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The industry has to resort to experiments for practical design of composite laminates when physical models/

simulations are inadequate for desirable accuracy or require excessive computational resources. Surrogates are used

to predict strength of composite laminates in the design spaceby conducting an array of tests. It has been reported that

an exploration strategy to test as many different configurations as possible is more effective than replication of fewer

points for reducing test noise. The observation was based on analytical test functions and synthetic Gaussian noise.

This paper first studies real experiments to check whether the previous observation stands. Test results of open-hole

tension for composite plates that included 18 replicates per configuration were examined. A resampling procedure

was developed that compared exploration and replication, and it was found that exploration proved to be more

accurate for prediction than replication. Second, the major source of uncertainty for surrogate prediction was

examined, which is variability of strength. The distribution of experimental open-hole tension strength was found to

be not unambiguously independent and was identically distributed normal distribution as commonly assumed. The

variation of specimen strength is correlated rather than independent at different configurations due to the between-

batch variability. Consequently, the influence of distribution type was then investigated on an analytical test function

with three synthetic distributions. The exploration strategy proved to be better than the replication strategy for all

three distributions. It was found that the exploration strategy allows for higher-order polynomial surrogate to be

used, which is a key point to improve characterization of a function with complex dependence on design parameters.

I. Introduction

C OMPOSITE materials have been routinely used in aerospace

applications due to their outstanding capability to be tailored to

specific load paths and conditions, resulting in weight-efficient designs.

To achieve weight savings, effective and accurate characterization of

structural strength is essential. Significant progress has been achieved on

compositemechanics in past decades. Failure criteria havedemonstrated

reasonable accuracy for predicting strengthof benchmark structures. For

example,WhitneyandNuismer [1] proposeda failure criterion topredict

strength of composite laminates with a hole. Tsai and Wu [2] proposed

a phenomenological material failure theory that is widely used for

anisotropic compositematerials. TheWorldWideFailure exercises [3,4]

summarized the effort to provide experimental data and benchmark

different modeling strategies for failure criteria of composites.

Various commercial software is available to simulate the response of

composite structures and used for routine analysis. However, each new

material system, structural configuration, and fabrication process

requires a large, costly, and time-consuming program to obtain
simulation with reasonable accuracy [5,6]. Innovative approaches are

being developed to simulate specific structures with certain

configurations such as open-hole tension test [7]. Large challenges
still remain for simulating strength of composite structures with

complicated failure mechanisms and variability in failure response due

to progressive damage.
Industry has resorted to empirical approaches where testing has

been the focus for the characterization of structural failure when

simulations are inadequate for desirable accuracy or require
excessive computational resources. The quantity of interest for

experimental analysis may be as simple as an averaged pass/fail

criteria based on a single load or may be extended to include mixed
mode loadings andmore involved statistical analysis such as strength

allowables [8–10]. Handler et al. [11] discussed the experimental
procedures to develop a test database for composite structures.

Carlsson et al. [12] and the Composite Materials Handbook-17

provide in-depth guideline for systematic experimental analysis.
Experimental results are usually obtained for an array of

configurations for different combinations of important design

parameters. Then surrogate models (such as polynomial response
surfaces) are often fit to the data to estimate the structural response over

design space. Forrester et al. [13] discussed about approximating noisy

datawithKriging.Glaz et al. [14] adoptedmultiple surrogatemodels for
design optimization to reduce the vibration of rotor-blade problem.

Chaudhuri and Haftka [15] proposed an adaptive sampling for

reliability-based design optimization. In this context, a surrogate model
serves three purposes. First, a surrogate allows for the statistical

averaging or weighed averaging of multiple test results or replicates at

the same configuration (i.e., multibatch testing). Second, it allows
interpolation or extrapolation of the failure response at locations in the

design spacewhere test data are not available. Last, it yields a functional
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representation of a failure criterion, which can easily be incorporated in
the design process.
Surrogate prediction consists of two parts: design of experiments

