) based reliability
analysis has been employed to the crashworthiness(29)
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optimization (Youn et al. (2004), Rais-Rohani et al.
(2010), Sinha (2007)). First Order Reliability Method
(FORM) (Hohenbichler and Rackwitz (1982)) is the most
commonly used MPP based method in practical applica-
tions, which fits a tangential hyperplane to the limit state
hypersurface at MPP. In RBO, the probabilistic constraint
can be assessed to check whether or not the relibility
index has been achieved (greater than the target value),
which is called reliability index approach (RIA) (Sinha
(2007)). The RIA is often found to be associated with
high computational cost and/or with lack of robustness
(sometimes simply fails to converge). That is, when the
system is very safe, the reliability index approaches infin-
ity. To overcome this difficulty, an alternative perfor-
mance measure approach (PMA) was proposed (Tu et al.
(1999); Youn et al. (2004)). In PMA, instead of finding
MPP point that satisfies the limit state constraint, the val-
ue of limit state is minimized on the points that satisfies
the reliability constraint. The advantage of PMA is that it
can always find a solution, while its disadvantage is that
the value of the reliability is not available.

It should be noted that even with the abovementioned
methods for evaluating the probabilistic constraint, the
implementation of RBO could be still fairly challenging
for large-scale problems (Youn and Choi (2004a), Youn
and Choi (2004b)). Moreover, for such application areas
as crashworthiness design, lack of sensitivity information
leads to considerable difficulties for performing RBO
(Youn and Choi (2004a), Youn and Choi (2004b)). To
tackle this problem, surrogate modeling has been integrat-
ed into the reliability analysis for complex problems
(Youn and Choi (2004a), Youn and Choi (2004b), Youn
et al. (2004)).

Different from the complexity of reliability analysis, some
alternative simplification methods have also been proposed to
translate the constraint with uncertainty into a quasi-
deterministic constraint so as to balance the computational
cost and accuracy. One of these methods, namely worst case
analysis (Parkinson et al. (1993)), has been used in crashwor-
thiness design by Zhang et al. (2007a), Zhu et al. (2009) and
Baril et al. (2011).

4.2.3 Uncertainty based optimization for crashworthiness

Table 5 in Appendix summarizes the research works on crash-
worthiness optimization with uncertainties in the literature,
from which we can classify them according to the sources of
uncertainties as follows:

1) Manufacturing uncertainties. The uncertainties induced
by manufacturing processes account for the discrepancy
between the nominal design and corresponding real prod-
uct. They may include parameters such as geometry

(thickness, shape), material properties (Young’s modulus,
Poisson’s ratio, density, yield stress, tangent modulus, etc)
of crashing structures.

2) Operational uncertainties. Uncertainties present in differ-
ent operational conditions upon crashing, such as occu-
pant mass, impact speed, impact position, impact angle,
and barrier, etc.

3) Modeling uncertainties. These are related to mathematical
and numerical modeling techniques for extracting crash-
ing performances. For example, numerical errors in FEA
and uncertainties in surrogate modeling (Zhang et al.
(2013a), Zhang et al. (2013b), Zhu et al. (2013) ) should
be considered in crashworthiness design.

Note that although various approaches of uncertainty opti-
mization have been developed and adopted in various crash-
worthiness designs, the optimum results have seldom been
validated experimentally in a statistical fashion. The valida-
tion of uncertainty optimization in crashworthiness should be
an important topic in the future, which could lay a solid foun-
dation to the widespread use in industries.

4.3 Topology optimization in crashworthiness

The topology optimization for structural crashworthiness
began with Mayer et al’s work (Mayer et al. (1996)).
They used the homogenization technique and optimality
criteria algorithm to distribute elemental material in a
progressive fashion. In their work, internal energy was
accounted as the objective function subject to a mass
constraint. Their method was applied to the design of a
three-dimensional automotive rear rail. Pedersen (2003a)
proposed a topology optimization method for two-
dimensional frame ground structure. The objective aimed
to obtain a desired energy absorption history for a
crushed structure, where the plastic beam elements could
undergo large rotations and translation. Analytical
sensitivity was derived to avoid expensive calculation
of numerical gradients. However, the contact between
elements was ignored because of the number of
discontinuities and numerical instabilities associated
with the highly nonlinear phenomena. The further work
done by the same author can also be found in Pedersen
(2003b) and Pedersen (2004).

Soto (2004) presented a heuristic non-gradient method-
ology to vary the density within the design domain for a
prescribed distribution of plastic strains and stresses with
a mass constraint. This methodology utilizes a density
approach with two base materials (i.e., stiff and extremely
soft ones), to represent a foam-like structure. Forsberg and
Nilsson (2007) devised another non-gradient technique by
using thickness as the design variable with one base ma-
terial. However, through varying the thickness of each
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element, this methodology can only handle plate or shell
structures. Huang et al. (2007) used the bi-directional evo-
lutionary optimization (BESO) technique to design energy
absorbing structures, where a discrete sensitivity of ele-
ment was derived to address two principal design criteria,
i.e. absorbed energy per unit volume and absorbed energy
ratio.

Ortmann and Schumacher (2013) proposed a graph and
heuristic based topology optimization technique for the
design of profile cross-sections of crashing structures.
They divided the optimization problem into two different
loops. In the outer loop, the topology and shape of the
structure are optimized based on expert knowledge; while
in the inner loop the size and shape optimization takes
place. This method is only capable of addressing the to-
pological design of cross-sections (i.e., it can only solve
the problems with a 2D design space though the structure
investigated can be 3D).

