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Abstract Topology optimization yields an overall layout of a
structure in the form of discrete densities or continuous
boundaries. One of important drawbacks, however, is that a
serious gap exists between the topology results (e.g., greyscale
images with irregular shapes) and parameterized CADmodels
that are ready for subsequent optimization and manufacturing.
Without the corresponding CAD model, topology optimiza-
tion design is difficult to be interpreted for manufacturing, as
well as to be utilized in subsequent applications such as sec-
tion and shape optimization. It is considered the most signif-
icant bottleneck to interpret topology optimization results and
to produce a parameterized CAD model that can be used for
subsequent optimization. The objective of this paper is to ex-
tract geometric features out of topology designs for parame-
terized CAD models with minimal manual intervention. The
active contour method is first used to extract boundary seg-
ments from topology geometry. Using the information of
roundness and curvature of segments, basic geometric fea-
tures, such as lines, arcs, circles and fillets, are then identified.
An optimization method is used to find parameters of these
geometric features by minimizing errors between the bound-
ary of geometric features and corresponding segments. Lastly,
using the parameterized CAD model, section optimization is
performed for beam-like structures, and surrogate-based shape

optimization is employed to determine the final shapes. The
entire process is automated withMATLAB and Python scripts
in Abaqus, while manual intervention is needed only when
defining geometric constraints and design parameters. Three
examples are presented to demonstrate effectiveness of the
proposed methods.

Keywords Geometric Features Identification . Active
ContourMethod . TopologyOptimization . Shape
Optimization . Section Optimization

1 Introduction

As one of the most active research topics in the field of struc-
tural optimization, topology optimization yields an overall
layout of materials (Sigmund and Maute 2013; Deaton and
Grandhi 2014; Rozvany and Lewiński 2014). It can obtain
robust results based on well-developed numerical approaches,
and has received more and more research attentions recently
because of its great potential of industrial applications
(Pedersen and Allinger 2006; Zhou et al. 2011). Since many
topology optimization approaches are element-based, where
the initial design space is discretized by finite elements and the
design variables are assumed to be constant within each ele-
ment, it is efficient in computation and has been applied suc-
cessfully for solutions of many industrial optimization prob-
lems (Schramm and Zhou 2006; Zhou et al. 2011; Zhu et al.
2015). However, one of important drawbacks of topology
optimization is that, it is difficult to interpret topological re-
sults in terms of basic geometric features, such as straight
lines, fillets, arcs and circles, for conventional manufacturing.
Even though some useful techniques, such as manufacturing
constraints (Zhou et al. 2002; Zegard and Paulino 2016) or
feature size controlling (Guest 2009; Lazarov et al. 2016), can
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be applied in topology optimization to improve the manufac-
turability of engineering designs, a missing link still exists, in
the computer-aided design system, between the development
of a conceptual solution and the subsequent definition and/or
manufacturing of the product layout and geometry.
Specifically, without the corresponding computer-aided de-
sign (CAD) model of a topology optimization design, it is
not only difficult to realize the design using conventional
manufacturing methods, but also difficult to have seamless
integration with subsequent applications such as section and
shape optimization. Therefore, there are needs to identify
geometric features out of topology design and to obtain
simple and smooth shapes for cost-efficient design and
manufacturing.

It is well known that the level-set-method-based topology
optimization can provide geometries with smooth and contin-
uous boundaries (Chen et al. 2010; Chen and Chen 2011; van
Dijk et al. 2013). Normally the zero contour of the level set
function are used to represent the structural boundaries, but
some of them appear with a complex geometry with highly
nonlinear boundaries. A creative work has been done by
Suresh (2013), who directly used the topological sensitivity
field as a level set function and seamlessly integrated topology
optimization into SolidWorks software. The parameterized
CAD model was easily constructed in SolidWorks with the
information of the topological sensitivity-based level set func-
tion. Recently, Guo et al. (2014) used the level set function to
describe the structural geometry, and conducted topology op-
timization based on the moving morphable components. Only
rectangular shapes were considered on the current stage, and a
curved geometry had to be approximated by several straight
components.

The topology shapes obtained from the level set method
have smooth boundaries, but these boundaries can be quite
expensive (or even impossible) for the conventional
manufacturing processes, which is preferable to use straight
lines, fillets, arcs and circles. Besides, other alternative pixel-
based topology optimization methods, such as the solid iso-
tropic material with penalization (SIMP) method (Bendsøe
1989; Zhou and Rozvany 1991; Bendsøe and Sigmund
1999), are not able to yield topology results with smooth
boundaries. Therefore, it is better to develop a general ap-
proach to extract boundary information in terms of basic geo-
metric features, especially for the results provided by element-
based topology optimization methods.