and model development. Design of experiments, which is also
termed sampling strategy, refers to the approach of selecting test
configurations. Prediction accuracy of a surrogate can be significantly
affected by sampling strategy.Wang andShan [16] andMackman et al.
[17] reviewed popular approaches to generate design of experiments,
which had significant effect on optimization results. For design of
experiments,wemay explore different test configurations in the design
space or replicate the same test configurationmultiple times.Wewould
like to examine the tradeoff between exploration and replication when
limited testing resources are available, as shown in Fig. 1. The
replication strategy is represented by 4 × 4 test matrix with four
replicates at each point, whereas the exploration strategy is represented
by 8 × 8 test matrix with no replicates.
Exploration interrogates the design space to find potential unforeseen

failuremodes andunexpected responses,whereas replicationat the same
configuration quantifies experimental scatter and improves accuracy at
test points. In the replication strategy, test variability is considered by
averaging replicated tests, which may allow the use of an interpolating
surrogate that passes through the averaged data points. Without
replication, filtering out experimental noise is accomplished by a
regression (i.e., least-squares fit) surrogate model in the exploration
strategy. In the literature [18,19], it was found that exploration may be
more efficient than replication in testing structural elements for a given
budget. Exploration is more likely to reduce surprises from
unrecognized failure modes, and it yields surrogate models that are
more accurate when applied to approximation at untested designs.
However, the results obtainedby [18,19]werewithmanufactureddata to
the assumption that experimental strength was a random variable with
normal distribution, independent and identically distributed.
This paper first presents a study of how this conclusion stands

using real experimental results produced by the National Institute for
Aviation Research on open-hole tension (OHT) tests [20,21]
according to American Society for Testing and Materials (ASTM)
standard [22]. These OHT experiments were intended to investigate
the impact of the couponwidth-to-hole diameter ratio on the failure of
a composite panel. The failure mode and strength were evaluated at
four structural configurations with replicates.We examined the effect
of exploration versus replication on surrogate prediction based on
subsets of experimental results. Different designs of experiments
were generated with the same total number of tests.
The experimental data exhibited deviations from a normal

distribution. Thus, we were prompted to consider other distributions
that could be alternatives for characterization of composite strength,
such as the Weibull distribution [23] and irregular distribution
without analytical expression caused by batch-to-batch variability
[24]. Influence of strength distributions on the samplingmethodswas
investigated using one analytical function, composite laminate with
highly nonlinear failure response. Polynomial response surface
(PRS) was selected for surrogate modeling due to its robustness and
excellence with approximating noisy data. The surrogate toolbox
provided by [25] was adopted to develop PRS prediction.
The paper is arranged as follows. Section II introduces the OHT

test configuration and surrogate prediction of OHT tests. Surrogate

models are developed and compared based on exploration strategy
and replication strategy. To compensate for experimental variability,
we resampled subsets of experimental results, emphasizing either
exploration or replication and repeated the modeling procedure. In
Sec. III, we investigate the effect of distribution on sampling plans
using one analytical function and three synthetic distributions.
Exploration and replication strategies are compared. Section IV
summarizes the results and details future work.

II. Exploration Versus Replication Sampling Schemes
for Open-Hole-Tension Tests

A. Open-Hole Tension Tests

The open-hole tension (OHT) test was designed to investigate the
effect of hole size on the tensile strength of composite laminates.
OHT tests were conducted according to ASTM D5766 [22]. The
standard test specimen geometry (w∕D � 6) is shown in Fig. 2.
The width of the plate and diameter of the hole are denoted byw and
D, respectively. The plates with a hole were made of three distinct
material batches of Toray T700SC-12K-50C/#2510 plain weave
fabric. The specimen laminate ply orientations were
[0∕90∕0∕90∕45∕ − 45∕90∕0∕90∕0] with a nominal thickness of
0.172 in. Tests were conducted in ambient laboratory conditions with
an as-fabricated moisture content. The tensile strength of the plate
with a hole was calculated based on tensile load and the nominal
cross-sectional area (disregarding the hole). Table 1 details the test
matrix at four configurations, with w∕D � 3, 4, 6, 8. Eighteen
replicates were manufactured at each configuration to quantify
strength variability. Three preimpregnated (“prepreg”) batches were
adopted to quantify batch-to-batch variability. All prepreg batches
were manufactured with the same processing specification but at
different dates. The loading rate of the tension tests was
0.05 in:∕min. In all the tests, the dimension of D is the same, but
the specimen width w is different. The smaller lateral gauge may
result in higher possibility of manufacturing defects. Therefore,
panels were examined using through-transmission ultrasonic C-scan
before machining specimens to guarantee the manufacturing quality.
For the OHT tests, only a single failure modewas observed, lateral

gauge middle, and the strength response is likely to be smooth
without jump by visual check, as seen in Fig. 3. The strength of OHT
tests was assumed to be a smooth curve perturbed by random noise.
We focused on the prediction accuracy of mean strength with varying
w∕D ratio in this paper.