Based on the hybrid cellular automaton (HCA) method
(Tovar et al. (2007)), Patel et al. (2009) more recently
proposed a heuristic (non-gradient) approach to address-
ing continuum-based topology optimization for structural
crashworthiness. Similarly to a fully-stressed design, all
elements in the structure were expected to contribute to
the energy absorption through plastic deformation; and
thus the optimum was achieved to obtain a uniform inter-
nal energy density in the whole structure. Based on their
work, commercial software LS-TaSC was developed
(Roux (2011)), which allows generating optimal crash-
worthy configurations. However, this method still needs
to overcome the following limitations (Witowski et al.
(2012)): (1) While the uniform IED likely helps produce
a better topology with more even distribution of energy
absorption in the material, it may unnecessarily ensure an
overall maximum of energy absorption. (2) The inclusion
of constraint (e.g. the maximum displacement) is realized
indirectly by using the mass constraint. (3) Since HCA
accumulates material distribution in the areas with high
stresses and strains, the risk of rupture in these areas
should be taken into account. (4) Although this method
is in heuristic nature without sensitivity information, it
takes a large number of iterations prior to convergence.
To address the third problem, Guo et al. (2011) proposed
a strain-based, dynamic multi-domain topology optimiza-
tion technique for crashworthy structures, in which the
optimization was reformulated for dynamically dividing
two different subdomains in terms of the plastic strain
limit. During the optimization, the material in low-strain
subdomain was distributed by driving the IED of each
material element to the prescribed target. The material in
high-strain subdomain was distributed to reduce the

effective plastic strain to the limiting value so as to ensure
the integrity of the structure. Bandi et al. (2013) presented
a new method in the HCA framework to optimize the
crashworthy structures with controlled energy absorption.
Again, the design domain was divided into two
subdomains for different requirements. That is to say that
the flexible subdomain close to the incident end was de-
vised to provide cushioning effect (lower peak force),
while the stiff subdomain close to the support (distal)
end was to maintain the integrity of the entire structure.

Topological optimization is perhaps one of the most
difficult problems being addressed in crashworthiness de-
sign to date. That is because of considerable complexity
of obtaining topological sensitivity or optimality criteria
for effectively addressing the crash dynamic process in-
volving material and geometric nonlinearities, contact,
strain rate etc. For this reason, alternative methods have
been adopted to simplify such dynamic nonlinear problem
through equivalent static and/or linear counterpart.
Christensen et al. (2012) used the inertia relief method
as a practical tool for crashworthiness topology optimiza-
tion of a body-in-white. Chuang and Yang (2012) pointed
out that the inertia relief method fails to fully support
crashworthiness topology optimization and special atten-
tion is required for the definition of the loads in applica-
tions. Despite its limitations as mentioned in Section 3.2,
the ESL method has also been employed for simplifying
crashworthiness topology optimization problems recently
(Kaushik and Ramani (2014)).

5 Optimization of crashworthy structures

5.1 Configurations for energy-absorbing structures

To achieve better crashworthiness performance, various novel
configurations of structures have been proposed and further
optimized as an energy absorber during crashes, as summa-
rized in Table 6 of Appendix. The following sub-sections will
briefly outline these categories of studies.

5.1.1 Thin-walled tubes

Thin-walled tubes have been exhaustively investigated in
crashworthiness design by using analytical, numerical and
experimental methods. Alexander (1960) was amongst
one of the pioneers who derived a closed-form formula
for calculating average crushing force. Wierzbicki and
Abramowicz (1983), Abramowicz and Jones (1984) and
Abramowicz and Jones (1986) also carried out experi-
mental and theoretical studies on the axial crushing of
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tubes subjected to static and dynamic loads in the early
stage. More recently, thin-walled tubes with various geo-
metric sections have been studied for crashworthiness,
such as circular, square/polygonal, conical/ tapered and
hat etc, to seek for optimal designs (please refer to
Table 6).

5.1.2 Multi-cell tubes

In general, the number of angular elements (corners) in a
tubal cross-section largely determines the energy absorp-
tion and crashing behaviors (Wierzbicki and Abramowicz
(1983) and Abramowicz and Wierzbicki (1989)). It is
therefore expected to design thin-walled tubes with mul-
tiple cells and internal webs for achieving better energy-
absorbing characteristics. Crashworthiness optimization
has been also introduced to the design of various multi-
cell tubes (Table 6). For example, Hou et al. (2008b)
adopted surrogate modeling to optimize the single, dou-
ble, triple and quadruple cell sectional columns, aiming to
maximize the SEA and minimize the peak force Fmax.
Zhang et al. (2008) found that for bitubal columns with
internal ribs, an appropriate combination of the side
length of the inner profile, inner and outer walls and
strong ribs are preferred for best energy absorption. Liu
et al. (2014) pointed out that the multi-cell section with
double vertical internal stiffeners can absorb more energy
and they further optimized this novel structure for the
application to automotive front rails.

5.1.3 Foam-filled structures

Substantial research efforts on foam-filled structures have
been devoted through various experimental (e.g., Seitzberger
et al. (1997), Gupta and Velmurugan (1999), Santosa et al.
(2000)), analytical (e.g., Gupta and Velmurugan (1999)) and
numerical methods (e.g., Seitzberger et al. (1997), Santosa
et al. (2000)). These studies demonstrated that foam-filled
structures can undergo large deformation at nearly constant
load. The presence of the foam-filler materials in thin-walled
structures helps improve crashing stability and collapse
modes, thereby enhancing the overall crashworthiness
(Borvik et al. (2003), Seitzberger et al. (2000), Santosa et al.
(2000)). However, the crashworthiness performance is highly
dependent on the foam density and geometrical configurations
(Seitzberger et al. (1997), Reyes et al. (2004)). To address this
issue, optimization techniques were used to select best possi-
ble combination of tube geometry and foam density in both
simple tubes (e.g., Yang and Qi (2013), Hou et al. (2009), Bi
et al. (2010)) and complex structures (e.g., Kim (2001),
Hanssen et al. (2006) and Villa et al. (2011).

5.1.4 Tailor-welded blank (TWB) and tailor-rolled blank
(TRB) structures

To maximize the functionality of material in crashworthiness
and energy absorption, substantial efforts have been devoted
to the applications of proper tailor-welded blanks (TWB)
structures (Ahmetoglu et al. (1995), Abdullah et al. (2001),
Kinsey et al. (2000)). The TWB technology consists of laser-
welded sheet metals with different thicknesses and different
materials for a single workpiece. Crashworthiness
optimization of TWB structures often aims to seek the best
partition of different materials and thicknesses of each blank
for both lightweighting and crash behaviors. For example, Pan
et al. (2010) optimized a TWB based B-pillar structure to
minimize the weight subject to the crashworthiness constraints
of vehicular roof crush and side impact. Xu et al. (2013) dem-
onstrated that the multi-component TWB structure can be op-
timized to further enhance the crashworthiness and reduce the
weight.