Several methods in computer graphics have been proposed
for boundary detection and representation, such as the auto-
matic generation of stick models (Garrido-Jurado et al. 2014)
and the real-time continuous pose recovery of objects
(Tompson et al. 2014), but they cannot find geometry identi-
fied with parametric boundaries, which is important and crit-
ical for the subsequent optimization. In fact, many approaches
were proposed to identify geometric boundaries out of

topology optimization results. For example, the image inter-
pretation approach has been used by drawing the shape of the
initial structure on top of the topology optimization result
(Olhoff et al. 1991; Bendsøe and Rodrigues 1991;
Bremicker et al. 1991), or using computer vision techniques
to transform grey scaled topology image into realizable design
(Chirehdast et al. 1994). These approaches require too many
manual interventions in image processing, which makes it
inefficient and undesirable. The density contour approach
(Kumar and Gossard 1996; Youn and Park 1997; Hsu et al.
2001; Hsu and Hsu 2005) effectively interpreted boundaries
by selecting a value of density threshold. The drawback of this
approach is that several times of trial and error have to be done
before a proper density threshold is chosen. Moreover, discon-
nected structural parts, rough surface, and/or very thin parts
may occur in the density threshold based geometric models of
complex structures (Li et al. 2015), which requires repeated
model revisions and human interventions. Basic shape tem-
plates (Lin and Chao 2000), predefined simple geometric fea-
tures (Yildiz et al. 2003), and parameterized-feature-based
templates (Larsen 2010) are also used to determine the size
and location of holes inside topology images, but a limited
number of feature templates can be used, while increasing
matching accuracy becomes a matter of great concern. Other
geometric reconstruction approaches have a focus either on
free-form surfaces or on complex surfaces, such as B-spline
curves, T-spline curves, Bi-quartic surface splines, and non-
uniform rational B-spline (Papalambros and Chirehdast 1990;
Change and Tang 2001; Tang and Change 2001; Koguchi and
Kikuchi 2006; Chacón et al. 2014). These types of surfaces
have an advantage on describing complicated boundary
shapes, but a disadvantage on expensive manufacturing cost
using conventional subtractive manufacturing methods, such
as milling and drillings.

Despite the abovementioned existing geometric boundary
detection methods, orientated design optimization methods
are developed to cope with the advanced 3D printing technol-
ogy. Christiansen et al. (2015) presented a deformable simpli-
cial complex-based optimization method to combine topology
and shape optimization of 3D structures. The explicit
representation of structural shapes used a single mesh for
shape representation to implement discrete and continuous
optimization sequentially. Sutradhar et al. (2015) proposed a
novel multiresolution topology optimization method for de-
signing 3D printed craniofacial implants in clinical surgeons.
The prototypes of the reconstructive surgeon-based optimiza-
tion designs were fabricated using a 3D printer for validation.
It is worth noting that design optimization methods orientated
towards 3D printers are candidate means to improve the man-
ufacturability of engineering designs. However, the accessi-
bility of 3D printers to the general manufacturing and
prototyping facilities is still limited due to a low affordable
rate, as well as a risk of wasting the existing traditional
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manufacturing resources. Nevertheless, not every 3Dmodel is
printable.

The limitation of previous methods is that it would be ex-
pensive to manufacture those complex surfaces, albeit not
impossible. It withdraws our attention from advanced
manufacturing technologies to simple and conventional
manufacturing techniques. Thus, the contribution of the pro-
posed work is to represent the boundary shapes of topology
optimization results using simple geometric features, such as
straight line, arc, fillet, etc., which are much easier and cheaper
to manufacture using conventional methods. A parametric
CADmodel corresponding to the topology optimization result
is constructed by using these simple features. In the process of
design rendering, the section optimization or surrogate-based
shape optimization is performed depending on the types of the
structures, to fine tune the shapes/boundaries. The same opti-
mization problem formulation (i.e. objective and constraints)
in topology optimization is used in the section/shape optimi-
zation to retain the original design purpose. Motivated by the
idea of reducing manual intervention, the entire process is
automated with Matlab and Python script-based Abaqus soft-
ware, while manual intervention is needed only when defining
geometric constraints and design parameters during shape op-
timization. The flowchart of the proposed process is shown in
Fig. 1. Obviously, geometric features identification is the
most challenging and time-consuming part of the whole
process. Our goal is to interpret geometric features out of a
topology design and convert them to a structure ready for
manufacturing.