B. Experimental Strength Results and Polynomial Fit

Physicalmodels [12,26] have been proposed to predict the strength
of composite plate with a hole. We limited ourselves to data-driven
approaches only as a valuable complement to design optimization
when the physical models/simulations are inadequate for desirable
accuracy or require excessive computational resources. A quadratic
polynomial response surface (PRS) was selected to approximate the
mean value of failure strength after trying other fits. The PRS was
developed using all 72 specimen strength values at four w∕D ratios.
The OHT strength of each laminate is shown in Fig. 3, along with a

Tradeoff

Fig. 1 Replication strategy vs exploration strategy using two design variables and 64 samples.
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quadratic PRS fitted to themeanvalue of specimen strengths and 95%

confidence interval of the prediction variance. The OHT strength

increased gradually with w∕D. Statistical information on the

replicate OHT strengths were summarized in Table 2, where Si

denote tested strength of 18 replicates at w∕D � 3, 4, 6, and 8.

Detailed experimental results are provided in Supplement A.

In Table 3, we can see that the maximum discrepancy between

surrogate prediction and mean strength was 0.8% or less. Different

from the interpolation surrogatemodels (i.e., kriging) that pass all the

samples, the PRS filters noise and preserves monotonicity in the

design space. Therefore, a quadratic PRS seemed reasonably

accurate to approximate OHT tests and was considered as the true

function value in the following analysis of prediction accuracy. The

differences between this PRS model and any other surrogate models

based on subsets of OHT test results were assumed to be from

sampling strategies.

C. Resampling Experimental Strength for Comparing Exploration
and Replication

To compare sampling strategies for exploration and replication,

we simulated situations of paucity of data, by resampling partial

experimental strength out of the 72 available experimental results

without replacement. For the exploration strategy, we sampled from

all values of w∕D, whereas for the replication strategy, we left out

one value of w∕D but had more replicates of the other three. This

resampling approachwasmotivated by bootstrapping [27], which is

a nonparametric approach for statistical inference. The strength of a

composite material is often associated with large variability (as seen

in Supplement A); the evaluation of sampling strategy should be

interpreted in the context of stochastic effect. A resampling

procedure makes the most use of limited experimental strength and

is likely to enable insightful understanding of sampling strategy

excluding stochastic effect. All the resampling plans were repeated

1000 times using Monte Carlo simulations to account for

randomness. We compared surrogate prediction for the cases of a

total of 12 samples and of 24 samples.

Failure at lateral gauge middle 

F F

D w

a) Illustration for the geometry of the composite plate with a hole

b) Typical tension failure mode of composite laminate with a hole
Fig. 2 OHT test specimen configuration and observed failure mode.

Table 1 w∕D ratio test matrix (18 replicates are
selected from three prepreg batches)

w, in. D, in. w∕D Replicates Number of specimens

0.75 0.250 3 3 × 6 18
1.00 0.250 4 3 × 6 18
1.50 0.250 6 3 × 6 18
2.00 0.250 8 3 × 6 18

Total 72

Fig. 3 Experimental data and quadratic polynomial response surface
fitted to the data.