Different from TWB, the TRB technology varies the blank
thickness by a rolling process, which leads to a continuous
thickness variation in the sheet. Chuang et al. (2008) demon-
strated the feasibility of design optimization for TRB technol-
ogy to achieve a better functional performance and reduce the
mass of a vehicle structure.

5.1.5 Composite structures

One option to achieve lightweight design is to replace
heavy metallic materials with light composites. Although
most composite materials display little plastic characteris-
tics, properly designed composite materials could absorb
more energy per unit mass than the conventional metals
(Ramakrishna (1997)). Lanzi et al. (2004b) optimized the
shape of a composite cylindrical energy absorber and
found that the moderate eccentricity and conicity led the
structures to have higher energy absorption efficiency and
less mass. Zarei et al. (2008) found that the optimized
composite crash box could absorb around 17 % more
energy with 26 % lower weight than the optimized alumi-
num counterpart. Belingardi et al. (2013) optimized the
cross-sectional shape, wall thickness and transverse cur-
vature of the E-Glass pultruded bumper and they achieved
comparable energy absorption with steel and E-Glass fab-
ric bumpers but better progressive failure mode with re-
duced peak load. In the work by Paz et al. (2014), the
optimal GFRP honeycomb-filled tube improved the spe-
cific energy absorption by 40 % with a similar peak load
or a lowered the peak load (by 37 %) with similar mass
and energy absorption capacity. Duan et al. (2014) studied
the crashworthiness optimization of a tapered sinusoidal
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specimen made of fiber reinforced polymers materials.
Their optimal results showed that a smaller ratio of the
thickness to the radius of the specimen was often benefi-
cial to the enhancement of specific energy absorption and
reduction of the peak force.

The energy absorption performance of composite struc-
tures can be tailored by controlling various material struc-
tures and parameters, such as fiber type, matrix configu-
ration, fiber architecture, specimen geometry, process con-
dition and fiber volume fraction (Jacob et al. (2002)).
However, the existing optimization literature considered
only geometrical parameters as design variables and it
remains unknown whether or not crashworthiness optimi-
zation can be applied to the problems involving other
material and process parameters; and from this perspec-
tive, composite structures still have considerable room to
be further optimized for better crashworthiness.

5.1.6 Functionally graded structures

To tailor the crashworthiness performance, functionally-
graded materials and structures are drawing increasing
attention more recently. For example, Sun et al. (2010a) in-
vestigated the crashing characteristics of functionally graded
foam (FGF)-filled columns, in which the foam has a gradient
density along the axial direction, and they sought the best
possible exponential gradient via a multiobjective optimiza-
tion. Fang et al. (2014b) compared the bending behavior of
different FGF-filled structures and found the FGF structures is
able to generate more competent designs than the uniform
counterpart.

In addition to FGF, the concept of functionally graded
thickness (FGT) structures has also been introduced to
crashworthiness optimization. Sun et al. (2014b) proposed
a novel tube with a longitudinal variation of thickness and
identified the best possible thickness gradient for achiev-
ing the highest SEA and lowest Fmax using multiobjective
optimization. Note that during crashing process severe

deformation with combined bending and membrane defor-
mation often takes place near the corners of tubes (Kim
(2002)). Zhang et al. (2014a) extended the concept of
transverse FGT to the square tube by placing more mate-
rial to the corners and discovered 30–35 % increase in
energy absorption efficiency. To take the advantages of
FGT and multi-cell structures, Fang et al. (2015b) pro-
posed the transverse FGT multi-cell tubes; and they found
that the graded structures can generate more competent
Pareto solutions in terms of Fmax and SEA (Fig. 7a).
Under almost the same value of Fmax, the crashing force
of the FGT tube maintains at a higher level overall than
that of the uniform tube seen in Fig. 7b, where the shaded
area between these two curves is the additional energy
absorbed by the FGT structure. More recently, there has
been also research work to investigate the optimization for
double gradient structures (i.e., an FGF-filled tube with
FGT) (Fang et al. (2016)). The study of these functionally
graded structures should be extended to engineering
applications.

5.2 Industrial applications

Over the past two decades, structural optimization has been
widely used for crashworthiness design of a full-scale vehicle
in the automotive industry. For example, Liao et al. (2008b)
investigated a multiobjective optimization problem of frontal
crash safety of a full-scale vehicle, where both full frontal and
40 % offset frontal crashes were considered based on polyno-
mial surrogate modeling method with stepwise regression. A
set of Pareto solutions was generated using NSGA-II, which
provided the decision maker with insightful information. Acar
and Solanki (2009b) performed a system reliability based op-
timization of an automotive structure for crashworthiness and
analyzed the reliability allocation in different failure modes.
They evaluated the effect of various uncertainty reduction
measures and plotted the tradeoff of uncertainty reduction
measures, system reliability, and structural weight. Liang

Fig. 7 Optimization results of
FGT and uniform multi-cell tubes
(Fang et al. (2015b)): a) Pareto
front; b) crushing force
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and Le (2009) investigated an SSM based crashworthiness
optimization for bus structures to maintain survival space
and reduced occupant injury when a rollover occurs. The re-
sults showed the side wall deformations were reduced by 49.2
and 39.4 % for upper and lower frames respectively, while the
bus weight was only increased by 1.6 %. Goel et al. (2010)
proposed an efficient resource allocation of NSGA-II with
1,000 simulations and a real-life vehicle model comprised of
58,000 elements was used for design testing. Use of a moder-
ate population size would provide a reasonable trade-off
among convergence to Pareto front, diversity of non-
dominated solutions and computational cost in a parallel
framework. The results also showed that for the problemswith
a small feasible region, the number of feasible solutions can be
significantly increased in the first few generations involving
about 200 simulations. The optimal design could lead to more
than 50 % reduction in the peak acceleration and almost 6 %
increase in the time to reach zero velocity while remaining the
mass and maximum intrusive displacement unchanged. Kiani
et al. (2013) investigated an RBF-based optimization of auto-
motive structures considering multiple crashes and vibration
scenarios. While the intrusion, acceleration, internal energy in
full frontal, offset frontal and side impacts and three frequen-
cies in vibration characteristics satisfied the constraints, their
study achieved a weight saving of 3.6 % by optimizing 20
components of the vehicle.