In this paper the geometric features identification tech-
niques are limited to two-dimensional structures. The rest of
the paper is organized as follows. In Section 2, the basic idea
of the proposed approach is explained in detail. The technique
of extracting beam elements out of beam-like topology opti-
mization results is described in Section 3. The design render-
ing process is discussed in Section 4. In Section 5, three rep-
resentative examples are presented to illustrate the effective-
ness of the proposed approach, followed by conclusions of
this research and directions for future work in Section 6.

2 Geometric features identification

It is important to identify boundary features of topology opti-
mization results for subsequent section/shape optimization
and manufacturing. Although B-spline curves/surfaces can
be used, they are expensive for conventional manufacturing.
In fact, more than 90% ofmachine components are composed
of basic geometric features, such as straight lines, fillets and
circles. Therefore, in this paper, basic geometric features are
used to interpret topology optimization results and construct
boundaries of geometry. In this section, the basic idea of geo-
metric feature identification approach will be explained in
detail.

2.1 Active contour method

Normally, topology optimization results are given in the form
of greyscale images or pixel-based density values. The image
functions in Matlab can easily transform the images or the
density values into image data that can be used for the further
processing. The topology results (i.e., topology configurations
or pixel-based density values) can be reconstructed in Matlab
and the size of meshing is retained. For example, topology
optimization result with a 80×50 meshing size will be recon-
structed as an image with 80×50 pixels in Matlab. Then, the
image data are processed in this section to yield smooth and
closed boundary points.

In this section, an active contour model, also called snakes,
is used to connect nearby edges and localize the boundaries.
Snakes are energy-minimizing splines guided by external con-
straint forces and influenced by image forces that pull them
toward features such as lines and edges. They are often used to
obtain a unified account of visual problems, including detec-
tion of edges, lines, and subjective contours, as well as motion
tracking and stereo matching. Enriched descriptions about
snakes algorithm and applications are presented in the literature
(Kass et al. 1988; Chan andVese 2001; Li et al. 2008). AMatlab
code based on the snakes algorithm made by Su (2012) is
employed here to extract geometry boundaries from topology
optimization results. The snakes algorithm provides closed

Parametric CAD Model

Section/Shape Optimization

Optimum Design

Structures Ready for Manufacturing

Geometric Features Identification

Topology Optimization Results

Fig. 1 Flowchart of parametric geometric feature identification and
optimization from topology optimization result

Identifying boundaries of topology results 1643



outer/inner boundaries that are composed of coordinates of the
points on the boundaries.

As shown in Fig. 2, a greyscale image in Fig. 2a, topology
optimization result of a cantilever beam based on 80 by 50
meshing, is imported intoMatlab and interpreted into four closed
geometric boundaries (the red boundaries) in Fig. 2b by using the
snakes algorithm. The closed geometric boundaries are
expressed by a sequence of points with coordinates, which are
the blue cross points shown in Fig. 2c. All the closed geometric
boundaries are given in order and each of them has the same
starting and ending point. The red and green cross points in
Fig. 2c are the first and second points for the corresponding
closed boundary, and they indicate the boundary direction.
Therefore, it is easy to separate closed geometric segments auto-
matically by identifying the starting and ending points. The
boundary points are called as “snakes points” in the following
of this paper and used for the identification of geometric features.

2.2 Detection of circles

Among many geometric features, a circle is a common shape
and it is different from straight lines, arcs and fillets. In the
proposed geometric feature identification process, circles are
identified first using “roundness”, which is the measure of
how close the shape of a closed boundary to that of a circle.

With the snakes points on a closed boundary, the centroid
(x0, y0) of the boundary loop can be expressed as

x0; y0ð Þ ¼ 1

n

Xn
i¼1

xi;
1

n

Xn
i¼1

yi

 !
ð1Þ

where n is the number of snakes points in the closed boundary,
and xi and yi are the coordinates of the i-th snakes point.

Considering a portion of a boundary loop as shown in
Fig. 3, a small triangle is formed with two adjacent points
and the centroid point. The base length di (red line) and height
hi (red dash line) of the triangle can be expressed as

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xiþ1ð Þ2 þ yi−yiþ1

� �2q
hi ¼ kix0−y0 þ yi−kixij jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ki2
p

ð2Þ

where ki= (yi + 1− yi)/(xi + 1− xi). Therefore, the perimeter P
and area A of this boundary loop can be obtained as

P ¼
Xn−1
i¼1

di A ¼
Xn−1
i¼1

1

2
dihi ð3Þ

Thus, the roundness of this boundary loop can be comput-
ed by

m ¼ 4πA
P2 ð4Þ

where m represents the roundness of a closed geometric
boundary loop. A roundness value close to 1.0 indicates that
the object is approximately a circle. Figure 4 shows the cen-
troids (red circle points) and roundness values for different
geometric boundary loops. The roundness value is approxi-
mately 0.95 for a circle, 0.84 for an equilateral pentagon and
above 0.5 for a triangle. Therefore, a closed geometric bound-
ary loop is considered as a circle if its roundness is greater than
a threshold of 0.9.