Table 2 Statistical properties ofOHT strengths at givenw∕Dwith 18
replicates

Data set Mean, ksi
Standard

deviation, ksi
Coefficient of
variation, %

Range of
strength, ksi

S3 59.64 3.52 5.90 [54.27, 66.33]
S4 63.22 2.79 4.41 [58.66, 68.07]
S6 66.53 3.01 4.52 [61.83, 71.89]
S8 69.27 3.04 4.39 [64.51, 76.24]

Table 3 Relative difference
between surrogate prediction
and mean strength using

quadratic PRS

w∕d Relative difference, %

3 0.4
4 0.8
6 0.5
8 0.2
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For the exploration strategy, with 12 samples, three samples were
randomly selected from each of the S3;S4;S6;S8 sets. For the
replication strategy, four samples were selected from each of the
Si;Sj;Sk sets, where i ≠ j ≠ k, as shown in Fig. 4. We skipped one
ofw∕D and used four replicates for each of the remaining three. The
replication strategy was repeated four times by omitting onew∕D in
turn. With 24 samples, the same scheme was used but with twice as
many samples for each w∕D.
A quadratic PRS was then constructed with the selected samples.

The relative error err�x� in Eq. (1) was computed at the four test
configurations to quantify the prediction accuracy:

err�w∕Di� �
�f�w∕Di� − f�w∕Di�

f�w∕Di�
(1)

where �f�w∕D� denoted predicted failure strength, and f�w∕D�
denoted the true strength obtained from the previous PRS with all 72
samples. The root-mean-square error (RMSE) given in Eq. (2) was
used to quantify the overall performance of surrogate prediction:

RMSE �
������������������������������������P

4
i�1 err�w∕Di�2

4

r
(2)

Table 4 shows the accuracy of surrogate models using exploration
and replication strategies with 12 and 24 total samples. The RMSE of
relative error for 1000 sets of samples was computed at four
configurations,w∕D � 3, 4, 6, 8. It is obvious that, for this problem,
the exploration strategy was more accurate than the replication
strategy. When modeling surrogates using samples from (w∕D � 4,
6, 8) and (w∕D � 3, 4, 6), the estimation errors at w∕D � 3 and
w∕D � 8 were significantly large due to the necessity for
extrapolation. Also, the largest RMSE among the different sample
selections occurred when extrapolation was required.
The influence of number of samples on prediction accuracy was

also observed. When twice as many samples are used to average the
noise, the RMSE is expected to be reduced by the square root of 2.
Indeed, the errors were reduced by a factor ranging from 1.38 to 1.45.
The error in surrogate prediction strongly depends on variability
of experimental strength, and the results in Table 4 show that

exploration filters out the noise in individual measurement as
effectively as or more effectively than replication. We further discuss
the effect of strength variability on surrogate models in the following
section to make the study more general.

D. Identifying the Distribution Type of Open-Hole Tension Strength

In their previous work, Matsumura et al. [18] assumed that the
distribution of strengths at the same configuration was normal,
independent, and identically distributed (IID). Independent and
identical normal distributions are frequently used for theoretical
studies of stochastic effects. Here, we examined to what extent this
assumption holds for OHT test data. We assume that all Si follow the
same type of distribution but possibly with different distribution
parameters for eachw∕D. Three candidate distributions were selected
to characterize variability of strength: a normal distribution, two-
parameter Weibull distribution (which is commonly used for strength
characterization), and a uniform distribution for comparison purposes.
The Si distribution was analyzed using the Kolmogorov–Smirnov

(K-S) test, which is a nonparametric test to quantify the goodness-of-
fit between a given probability distribution and empirical distribution
of samples [28]. The p-value of the K-S test indicates the probability
that samples do not reject the hypothetical distribution. A high
p-value denotes high probability that samples are from the
hypothetical distribution. Effectiveness of K-S test strongly depend
on the number of samples. Therefore, we pooled Si together (i.e.,
from different w∕Ds) for better estimation before applying the K-S
test. Si distributions had similar coefficients of variation (CVs) as
seen in Table 2,which implied that it was possible to combine the four
sets ofSi together to query the underlying distribution. Samples were
transformed into the standard form, namely with location parameter
equal to zero and scale parameter equal to one. Equation (3) was used
to standardize Si while assuming normal distribution or uniform
distributions. Equation (4)was used to standardizeSiwhile assuming
Weibull distribution:

Ni �
Si −mean�Si�

std�Si�
; where i � 3; 4; 6; 8 (3)

Wi �
Si

std�Si�
; where i � 3; 4; 6; 8 (4)