Real-world loading conditions of crashworthiness optimi-
zation mainly include the front crash, side crash, and rollover
in the literature (as summarized in Table 7). In front impact,
deformable yet stiff front structures with crumple zones are
required to absorb the kinetic energy so as to reduce the crash
energy transmitting to occupants. Besides, intrusion into the
occupant compartment should also be prevented, especially in
the case of offset crashes. As a result, crash pulse (CP) (e.g.,
Craig et al. (2005), Goel et al. (2010), Liao et al. (2008a)) or its
variants peak acceleration amax (e.g., Hamza and Saitou
(2012), Parrish et al. (2012), Zhu et al. (2012), Gu et al.
(2013)) and peak force Fmax (e.g., Zhu et al. (2009), Wang
et al. (2011b)) and intrusion Intr (e.g., Redhe and Nilsson
(2004), Yang et al. (2005), Craig et al. (2005)) are often used
as design criteria in optimization for a front impact. In the side
impact, side structures are expected to minimize intrusion and
to prevent doors from opening. Due to little space for defor-
mation, Intr is the emphasis in structural optimization under
side impact (e.g., Bojanowski and Kulak (2011), Wang et al.
(2011a), Aspenberg et al. (2012), Xu et al. (2013)). To ensure
the rollover safety, a large resistance force and/or a small in-
trusion in the roofing structure, are commonly adopted to be
the design criteria (e.g., Liang and Le (2009), Pan and Zhu
(2011a), Bojanowski and Kulak (2011), Su et al. (2011)).

Because of the complexity of crashworthiness in the con-
text of full-scale vehicles, the computational cost of FEA in
optimization iterations can be rather high. Thus, surrogate

models have been commonly recognized as an effective
alternative in industry applications. However, the “curse of
dimensionality” problem arises when the number of design
variables increases. In other words, the computational cost
for obtaining a large number of training points can make
the surrogate modeling less attractive and even infeasible
(Koch et al. (1999)). There seems to be two kinds of ap-
proaches to address this issue in literature. First, direct cou-
pling population-based optimization algorithms with FEA
could carry out the optimization more efficiently when the
number of design variables becomes large (Duddeck
(2008), Xu et al. (2014), Xu et al. (2015)). It was also
recommended to use hybrid approaches to combine both
surrogate modeling and direct coupling methods (Redhe
et al. (2004)), in which the optimal result from the direct
coupling method was used as a starting point for subsequent
further surrogate-based optimization. Second, variable
screening techniques could be used to reduce the dimen-
sionality of the problem before performing a surrogate mod-
el based optimization (Simpson et al. (2004)). In this regard,
Craig et al. (2005) identified some important variables
through an analysis of variance (ANOVA) based on linear
surrogate models. Liang and Le (2009) investigated the ca-
pability of energy absorption of the components to reduce
the dimension of the optimization problem. Su et al. (2011)
simply considered the components with high strain energy
during the bus rollover as the influential structures. Hou
et al. (2012) proposed a method of unreplicated saturated
factorial design to screen out the less important variables for
a vehicle crash. In industrial applications, the difficulty with
variable screening may be due to the presence of multiple
responses (Simpson et al. (2001)). In other words, complex
industry problems should inevitably consider multiple per-
formance responses and each response may unfortunately
require different important design variables, which results
in the breakdown of the variable screening process.

Automotive safety components/subsystems have been
separated from the vehicle for crashworthiness optimiza-
tion in literature. Longitudinal rails, bumpers, side pillar
structures are some typical examples for optimizing the
crashworthiness of components as listed in Table 8.

Real-world road systems were considered in crashworthiness
optimization for vehicular structures. The guardrail is a common
traffic facility on roads, and its design affects the functionality of
absorbing the kinetic energy and redirecting the errant vehicle
(Hou et al. (2014b), Kurtaran et al. (2002), Yi et al. (2012)).

As discussed above, there are three different levels of systems
in crashworthiness optimization of automotive structures: com-
ponent level, vehicle level, and vehicle-road facility level. A
futuristic problem arising is how to integrate the designs of dif-
ferent system levels to ultimately improve the occupant safety.

As a broad topic, crashworthiness optimization also applies to
other industries in real-life scenarios. In the aerospace
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engineering, crashworthiness optimization has been applied to
subfloor structures of helicopters by several researchers
(Bisagni et al. (2002), Hajela and Lee (1997), Lanzi et al.
(2004a), Astori and Impari (2013)). In the maritime industry,
crashworthiness optimization can enhance the energy-absorbing
capacity of the fender structure (Jiang and Gu (2010)).

6 Conclusions

With the growing socioeconomic concerns on transport safety
and fuel consumption, significance of designing crashworthy
structures has been more and more recognized. Computational
optimization provides a powerful tool to achieve best possible
crashworthiness with lightest structures. This article provides a
state-of-the-art review of a range of key issues from structural
configurations, crashworthiness criteria, modeling strategies, to
multiobjective, uncertainties, and industrial applications. From
this comprehensive review, we can draw the following conclu-
sions and recommendations for futuristic crashworthiness
optimization.

& Due to the complexity of crashworthiness problem, surrogate
modeling has been themost popular and feasible approach to
formulating the design criteria for optimization, especially in
small scale problems (e.g. < 20 design variables). Use of
multiple surrogate models is recommended for addressing
modeling accuracy and optimization effectiveness. To make
full use of high-performance computing (HPC), efficient
global optimization (EGO) and successive surrogate model-
ing (SSM) methods can be conducted with parallel comput-
ing to save the wall-clock time.