(a) Greyscale image  (b) Extracted boundaries

(c) Snakes points

Fig. 2 Image interpretation by
using the active contour method
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2.3 Identification of straight lines and fillets

After circles are identified by using roundness, other closed
boundary loops are assumed to be composed of straight lines
and fillets. Since the boundaries are represented by snakes
points, slopes between points are used to determine if the
portion of the boundary loop is a straight line or fillet. When
the change in slopes is less than a threshold, the set of points is
considered as a straight line. It is also assume that two straight
lines are connected by a corner fillet.

Firstly, a set of key points are determined. The key points
are approximately located where features are changed from
straight line/fillet to fillet/straight line. They are shown as
black circles in Fig. 5. Beginning with the starting point of a
boundary loop, four slopes of the lines between the first point
and the following four points are calculated. If these slopes
change beyond a threshold, it is considered that the previous
feature (i.e., straight line or fillet) may end at the point where a
large slope change occurs, and the first point is marked as a
key point. Otherwise, no key point can be found among the
current five points and these points are considered to locate on
the same feature.With the newly located key point, or the fifth
point (when no key point is found), the slopes of next five
points will be examined in the sameway, until the correspond-
ing boundary loop ends. The number and locations of key
points can be tuned through the slope change threshold.

Secondly, a set of control points are selected. In order to
ensure that the locations of straight lines and fillets capture the
movements of the snakes points, two equal-distance points
between two consecutive key points are selected from the
snakes points. If two key points are very close, one middle

point is selected instead. We call these selected points control
points. Following the example shown in Fig. 5, the control
points, as well as the key points, are shown in Fig. 6a.

Thirdly, straight lines are identified by evaluating the dif-
ference in slope between adjacent line segments. All key
points and control points are connected by line segments in
the order, and the slopes of the line segments are computed.
The vertical lines can be identified through the coordinates of
adjacent points, and the horizontal and other lines can be iden-
tified by comparing the slopes of adjacent line segments. A
small slope difference of two adjacent line segments indicates
that the corresponding points of these line segments are on the
same straight line and the first and last points are set to be the
two ending points of this straight line. The points at corners
normally yield line segments with large slope differences, and
they should be separated from the straight line points, to con-
struct the fillets in the next step. But the straight lines share the
same ending points with the fillets. As shown in Fig. 6b,
straight lines are expressed with black lines passing through
several black point in the middle and two red points at the
ends. The fillet points are marked in red.

Lastly, fillets are identified between two straight lines. It is
assumed that a corner is expressed with a fillet tangent to two
straight lines. The corner points (red points) in Fig. 6b and the
tangent property with adjacent lines are used to determine a
fillet at a corner. The exact location and radius of a fillet are
determined such that the fillet is tangent to two adjacent lines
and has the minimum error with points in the corner portion.
Figure 7 shows the geometric relationship of a fillet and two
straight lines (red lines) at a corner boundary (blue cross
points). The relationship is formulated in (5) to calculate fillet
center and tangent points for a given fillet radius. In Fig. 7, n1
and n2 are, respectively, the numbers of two tangent points’
locations on a closed geometric feature. The points between
the n1-th and n2-th points are used to approximate a fillet
tangent to two straight lines.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1−xcð Þ2 þ y1−ycð Þ2

q
−r ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2−xcð Þ2 þ y2−ycð Þ2
q

−r ¼ 0
x1−xcð Þ þ k1 y1−ycð Þ ¼ 0
x2−xcð Þ þ k2 y2−ycð Þ ¼ 0
k1x1 þ b1−y1 ¼ 0
k2x2 þ b2−y2 ¼ 0

8>>>>>>>><
>>>>>>>>:

ð5Þ

Fig. 3 A portion of the boundary

Fig. 4 Roundness values of
different shapes
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In (5), the subscript “c” stands for the center. “1” and “2”
stand for the straight line 1 and straight line 2, respectively. (xc,
yc) denotes coordinates of the fillet center point. r is the fillet
radius. (x1, y1) and (x2, y2) are two tangent points, k1 and k2 are
the corresponding slopes of the two lines, and b1 and b2 are the
y-intercepts of the two lines.