The p-values for pooled strengths were computed for the three
candidate distributions as shown in Fig. 5. A 5% significance level
was adopted to exclude distributions thatwere less likely to occur (the
red horizontal line in Fig. 5). Candidate distributions with a p-value
lower than the significance level were rejected. The figure showed
that there was a high chance that OHT strength follows a normal
distribution, a lower chance that it came from the Weibull
distribution, and the uniform distribution was rejected. Probability
plots for OHT strengths while assuming normal distribution and

a) Illustration of exploration strategy b) Illustration of replication strategy while
omitting w/D=3 

50
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)
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(k
si

)
60

65

70

75

Experimental strength of specimen Experimental strength of specimen
80

Fig. 4 Illustration for one set of resampled experimental strength representing exploration or replication strategy using 12 points.

Table 4 Mean valuesa of relative RMSE for surrogate from
exploration and replication

Replication omitting specimen from specific
w∕D

Sampling
strategy Exploration w∕D � 3 w∕D � 4 w∕D � 6 w∕D � 8

12 samples 2.27 3.07 2.33 2.76 6.75
24 samples 1.57 2.22 1.63 1.89 4.70

aMean values reported are based on 1000 sets of samples.
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Weibull distribution are provided in Fig. 6 for further comparison.
The OHT strengths matched both distributions in general, except at
the tails. The inconsistency at tails may be due to outliers in the
experiments and the inability of statistical distributions to
approximate physical phenomenon as well as the possibility that
the real distributionmay be different.We also repeated the analysis of
fitting of the distributions considering samples from each batch
independently by removing the bias associated with batches. The
P values using normal distribution were around 0.9 for all the three
batches, which were larger than or comparable with the P values
using Weibull distribution. Therefore, normal distribution seemed
desirable to approximate the variation of the specimen strength.

E. Effect of Between-Batch Variability

We examined the distribution of OHT test results and concluded
that the assumption that structural strength followed IID normal
distribution was not perfectly satisfied as assumed in Matsumura
et al. [18,19]. The strength of composite laminates could be
associatedwith significant variability, as seen in Sec. II.C. In practical
designs, specimens may be made from different prepreg batches.
Batch-to-batch variability could be a major source of strength
variation as reported by ASTM standard. Notable batch-to-batch
variability would invalidate the assumption of using IID normal
random variability to approximate structural strength. Figure 7
comparesSi obtained fromdifferent batches. Letbw∕Di be the strength
of specimen tested from batch i at w∕D, where i � 1; 2; 3, and
w∕D � 3, 4, 6, 8. At given w∕D, maximum values of min (bw∕Di ),
max (bw∕Di ), and mean (bw∕Di ) were mostly from batch 2, indicating
that specimens made from batch 2 tended to be stronger.
We assumed that bw∕Di followed a normal distribution based on the

results of the previous nonparametric analysis. bw∕Di was likely to

have different mean value with same w∕D ratio. Welch’s t-test was

adopted to compare central values of two Gaussian populations [29].

This test assumes that the two populations have normal distributions

and unequal variances. The p-value was used to indicate probability

of the null hypothesis that the two population means are equal (using

a two-tailed test). A high p-value represents high possibility that the

two distributions under consideration are equal. Table 5 documents

the p-value for Welch’s t-test between specimens made from batch 1

and batch 2. The p-values at w∕D � 3, 6, 8 are smaller than the 5%

significance level (i.e., the assumption that the two samples were

from the same distribution was rejected). The p-value at w∕D � 4
was 0.15, which is slightly larger than significance level 0.05. Based

on Fig. 7 and Table 5, strengths of specimens from same batch

obviously shared systematic bias. The between-batch variability

resulted in a violation of normality assumption and IID condition

even though Si was close to normal distribution in overall.
It would be interesting to check the effect of between-batch

variability on prediction accuracy. This is an extended study on

tradeoff between exploration of more batches and replication ignoring

the between-batch variability.We assumed that eachprepreg batchwas

equally important and selected at least one sample from each batch to

conserve batch-to-batch variability. The sampling plan conserving

batch-to-batch variability is termed three-batch sampling and can be

viewed as emphasizing exploration, whereas random sampling may

omit a batch and have more replicates in the other batches. We

compared surrogate models based on random sampling and three-

batch sampling. Table 6 shows the accuracy of surrogate models using

exploration and replication strategies with 12 specimens. The relative

RMSE for 1000 sets of samples were computed at four configurations,

w∕D � 3, 4, 6, 8. It is seen that we benefit from both types of

exploration, using full set of w∕Ds, and all three batches.