& For real-word problems with a large number of design
variables, direct coupling population-based optimization
algorithms with finite element analysis (FEA) may be
more suitable; and data mining techniques are drawing
increasingly attention for enhancing the optimization effi-
ciency of population-based optimization algorithms.

& Population-based optimization algorithms are recom-
mended for dealing with multiobjective problems for their
capability of producing well-distributed Pareto solutions
for decision making.

& Due to their limitations, equivalentmethods (i.e., inertia relief
and equivalent static loads) might not be a general strategy
for crashworthiness topology optimization. Rigorous formu-
lation still needs further studies for addressing nonlinearity
and stability issues in topological sensitivity analysis.

& When uncertainties are presented, crashworthiness opti-
mization could become challenging. Surrogate-based
Monte Carlo simulation (MCS) is recommended to quan-
tify the data of uncertainties during optimization itera-
tions. Besides, the experimental validation of robust and/
or reliable optimization results is recommended, whenever
possible, as a focus of future studies prior to applying such
uncertainty optimizations to real world more extensively.

& Various novel structures andmaterials have been proposed
and optimized to enhance the crashworthiness.While rath-
er promising, composite structures may still need to be
further studied for tailoring better crashing performance.
The concept of functionally graded structures has proven
considerable effectiveness in the crashworthiness and their
further applications in the industry could be a promising
topic of study in the future.

& For designs of each component, their individual roles and
design optimization should be addressed in an integrated
form subject to proper design criteria so that they can
perform the best as a whole.

& Some natural hierarchical materials have demonstrated re-
markable energy absorption and impact resistance
(McKittrick et al. (2010)). Bio-inspired design and micro-
structural optimization of composites could be a promising
area of study, which could open up a new avenue pushing the
lightweighting for crashworthiness to a new level.
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Appendix

Table 1 Injury-based metrics

Metrics Publications

HIC Hong and Park (2003), Youn et al. (2004), Zhu et al. (2008), Oman and Nilsson (2010), Yi et al. (2012)

CP Wu et al. (2002), Craig et al. (2005), Goel et al. (2010), Liao et al. (2008a), Liao et al. (2008b), Stander (2012),
Stander (2013)

Intr Rakheja et al. (1999), Kurtaran et al. (2002), Redhe et al. (2004), Redhe and Nilsson (2004), Craig et al. (2005),
Forsberg and Nilsson (2006), Redhe and Nilsson (2006), Zhang et al. (2007a), Duddeck (2008), Liao et al. (2008a),
Liao et al. (2008b), Shin et al. (2008), Zhu et al. (2008), Acar and Solanki (2009b), Acar and Solanki (2009a),
Horstemeyer et al. (2009), Liang and Le (2009), Acar (2010b), Acar (2010a), Goel et al. (2010), Bojanowski
and Kulak (2011), Pan and Zhu (2011b), Su et al. (2011), Wang et al. (2011a), Zhu et al. (2011), Hamza
and Saitou (2012), Hou et al. (2012), Parrish et al. (2012), Yi et al. (2012), Yildiz and Solanki (2012),
Zhu et al. (2012), Gu et al. (2013), Kiani et al. (2013), Shi et al. (2013a), Shi et al. (2013b), Xu et al. (2013),
Zhang et al. (2013b), Hamza and Shalaby (2014), Hou et al. (2014a), Kiani et al. (2014), Wang and Shi (2014),
Lönn et al. (2009), Aspenberg et al. (2012), Stander (2012), Stander (2013)

Intrusion Velocity
(IntrV)

Yang et al. (2000), Blumhardt (2001), Gu et al. (2001), Fu and Sahin (2004), Koch et al. (2004), Youn et al. (2004),
Sinha (2007), Sinha et al. (2007), Zhu et al. (2008), Baril et al. (2011), Wang et al. (2011a), Rangavajhala
and Mahadevan (2013), Xu et al. (2013), Zhang et al. (2013a), Zhu et al. (2013), Hou et al. (2014a),
Marklund and Nilsson (2001)

amax Rakheja et al. (1999), Blumhardt (2001), Kurtaran et al. (2002), Pedersen (2003b), Redhe et al. (2004),
Fang et al. (2005), Forsberg and Nilsson (2006), Redhe and Nilsson (2006), Cristello and Kim (2007),
Shin et al. (2008), Horstemeyer et al. (2009), Goel et al. (2010), Jeong et al. (2010), Rais-Rohani et al. (2010),
Sun et al. (2010b), Wang et al. (2010), Pan and Zhu (2011b), Sun et al. (2011), Zhu et al. (2011), Gu et al.),
Hamza and Saitou (2012), Parrish et al. (2012), Zhu et al. (2012), Gu et al. (2013), Ingrassia et al. (2013),
Kiani et al. (2013), Zhang et al. (2013b), Zhu et al. (2013), Abbasi et al. (2014), Hamza and Shalaby (2014),
Hou et al. (2014a), Hou et al. (2014b), Kiani et al. (2014), Mohammadiha and Beheshti (2014),
Aspenberg et al. (2012)

Fmax Hanssen et al. (2001), Kurtaran et al. (2002), Lee et al. (2002), Pedersen (2003b), Redhe et al. (2004), Forsberg
and Nilsson (2006), Hou et al. (2007), Huang et al. (2007), Zhang et al. (2007a), Hou et al. (2008a),
Liu (2008a), Liu (2008c), Liu (2008b), Hou et al. (2009), Zhang et al. (2009), Zhu et al. (2009), Jiang
and Gu (2010), Kaya and Oeztuerk (2010), Khakhali et al. (2010), Liu (2010b), Liu (2010a), Shariati et al. (2010),
Sun et al. (2010a), Wang et al. (2010), Allahbakhsh et al. (2011), Hou et al. (2011), Pan and Zhu (2011b),
Wang et al. (2011b), Wang et al. (2011a), Yin et al. (2011b), Zhu et al. (2011), Najafi and Rais-Rohani (2012),
Qi et al. (2012), Zhang et al. (2012), Zhu et al. (2012), Belingardi et al. (2013), Esfahlani et al. (2013),
Gedikli (2013), Song et al. (2013), Tang et al. (2013), Yang and Qi (2013), Yin et al. (2013), Duan et al. (2014),
Fang et al. (2014b), Fang et al. (2014a), Hou et al. (2014c), Mohammadiha and Beheshti (2014),
Najafi et al. (2014), Nguyen et al. (2014), Paz et al. (2014), Qi and Yang (2014), Sun et al. (2014a),
Sun et al. (2014b), Tran et al. (2014), Yin et al. (2014a), Yin et al. (2014b), Zheng et al. (2014), Redhe et al. (2002),
Jansson et al. (2003), Hunkeler et al. (2013), Bisagni et al. (2002), Lanzi et al. (2004a)
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Table 2 Energy-based metrics