Several parameters are involved in the representation of a
corner portion with a fillet, but the fillet radius is the most
important parameter, because the fillet should capture the
snakes points at the corner portion as close as possible.
Here, optimization techniques, which is often used to provide
promising solutions for feature extraction and object detection
(Bouaziz et al. 2012; He et al. 2014), can be employed to fine
tune the important parameters of the fillet. Thus, an optimiza-
tion problem in (6) is formulated to minimize the maximum
distance from the fillet to the snakes points.

Find r

Min f rð Þ ¼ max
i∈ n1;n2½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xcð Þ2 þ yi−ycð Þ2

q
−r

����
����

� �

s:t: r > 0

ð6Þ

Once the optimal fillet radius is obtained from (6), the fillet
center point and two tangent points can be determined by
solving (5). Figure 8a and b show the parameterized CAD
models before and after fillet optimization with the snakes
points. The blue points are the initial boundaries and the red

lines are the identified boundaries. The tangent points and
fillet center points are marked with red stars. It indicates that,
the optimization process for fillets obviously reduces the er-
rors between the identified boundaries and snakes boundaries;
thus the final parameterized shapes can represent the initial
topological shapes better. Arcs can be detected in the same
way as fillets.

The above geometric feature detection procedures are im-
plemented automatically in Matlab. The identified geometric
features can be translated into a geometric model in any CAD
software. A shape or size optimizationwill be used to fine tune
the structure based on the CAD model.

2.4 Boundary detection of the L-shaped beam

Following the above procedures of the proposed method, the
boundary extraction of the L-shaped beam problem is con-
ducted as well, which is shown in Fig. 9. The L-shaped beam
problem is well-known for stress-based topology optimization
(Brampton et al. 2015). The optimized L-shaped beam obtain-
ed by using SIMP method is shown in Fig. 9a, in which the
boundaries are completely zigzagged after applying the den-
sity threshold. The zigzagging boundaries, thin members, and
multiple holes make the boundary extraction of this L-shaped
beam structure difficult and complex.

Key points

C

F

E

D

P

Fig. 5 Selection of key points using slope change

(a) Control points (b) Straight lines 

Fig. 6 Identification of straight
lines
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The snakes boundaries (red lines) on top of the initial to-
pology result boundaries are shown in Fig. 9b. It can be seen
that the snakes algorithm tracks the zigzagging boundaries
very well. The whole structure is identified as six boundary
loops by the snakes boundaries, including one external bound-
ary and five internal boundaries. As each boundary loop is a
closed boundary, straight lines and fillets are used to identify
the boundaries for each loop separately in the following pro-
cedure. In order to better represent the zigzagging boundaries
with straight lines, optimization of minimizing the distance
between a straight line and the corresponding initial boundary
section is necessarily performed for all straight lines. Figure 9c
shows the extracted boundaries on top of the snakes bound-
aries before the fillet optimization, where the straight lines and
fillets (including the fillet centers and start-and-end points) are
shown in red, and the snakes boundaries are shown in blue.
After performing the optimization for all the fillets, the final
extracted boundaries are shown in Fig. 9d.

Compared with the L-shaped beam obtained by using the
level set method in the work of Brampton et al. (2015), the L-
shaped beam presented here has much more complex geomet-
ric features and characteristics (i.e., zigzagging boundaries
and thin members). After using the proposed method for geo-
metric feature detection, the degree of smoothing of the iden-
tified boundaries are comparable to that of the level-set bound-
aries. Furthermore, it is for certain that the boundaries com-
posed of straight lines and fillets can be manufactured using
conventional manufacturing methods easily.

3 Identification of beam-like structures

The proposed geometric feature identification approach can
be applied to any two-dimensional (2D) topology optimiza-
tion result. Since the beam-like structure is different from
solid-like structures, a special issue of beam identification is
discussed here. Based on the parameterized CAD model pro-
vided by the geometric feature identification approach, the
following procedures are implemented to model beam-like
structures.

Step 1, find the parallel straight lines between different geo-
metric features;

Step 2, find the middle line between two parallel lines;
Step 3, merge multiple intersection points into one;
Step 4, form the beam-like structure with middle lines.