Fig. 5 K-S test statistic for OHT strength.

Fig. 6 Probability plot for a normal distribution and a Weibull distribution.

Fig. 7 Statistical properties of specimen strength.
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III. DistributionType Influence on Sampling Strategies:
Analytical Model of a Composite Plate

The experimental results indicated that the strength of composite

laminates was not a perfectly independent and identically distributed

Gaussian random variable. Therefore, we examined the influence of

distribution type on sampling strategies using an analytical test

function. Although the results aligned with the previous numerical

studies showing that explorationwas better than replication, theOHT

case was relatively benign compared to the numerical examples of

Matsumura et al. [18]. First, there is only one design parameter in the

OHT test results; second, the failure stress varies smoothly, allowing

accurate approximation with low-order polynomials; and third, the

variation of the distribution is relatively small. To obtain further

insight, we investigate sampling strategies and distribution types

using one analytical function of the failure load of an unnotched

composite laminate with highly nonlinear failure response. The

geometry of the plate and the dependence of the failure load on the

two design parameters are shown in Fig. 8.

The composite laminate structure had three ply angles

[0∕ − θ∕� θ deg], which was intended to have a more complex

failure response as shown in Fig. 8. The laminate is subject to forces

Nx and Ny along the x and y axes defined by parameter α, where
Nx � �1 − α�F and Ny � αF. There are two design parameters for

this structure: θ ∈ �0; 90 deg� and α ∈ �0; 0.5�. Table 7 details the

material properties and strain allowables. The strains are predicted by

the classical lamination theory. Critical failure mode was due to ply

axial strain. The failure loads were calculated analytically as in
Matsumara et al. [18].
The analytical failure loads are perturbed with synthetic noise to

imitate experimental variability. Three types of distribution were
considered in this work: normal distribution, Weibull distribution with
heavy tail, and multisource distribution to imitate batch-to-batch
variability. The numerical study focused on average performance of
surrogates based on the synthetic samples fromMonteCarlo simulation.
Variability of the performance of surrogates is attached in Supplement B
for reference.

A. Synthetic Noise Using Three Types of Distribution

We considered three types of distributions to simulate strength
variation. Normal and Weibull distributions were considered as two
popular distributions to approximate the structural strength. The
normal distribution was set to be N�μN�θ; α�; σN�θ; α��, where
μN�θ; α� was the mean value of structural strength from analytical
function at configuration �θ; α�, and σN�θ; α�was obtained assuming
constant CV to be 0.05.
TheWeibull distribution was first shaped to followW�a; b�with a

heavy tail to amplify the difference with the normal distribution,
where the scale parameter a � 2, the shape parameter b � 1.5. Then,
W�a; b� was scaled through a linear transformation to imitate the
experimental variability of the analytical test function. Details of the
Weibull distribution are given in the Appendix.
Themultisource distributionwas proposed to imitate between-batch

variability based on findings from the OHT test results. We first

Table 5 Statistics of Welch’s t-test between specimens from batch 1 and batch 2

w∕D � 3 w∕D � 4 w∕D � 6 w∕D � 8

Statistics bw∕D1 bw∕D2 bw∕D1 bw∕D2 bw∕D1 bw∕D2 bw∕D1 bw∕D2

Mean value 57.6 ksi 63.3 ksi 63.8 ksi 65.2 ksi 66.7 ksi 69.8 ksi 67.3 ksi 70.7 ksi
p-value 0.0004 0.15 0.01 0.04

Table 6 Mean valuesa of relative RMSE for surrogate with/without
between-batch variability

Replication omitting specimen from w∕D � i

Sampling
strategy Exploration w∕D � 3 w∕D � 4 w∕D � 6 w∕D � 8

Random
sampling

2.27 3.07 2.33 2.76 6.75

Three-batch
sampling

1.62 2.45 1.69 2.14 4.9

aMean values reported are based on 1000 sets of samples. Three replicates from four

configurations are for exploration, four replicates from three configurations are for

replication.