Metrics Publications

EA Mayer et al. (1996), Yamazaki and Han (1998), Rakheja et al. (1999), Shi and Hagiwara (2000), Hanssen et al. (2001),
Kim (2001), Kim et al. (2002), Kurtaran et al. (2002), Lee et al. (2002), Lanzi et al. (2004b), Fang et al. (2005),
Hanssen et al. (2006), Zarei and Kroger (2006), Yang and Qi (2013), Zhang et al. (2007a), Zhang et al. (2007c),
Liu (2008a), Liu (2008c), Liu (2008b), Zarei and Kroger (2008a), Zarei and Kroger (2008b),
Zarei and Kroger (2008c), Acar and Solanki (2009b), Acar and Solanki (2009a), Horstemeyer et al. (2009),
Hou et al. (2009), Zhang et al. (2009), Zhu et al. (2009), Kaya and Oeztuerk (2010), Lönn et al. (2010), Wang et al. (2010),
Marzbanrad and Ebrahimi (2011), Pan and Zhu (2011b), Sun et al. (2011), Zhu et al. (2011), Ghamarian and Zarei (2012),
Gu et al.), Parrish et al. (2012), Zhu et al. (2012), Esfahlani et al. (2013), Gu et al. (2013), Tang et al. (2013),
Zhang et al. (2013b), Paz et al. (2014), Redhe et al. (2002), Milho et al. (2004)

SEA Zarei and Kroger (2006), Hou et al. (2007), Zarei and Kroger (2007), Hou et al. (2008a), Zarei and Kroger (2008a),
Zarei and Kroger (2008c), Zhang et al. (2009), Bi et al. (2010), Jiang and Gu (2010), Khakhali et al. (2010),
Liu (2010b), Liu (2010a), Shariati et al. (2010), Sun et al. (2010a), Sun et al. (2010b), Acar et al. (2011),
Allahbakhsh et al. (2011), Hou et al. (2011), Guo et al. (2011), Marzbanrad and Ebrahimi (2011), Toksoy and
Güden (2011), Yin et al. (2011a), Yin et al. (2011b), Ghamarian and Zarei (2012), Qi et al. (2012), Zhang et al. (2012),
Belingardi et al. (2013), Gedikli (2013), Song et al. (2013), Yang and Qi (2013), Yin et al. (2013), Chen et al. (2014),
Duan et al. (2014), Fang et al. (2014b), Fang et al. (2014a), Hou et al. (2014c), Nguyen et al. (2014), Qi and Yang (2014),
Sun et al. (2014a), Sun et al. (2014b), Tran et al. (2014), Yin et al. (2014a), Yin et al. (2014b), Zhang et al. (2014a),
Zhang et al. (2014b), Zheng et al. (2014), Hunkeler et al. (2013), Costas et al. (2014), Lanzi et al. (2004a), Zhu et al. (2016)

CFE/ LU Avalle et al. (2002), Chiandussi and Avalle (2002), Avalle and Chiandussi (2007), Shakeri et al. (2007), Acar et al. (2011),
Marzbanrad and Ebrahimi (2011), Gedikli (2013), Zhang et al. (2014b), Zhou et al. (2014), Costas et al. (2014)

Favg Xiang et al. (2006), Zarei and Kroger (2006), Yang and Qi (2013), Zarei and Kroger (2008a), Zarei and Kroger (2008c),
Zhang et al. (2008), Bi et al. (2010), Toksoy and Güden (2011), Ghamarian and Zarei (2012), Najafi and
Rais-Rohani (2012), Song et al. (2013), Fang et al. (2014a), Najafi et al. (2014), Sun et al. (2014a),
Bisagni et al. (2002), Lanzi et al. (2004a)

deff / UR Shakeri et al. (2007), Marzbanrad and Ebrahimi (2011), Zhang et al. (2012), Shi et al. (2013a), Shi et al. (2013b),
Wang and Shi (2014)

IED Forsberg and Nilsson (2007), Patel et al. (2009)

Table 3 Surrogate models in crashworthiness optimization

Surrogate models Publications

Individual surrogate models PRS Blumhardt (2001), Kim (2001), Han and Yamazaki (2003), Hong and Park (2003), Xiang et al. (2006),
Zarei and Kroger (2006), Zhang et al. (2007a), Zhang et al. (2007c), Liu (2008a), Liu (2008c),
Liu (2008b), Shin et al. (2008), Zarei and Kroger (2008a), Zarei and Kroger (2008b), Zarei and
Kroger (2008c), Hou et al. (2009), Bi et al. (2010), Kaya and Oeztuerk (2010), Liu (2010b),
Liu (2010a),Shariati et al. (2010), Sun et al. (2010a), Zhang et al. (2010), Allahbakhsh and
Saetni (2011), Baril et al. (2011), Hou et al. (2011), Guo et al. (2011), Sun et al. (2011),Toksoy
and Güden (2011), Yin et al. (2011b), Bae and Huh (2012), Ghamarian and Zarei (2012),
Hou et al. (2012), Qi et al. (2012), Yin et al. (2013), Zhu et al. (2013), Duan et al. (2014),
Hou et al. (2014a), Hou et al. (2014c), Kiani et al. (2014), Mohammadiha and Beheshti (2014),
Nguyen et al. (2014), Sun et al. (2014b), Tran et al. (2014), Zhang et al. (2014a), Lönn et al.
(2009), Redhe et al. (2002), Avalle et al. (2002), Chiandussi and Avalle (2002), Avalle and
Chiandussi (2007), Marklund and Nilsson (2001), Jansson et al. (2003), Esfahlani et al. (2013),
Yang et al. (2000), Gu et al. (2001), Fu and Sahin (2004), Koch et al. (2004), Youn et al. (2004),
Sinha (2007),Sinha et al. (2007), Liao et al. (2008b), Liao et al. (2008a), Aspenberg et al. (2012),
Lönn et al. (2011), Sun et al. (2010b), Redhe and Nilsson (2004)