Specifically, for example, the topology optimization re-
sult of a cantilever beam structure yields a parameterized
CAD model shown in Fig. 10a, where four closed geo-
metric boundary loops are named as Loop 1, Loop 2,
Loop 3, and Loop 4, and each straight line (also line
segment) is labeled within the corresponding boundary
loop. These labels and loop numbers are used to identify
straight lines from different boundary loops. Starting from
the inner boundary loops, we calculate the absolute slope
differences between a straight line in the current boundary
loop and each straight line in the other three boundary
loops, as well as the distances from the middle point of
the line segment in the current loop to the middle point of
each line segment in the other loops. Two straight lines
from different boundary loops that yield the smallest ab-
solute slope difference and middle-point distance are con-
sidered as parallel lines. After all parallel lines are ad-
dressed for each inner boundary loop, the middle line
between two parallel line segments is determined by lo-
cating the median of a trapezoid formed by the two par-
allel lines. The parallel line segments and middle line
segments are, respectively, shown in red and green in
Fig. 10b. With only these green middle lines, three new
beam loops can be defined, and the sequence of the

Fig. 7 Geometric relationship of a fillet and two straight lines

(a) Before optimization (b) After optimization

Fig. 8 Before and after
optimization for fillets
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(a) Topology optimization result (b) Snakes on top of initial boundaries

(c) Boundaries on top of snakes 

      before fillet optimization 

(d) Boundaries on top of snakes 

         after fillet optimization

Fig. 9 Geometric feature
identification of the L-shaped
beam

(a) Parameterized CAD model               (b) Parallel lines in red and middle lines in green 

(c) Multiple intersection points     (d) Beam element identification 

Fig. 10 An example of beam-
like structure identification
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middle lines in a beam loop follows the sequence of the
corresponding straight lines in the inner boundary loop.
Two different beam loops that share the same middle line
should have the same straight line information (i.e., coor-
dinates of ending points) of this middle line. Within a
beam loop, every two middle lines in sequence meet each
other and yield an intersection point by extending them.
However, since the locations of these end points of mid-
dle lines are approximated from the topology optimization
result, it is most likely that multiple intersection points
may occur at the junction point where more than two
middle lines cross, which can be seen in Fig. 10c. In order
to merge multiple intersection points into one at the junc-
tion point of multiple middle lines, the average point of
these intersection points is computed, and it is taken as
the new intersection point of all the surrounding middle
lines. As a result, middle lines are updated with the new
intersection points, without shifting too much from the
original locations, and they yield a beam-like structure
as shown in Fig. 10d.

4 Design rendering

Although the geometric features are extracted from topology
optimization results, they may not be considered an optimum
geometry because the structural response can slightly be dif-
ferent from that of topology design. Therefore, a follow-up
section or shape optimization is performed to fine tune the
structural geometry for desired performances, which is called
a design rendering process in this paper. However, the CAD-
based shape optimization requires more information (i.e., me-
chanical performance and structural dimensions) than bound-
ary geometries. All geometric features must be constrained
such that when design variables change, all dimensions are
updated properly.

It is worth to highlight that it is not allowed to make topo-
logical changes during shape optimization. The optimal de-
signs are highly dependent on the shape and topologies that
are obtained from topology optimization. Especially for engi-
neering problems, the optimized structural performance can
be heavily affected by subsequent topology changes due to
geometry evolving in shape optimization. In some cases, the
optimality of the solution from topology optimization can be
utterly ruined. Thus it is of great importance to keep the beauty
of topology design in the subsequent shape optimization. In
order to prevent topology changes, member size control meth-
od is often performed in shape optimization (Seo et al. 2010;
Le et al. 2011). In this paper, limits on the dimension changes
are included in the constraints, and we determine the upper
and lower bounds for the design variables manually when
imposing full constraints on the geometry.

4.1 Fully constrained geometry

The state-of-the-art technology in shape optimization in indus-
try is based on geometric features (dimensions, radius, etc.) on
fully constrained geometry. Many engineers spend time to
convert topology optimization results into geometric model
with proper geometric constraints. This has been a major bot-
tleneck in design automation. In the viewpoint of automating
shape optimization, constraining geometry is difficult, and we
consider this is out of the scope of this paper. Therefore, ex-
cept for constraining geometry manually, all of the other pro-
cess shown in Fig. 1 can be automated.

In this paper, Abaqus software is used for geometric fea-
tures reconstruction and finite element simulation. With the
geometric parameters of circles, straight lines, arcs and fillets,
the geometric features can be constructed in Abaqus automat-
ically by using Python scripts. Abaqus uses constraints to
create relationships between dimensions and parameters.
Constraining geometric features removes degrees of freedom
in geometry. The fully constrained geometry can be used in
shape optimization. It is noted that the process of constraining
geometry depends on designer’s intention, and there is no
unique way of constraining geometry. Therefore, this process
requires manual intervention. In addition, selecting shape
design parameters also requires manual intervention. Except
for this process, however, the proposed method is fully
automated.