Table 7 Parameter

settings of composite
laminate

Parameter Value

E1 150 GPa
E2 9 GPa
ν12 0.34
G12 4.6 GPa
Ply thickness 125 μm
ε1allow �0.01
ε2allow �0.01
γ12allow �0.015

a) Illustration of composite laminate b) Response for critical failure load (N) in the
design space

Fig. 8 Configuration and failure response of composite laminate. α is a constant to balance between horizontal and vertical loadings. θ is the orientation
angle of lamina.
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generated five random valuesMi as the mean strengths of five batches
from N�0; 0.0352� and fixed to imitate the between-batch bias for the
following analysis.Themeanvalueswere then scaled up through linear
transformation at different configurations �θ; α� as shown in Eq. (5):

mi�θ; α� � f�θ;α� ×Mi � f�θ; α� (5)

Synthetic samples were then generated from N�mi�θ; α�;
�mi�θ;α� × 0.035�2� assuming constant CV to be 0.035. Typical
probability density functions of three distributions are illustrated in
Fig. 9 for 8.5 ksi mean value of strength. The synthetic specimen
strength in the design space is assumed to come from one of the five
batches. The multisource distribution should be skewed due to
between-batch for five specific distributions as seen in Fig. 9c.

B. Fitting Strategy

A polynomial response surface (PRS) surrogate was selected
because of its robustness and good performance for predictions based
on noisy data. Leave-one-out cross validation was adopted to select

an appropriate polynomial order for each individual set of samples.
PRS assumed constant variance instead of constant coefficient of
variation. Therefore, function values of sampling points were
preprocessed using logarithmic transformationwith base 10 to obtain
close-to-constant variance.
As inMatsumura et al. [18], our test matrices ranged from 4 × 4 to

7 × 7 with evenly spaced test points to investigate the effect of the
density of matrix on the accuracy of approximation. For each test
matrix, we replicated the same test configuration up to seven times.
Each test matrix was generated and fitted 1000 times to compensate
for randomness of samples and obtain the average accuracy.
Accuracy of surrogate prediction was computed using a 20 × 20
matrix of test points (400 points in total). RelativeRMSE fromEq. (4)
was adopted to measure overall accuracy of the surrogate model.

C. Influence of Distribution Type on Sampling Strategies

We first developed surrogate models to approximate the analytical
function without noise for reference. Figure 10a summarizes prediction
accuracy of surrogate prediction at all test matrix without noise.

a) Normal distribution b) Weibull distribution c) Multisource distribution 
Fig. 9 Normal distribution, Weibull distribution, and multisource distributions with mean value to be 8.5 ksi. The mean values of the five synthetic
batches are 8.1, 8.5, 8.8, 8.4, and 9.0 ksi.

b) Noise under Normal distribution

c) Noise under Weibull distribution d) Noise under multisource distribution

a) Without noise 

Fig. 10 Mean value of relative RMSE based on 1000 sets of samples (number of samples indicates the total number of tests, including 1–7 replicates for
each test point) with different distribution types.
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The typical orders for polynomial response surface selected using cross
validation were quadratic, cubic, quartic, and quantic for the four sets of
testmatrix. The composite laminate has a highly nonlinear response (see
Fig. 8) that greatly benefited from the higher-order polynomials made
possible by using more test points. This example corresponds to a case
that is more challenging to fit than the OHT case. The RMSE of relative
error reduced from 0.2 to 0.11 with increasing points for exploration.
While modeling the composite laminate strength, a typical PRS model
based on 4 × 4matrix was quadratic, and a typical PRSmodel based on
7 × 7 matrix was quintic. Note that, because there is no noise, RMSE
remains constant through replication.
Noise was then added to the data, and the influence of noise

distribution on sampling strategieswas compared. Figure 10 documents
the accuracy of surrogate models for the composite laminate. From
Figs. 10b–10d, we can observe a clear advantage of exploration over
replication with different distributions. The prediction accuracy did not
change much with increasing replicates for the same configuration set.
This was due to the highly nonlinear response that implies that surrogate
model error is the major concern. Increasing replicates could mitigate
mostly the effect of randomness (noise). Allocating samples for
exploration enables high-order PRS for closer approximation to the
response. That is, model error was more significant than sampling error
corresponding to experimental variability for this example. We also
examined the influence of magnitude of noise on prediction accuracy in
Appendix A. Noise with a coefficient of variation varying from 0.05 to
0.2 only had a limited effect on predicative capability of surrogates
comparing with model form.