KRG Redhe and Nilsson (2006), Zhang et al. (2012),Yang and Qi (2013), Zhang et al. (2013a), Zhang et al.
(2013b), Fang et al. (2014b), Qi and Yang (2014), Zhang et al. (2014b), Fang et al. (2014a)

RBF Hamza and Shalaby (2014), Lanzi et al. (2004b), Horstemeyer et al. (2009), Rais-Rohani et al. (2010),
Bojanowski and Kulak (2011), Su et al. (2011), Farkas et al. (2012), Najafi and Rais-Rohani (2012),
Yildiz and Solanki (2012), Gu et al. (2013), Kiani et al. (2013), Hou et al. (2014b), Acar (2010a),
Aspenberg et al. (2012)

ANN Sun et al. (2010b), Hajela and Lee (1997),Shi and Hagiwara (2000), Khakhali et al. (2010), Jiang
and Gu (2010), Zhu et al. (2008), Marzbanrad and Ebrahimi (2011), Bisagni et al. (2002),
Lanzi et al. (2004a)

SVR Aspenberg et al. (2012), Pan et al. (2010), Wang et al. (2010), Paz et al. (2014)
Comparison of surrogate models Wang et al. (2011a), Fang et al. (2005), Forsberg and Nilsson (2006), Costas et al. (2014),

Acar and Solanki (2009b), Gedikli (2013), Xu et al. (2013),Yin et al. (2014b), Shi et al. (2013a),
Shi et al. (2013b) , Yin et al. (2011a), Zhu et al. (2012)

Multiple surrogate models
(including ensemble of surrogates)

Zhu et al. (2009), Pan and Zhu (2011b), Song et al. (2013), Zheng et al. (2014), Yin et al. (2014a),
Pan and Zhu (2011a), Zhu et al. (2011), Hamza and Saitou (2012), Parrish et al. (2012)

Sequential sampling Najafi et al. (2014), Chen et al. (2014), Lee et al. (2002), Kurtaran et al. (2002), Craig et al. (2005),
Hou et al. (2007), Liang and Le (2009), Sun et al. (2014a), Fang et al. (2014a), Sheldon et al. (2011),
Stander (2012), Stander (2013)
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Table 4 Algorithms used in crashworthiness Optimization

Methods Publications

Combined cost function Hamza and Shalaby (2014), Cristello and Kim (2007), Zhang et al. (2009), Parrish et al. (2012),
Rais-Rohani et al. (2010), Mohammadiha and Beheshti (2014), Wang et al. (2010), Ghamarian and
Zarei (2012), Kaya and Oeztuerk (2010), Zarei and Kroger (2006), Acar et al. (2011), Yildiz and
Solanki (2012), Hou et al. (2012), Farkas et al. (2012), Hou et al. (2014b), Tran et al. (2014), Fang et al.
(2005), Ingrassia et al. (2013), Marzbanrad and Ebrahimi (2011), Shakeri et al. (2007), Zhu et al. (2008),
Hou et al. (2008a), Costas et al. (2014)

MOGA Hou et al. (2011), Paz et al. (2014), Kiani et al. (2014), Lanzi et al. (2004b), Najafi et al. (2014), Xu et al. (2013),
Hamza and Saitou (2012), Gu et al. (2013), Liao et al. (2008a), Sun et al. (2014b), Guo et al. (2011),
Zheng et al. (2014), Hou et al. (2014a), Bojanowski and Kulak (2011), Liao et al. (2008b), Sinha et al. (2007),
Zhang et al. (2012), Sinha (2007), Goel et al. (2010), Jiang and Gu (2010), Xu et al. (2015), Stander (2012),
Stander (2013)

MOPSO Hou et al. (2009), Qi and Yang (2014), Sun et al. (2010a), Yin et al. (2011a), Fang et al. (2014a), Sun et al. (2011),
Yin et al. (2014b), Yin et al. (2011b), Qi et al. (2012), Duan et al. (2014), Yin et al. (2014a), Zhang et al. (2014b),
Nguyen et al. (2014), Fang et al. (2014b), Yin et al. (2013), Yang and Qi (2013)

Table 5 Research works on crashworthiness optimization with uncertainties

Publications Sources of uncertainties Uncertainty

Optimization
classification

Uncertainty analysis

Robust Reliability MCS AMA DSM MPP Others

Yang et al. (2000) Barrier height, barrier hitting position √ √
Gu et al. (2001) Barrier height, barrier hitting position √ √
Youn et al. (2004) Sheet thickness, material property, barrier height,

barrier hitting position
√ √

Fu and Sahin (2004) Sheet thickness, material property, barrier height,
barrier hitting position

√ √ √

Koch et al. (2004) Sheet thickness, material property, barrier height,
barrier hitting position

√ √ √

Sinha (2007) Sheet thickness, material yield stress √ √ √
Sinha et al. (2007) Sheet thickness, material yield stress √ √ √
Zhang et al. (2007a) Sheet thickness, material yield stress √ √ √
Acar and Solanki (2009b) Material parameter, occupant mass, impact speed,

error in FEA, error in our ignorance
√ √

Zhu et al. (2009) Sheet thickness, yield limit √ √ √ √
Rais-Rohani et al. (2010) Stress-strain parameter, impact speed, offset distance,

occupant mass
√ √

Lönn et al. (2010) Geometrical parameters √ √
Khakhali et al. (2010) Material density, material yield stress, plastic modulus, sheet

thickness
√ √ √

Zhu et al. (2011) Sheet thickness, material yield stress √ √
Baril et al. (2011) Sheet thickness, material yield stress √ √
Sun et al. (2011) Material density, material yield stress, Young’s modulus √ √ √
Farkas et al. (2012) Geometrical parameters, sheet thickness √ √
Aspenberg et al. (2012) Sheet thickness, material scaling √ √
Shi et al. (2013b) Sheet thickness √ √
Zhu et al. (2013) Surrogate modeling uncertainty √ √
Gu et al. (2013) Sheet thickness √ √ √
Rangavajhala and Mahadevan