4.2 Design optimization

CAD-based design optimization, either section optimization
or shape optimization, is implemented to fine tune the topol-
ogy design using the extracted geometric features. The same
optimization formulation used for topology optimization is
used for the section or shape optimization. During the
follow-up optimization, no new geometry features will be in-
troduced, but the initial features will be modified to find the
optimum design.

For beam-like structures, section optimization is applied.
The assignment of beam orientation and cross section proper-
ties should be defined before optimization, and the cross sec-
tion parameters will be selected as design variables. For solid-
like structures, surrogate-based shape optimization is imple-
mented for design rendering. As the dimensions change, the
structural shape and mesh change, too. It causes numerical
noise when the finite difference method is used to calculate
sensitivity information. In order to address the issue of mesh-
related numerical noise, the surrogate-based optimization ap-
proach is employed to perform shape optimization.

In design optimization, it is unnecessary to change all pa-
rameters; a limited number of dimensions can be selected as
design variables. The lower and upper bounds for design var-
iables need to be selected such that the geometry can be well
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defined within these bounds. Since the selection totally de-
pends on the experiences of designers, this parameterization
process has to be done based on trial and error in Abaqus/GUI
after fully constraining geometry.

Once the design optimization model is confirmed, all of the
pre- and post- processes involvedwith Abaqus are implement-
ed using Python scripts. The optimization problem is solved
by the “fmincon” function in Matlab. The optimization for the
CAD model is implemented by using Matlab to execute
Python scripts in Abaqus. Thus the whole process of this
research is implemented automatically with the least human
intervention.

5 Numerical examples

In order to demonstrate the validity and capability of the pro-
posed framework for geometric feature identification, three
numerical examples are tested in this section. The first exam-
ple is a cantilever beam structure identified using beam-like
structures, the second example is the same cantilever beam
identified using solid-like structures, and the third example
is a clamped plate. Beam-element-based section optimization
is performed in the first example, and surrogate-based shape
optimization is considered for the second and third example.

5.1 Identification of beam-like structure and section
optimization

A cantilever beam is fixed on the left and a concentrated
vertical load is applied at the middle of the right edge.
Detailed structural dimensions and material properties are re-
ferred to the fourth example in the paper by Yi and Sui (2015).
Initially, the topology optimization problemwas formulated to
minimize compliance with a volume fraction limit of 0.5.
Computed by the 99-line topology optimization code
(Sigmund 2001), the optimal topology shape of the cantilever
beam structure was obtained and shown in Fig. 2a, which
yielded the minimum compliance of 3139.53 /Pa and a vol-
ume fraction value of 0.5.

After implementing the geometric features identification
techniques, the topology optimization result is interpreted into
a beam-like structure, as shown in Fig. 11a. A section optimi-
zation of minimizing compliance with volume fraction con-
straint of 0.5 is formulated for this structure. Since the canti-
lever beam is symmetric, four section areas are selected as
design variables. A rectangular section profile is defined for
each of them. Since the thickness of the beam is 1.0 mm in
topology optimization, the design variables are actually the
widths of the rectangular four sections. A lower bound vector
of lb = [0.1, 0.1, 0.1, 0.1] (mm) and an upper bound vector of
ub = [10, 15, 10, 15] (mm) are given for the design variables.

(a) Extracted cantilever beam and beam profile (b) Optimal widths for each beam section

Sec1

Sec1

Sec2

Sec2

Sec3

Sec3
Sec4

Fig. 11 Section optimization of the cantilever beam

(a) Stress contour (b) Displacement contour 

Fig. 12 Stress and displacement contours of the optimal design
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(a) Topology shape  (b) Identified boundaries    (c) Fully constrained CAD model 

Fig. 14 Plate shape identification

(a) Parameterized CAD model overlapped 

                 on topology shape

(b) Fully constrained geometric features

(c) Selected design points (d) Initial design variables for shape optimization

(e) Optimized design after shape optimization   (f) Displacement contour of the final design  

Fig. 13 Shape identification and optimization for the cantilever beam
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The optimum design is found at x* = [6.50, 7.60, 3.67, 6.83]
(mm), which are the widths of each section shown in Fig. 11b.
The volume fraction of the final design is exactly 0.5, and the
minimum compliance is 3112.65 /Pa, reduced by 0.86% com-
pared to the minimum compliance of 3139.53 /Pa obtained
from the 99-line topology optimization code. The stress and
displacement contours of this beam-like structure are shown in
Fig. 12.