IV. Conclusions

To predict the strength of many composite structural elements, it is
necessary to perform structural strength tests for a matrix of
configurations as function of loading, geometry, and material
properties. Then, a surrogate fit allows interpolation or extrapolation
to be performed to obtain strengths of untested configurations. For a
given number of tests, a balance between exploration, meaning
testing many structural configurations, and replication of each tested
configuration must be struck to overcome the effects of noise.
Previous work has shown that exploration is more effective than
replication, especially when the functional form of response is
complicated, but it was based on simulated test data assuming
independent and identically distributed normal noise.
In this paper, the conclusion favoring exploration using actual test

data of strength of open hole composite plates is first tested as
function of the ratio of plate width to hole diameter, w∕D. A
resampling procedure is proposed based on subsets of experimental
strength to compare exploration and replication. The experimental
data consist of 72 samples, indicating failure strengths for three
batches of laminates with six replicates per batch and four values of
w∕D. The two strategies were compared by using 12, 24, or all 72
samples. For each case, testing all four w∕D configurations with
fewer replicateswas comparedwith testing only three of the fourwith
more replicates. Using 12 or 24 samples randomly drawn from 72
samples, the accuracy of fitted surrogates was checked 1000 times in
a Monte Carlo sampling strategy. The results showed that testing all
four configurations with fewer replicates led to more accurate
predictions than testing only three configurations with more
replicates, thus confirming the previous simulated results.
The major source of uncertainty for prediction was then

investigated, which is the variability of strength. It was found that the
distribution of OHT strength is not perfectly independent and
identically distributed normal distribution as commonly assumed.
Thiswas likely due to systematic bias in strength for different prepreg
batches. To generalize the present observation on sampling strategies,
the influence of distributions based on synthetic datawas investigated
using nonnormal distributions and correlations. Synthetic samples
were generated based on the strength response for an unnotched
composite laminate using normal distribution, Weibull distribution,
and multisource distribution. Prediction of polynomial response
surface (PRS) with fixed order/terms had similar accuracy while
increasing replicates for different distributions. Introducing more

replicates did not benefit prediction accuracy noticeably. An
exploration strategy enables a higher-order PRS to be used, which is
key to increase prediction accuracy for complex structural behavior.
These results are limited to the accuracy of the mean value of the

failure strength. Future work will focus on estimating the tolerance
limits, such as the B-basis using surrogate models for designing
structures with a limited number of available experimental results.
Additional composite test types to investigate the application of
surrogate are also being sought.

Appendix: Weibull Distribution with a Heavy Tail

TheWeibull distribution was first shaped to followW�a; b�with a
heavy tail to amplify the difference with the normal distribution,
where the scale parameter a � 2, and the shape parameter b � 1.5 as
seen in Eq. (A1). Then, W�a; b� was scaled through a linear
transformation to imitate the experimental variability of the analytical
test function according to Eqs. (A2–A4), where the strength of the
analytical test function, F−1

W �pja; b�, is the inverse cumulative
distribution at percentile p, and μW�a; b� is the mean of W�a; b�.
al�θ; α� from Eq. (A2) was adopted to scale up the variability of the
synthetic strength, and bl�θ;α� in Eq. (A3) was used to guarantee the
mean value of the synthetic strength is f�θ; α�:

k ∼W�a; b� � b

a

�
k

a

�
b−1

e−�x∕a�b (A1)

al�θ; α� � 0.2f�θ; α�
F−1
W �97.5ja; b� − F−1

W �2.5ja; b� (A2)

bl�θ; α� � f�θ;α� − al�θ; α� × μW�a; b� (A3)

s�θ; α� � k × al�θ; α� � bl�θ; α� (A4)
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