(2013)
Sheet thickness, yield stress √ √

Zhang et al. (2013a) Sheet thickness, surrogate modeling uncertainty √ √ √
Zhang et al. (2013b) Sheet thickness, surrogate modeling uncertainty √ √ √
Chen et al. (2014) Sheet thickness, yield stress √ √
Najafi et al. (2014) Young’s modulus, yield stress, tangent modulus √ √ √
Fang et al. (2014a) Sheet thickness, foam density √ √ √
Sun et al. (2014a) Sheet thickness, foam density √ √ √
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Table 6 Crashworthiness optimization of energy absorbers with different configurations

Structures Works

Thin-walled tubes Cylindrical Sun et al. (2014a), Zarei and Kroger (2006), Kurtaran et al. (2002), Lee et al. (2002), Wang et al. (2010),
Marzbanrad and Ebrahimi (2011), Lanzi et al. (2004b), Ghamarian and Zarei (2012)

Square/ polygonal Yamazaki and Han (1998), Lönn et al. (2010), Allahbakhsh et al. (2011), Liu (2008c), Redhe et al. (2002),
Jansson et al. (2003), Kaya and Oeztuerk (2010), Liu (2008a), Hou et al. (2007), Liu (2010b)

Conical/ Tapered Liu (2010a), Chiandussi and Avalle (2002), Avalle and Chiandussi (2007), Hou et al. (2011),
Avalle et al. (2002), Liu (2008b), Qi et al. (2012), Acar et al. (2011), Zhang et al. (2014b)

Hat-sectional Qi and Yang (2014), Najafi and Rais-Rohani (2012), Najafi et al. (2014), Xiang et al. (2006)

Multi-cell/honeycomb Tang et al. (2013), Hou et al. (2014c), Zhang et al. (2008), Tran et al. (2014), Hou et al. (2008a),
Sun et al. (2010b), Yin et al. (2011a), Esfahlani et al. (2013), Chen et al. (2014),Zarei and
Kroger (2008a), Yin et al. (2011b)

Foam-filled Yang and Qi (2013), Zarei and Kroger (2008b), Zarei and Kroger (2008c), Toksoy and Güden (2011),
Hou et al. (2009), Zhang et al. (2012), Yin et al. (2014b), Bi et al. (2010), Hanssen et al. (2006),
Kim (2001), Kim et al. (2002), Fang et al. (2014a), Zarei and Kroger (2008a), Sun et al. (2014a),
Shariati et al. (2010), Hanssen et al. (2001), Yang and Qi (2013), Zarei and Kroger (2007),
Zarei and Kroger (2008c), Zheng et al. (2014), Zarei and Kroger (2008b), Song et al. (2013),
Zhang et al. (2014b)

TWB/ TRB Qi and Yang (2014), Tang et al. (2013), Gedikli (2013), Zhu et al. (2008), Xu et al. (2013),
Pan et al. (2010), Shi et al. (2007)

Composite Chuang et al. (2008), Zarei et al. (2008), Belingardi et al. (2013), Duan et al. (2014), Paz et al. (2014),

FGT/FGF structure Lanzi et al. (2004b), Fang et al. (2014b), Fang et al. (2016), Mohammadiha and Beheshti (2014),
Yin et al. (2013), Yin et al. (2014a), Sun et al. (2010a), Sun et al. (2014b)

Table 7 Crashworthiness optimization for automotive structures

Loading scenario Works

frontal impact Zhang et al. (2014a), Wang et al. (2011b), Wang and Shi (2014), Kiani et al. (2014), Shi et al. (2013a),
Shi et al. (2013b), Craig et al. (2005), Fang et al. (2005), Duddeck (2008), Liao et al. (2008a),
Liao et al. (2008b), Acar and Solanki (2009b), , Acar and Solanki (2009a), Hou et al. (2012),
Zhang et al. (2013b), Zhu et al. (2013), Abbasi et al. (2014), Hamza and Shalaby (2014), Yildiz
and Solanki (2012), Kiani et al. (2013), Parrish et al. (2012), Gu et al. (2013), Redhe and Nilsson (2004),
Zhu et al. (2012), Sun et al. (2011), Acar (2010a), Goel et al. (2010), Rais-Rohani et al. (2010),
Wang et al. (2010), Acar (2010b), Redhe and Nilsson (2006), Pan and Zhu (2011b), Hamza and Saitou (2012),
Zhu et al. (2009), Jansson et al. (2003), Zhu et al. (2011), Forsberg and Nilsson (2006), Sheldon et al. (2011),
Stander (2012), Zhu et al. (2016)

Side impact Yang et al. (2005), Bojanowski and Kulak (2011), Yildiz and Solanki (2012), Kiani et al. (2013),
Parrish et al. (2012), Zhu et al. (2012), Rangavajhala and Mahadevan (2013), Zhang et al. (2013a),
Baril et al. (2011), Yang et al. (2000), Fu and Sahin (2004), Koch et al. (2004), Youn et al. (2004),
Sinha (2007), Sinha et al. (2007), Horstemeyer et al. (2009), Hou et al. (2014a), Wang et al. (2011a),
Zhang et al. (2010), Xu et al. (2013) Zhu et al. (2008), Sheldon et al. (2011), Xu et al. (2015)

Roof strength and Rollover safety Gu et al. (2001), Pan and Zhu (2011a), Zhang et al. (2013a), Zhu et al. (2012), Christensen et al. (2012),
Christensen et al. (2013), Bojanowski and Kulak (2011), Su et al. (2011)
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