5.2 Shape identification and optimization
for the cantilever beam

A topology optimization problem of minimizing mass with a
displacement constraint limit of 0.34 mm imposed on the
loading point was formulated for the same cantilever beam
described in the previous example. Computed by the 120-
line code (Yi and Sui 2015), the optimum topology shape
was almost the same as that obtained from the compliance
minimization problem as both produced the same displace-
ment under the same loading and boundary conditions. The
minimum mass of the optimized topology shape was
1990.17 kg, and the displacement at the loading point along
the loading direction was equal to 0.34 mm.

The extracted and parameterized boundaries overlapped on
the topology shape are shown in Fig. 13a, where the geometric
features are expressed with straight lines and fillets. The fully
constrained geometry with dimensions and constraints is
shown in Fig. 13b, where manual intervention is required.
The same optimization problem as that formulated in topology
optimization is considered during shape optimization. Since
the topology shape is symmetric along the horizontal line in
the middle, the location of 6 points (shown in Fig. 13c) are
selected for design variables. It is assumed that points 1, 2, and
3 can only move along x-axis, and points 4, 5, and 6 can move
along x- and y-coordinate directions. The other three points
symmetric to points 4, 5, and 6 are changed accordingly. The
rest of the dimensions remain fixed. Thus, all 9 design vari-
ables are defined in the shape optimization. Figure 13d shows

the design variables in the initial fully constrained CAD mod-
el. The Kriging surrogate model is used to express the rela-
tionships between the 9 design variables and structural mass /
displacement at the loading point. The optimal design is ob-
tained and shown in Fig. 13e. The final mass is 1919.42 kg,
reduced by 3.55 % compared to the topology optimization
result. The displacement constraint imposed at the loading
point is satisfied, and the displacement contour is shown in
Fig. 13f.

5.3 Plate shape identification and shape optimization

A square plate is fixed on all four edges and a concentrated
load is imposed at the center of the plate in the normal direc-
tion. The displacement at the middle of the plate along the
loading direction is required to be less than 0.74 m.
According to the topology optimization result provided by
Yi (2014) through Python scripts and Abaqus, the total mass
of the optimal structure was 5.32 kg, and the displacement
constraint was fully satisfied at 0.74 m.

Figure 14a shows the extracted boundaries (in red) over-
lapped on the topology shape (in black and grey). The param-
eterized CAD boundaries overlapped on the Snakes points are
shown in Fig. 14b, where the geometric features are expressed
with straight lines, fillets and arcs. The CAD model is recon-
structed in Abaqus and the fully constrained geometry is
shown in Fig. 14c.

Since the geometry is fully symmetric and the dimensions
are related to each other, x- and y-cordinate of the fillet center
point, and fillet radius, are considered as design variables x1,
x2 and x3, which are shown in Fig. 15a. The shape optimiza-
tion with a displacement constraint is performed on the iden-
tified geometry. The Kriging surrogate model is utilized to
approximate the relationships between three design variables
and the mass / displacement at the center. The optimal design
is found at x* = [2.01, 4.14, 0.1] (m), where the total mass is
5.00 kg, reduced by 6.02% compared to the topology optimi-
zation result. The displacement at the center point is 0.74 m,

(a) Design variables       (b) Optimal shape         (c) Displacement contour

Fig. 15 Plate shape optimization
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and Fig. 15b gives all dimensions of the optimum shape. The
displacement contour of the optimal shape is shown in
Fig. 15c.

6 Conclusions

The proposed approach based on the active contour method
and optimization techniques allows representing the boundary
of topology optimization results in terms of basic geometric
features. The process of extracting boundary geometry is au-
tomated and the extracted geometry is imported to Abaqus
finite element software to perform size or shape optimization.
The later process is semi-automatic in a sense that the user has
to select design variables and define optimization problem,
but this intervention is inevitable. This research presents a
design framework of integrating topology and section/shape
optimization to produce best structural designs that are ready
for manufacturing. Representative 2D topology optimization
benchmark problems (i.e., a truss structure, a beam structure,
L-shaped beam and a plate structure) are used to verify the
proposed approach. The results demonstrate that the proposed
method of geometric feature identification can interpret topol-
ogy optimization results appropriately.

Geometric features used in this research are simple and
good for conventional manufacturing process, but they are
still not enough to represent complex geometries and 3D
structures. Thus, in the future, more advanced geometric fea-
tures will be exploited, such as quadratic curves, ellipse, ex-
trusion, sweeping, and sphere. Scaling models and techniques
will also be developed for automatic selection of relevant geo-
metric features. Another perspective would be to parameterize
boundary conditions to make process fully automatic.
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