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Abstract
The objective of this paper is a tradeoff between changing design and controlling sampling uncertainty in reliability-based design
optimization (RBDO). The former is referred to as ‘living with uncertainty’, while the latter is called ‘shaping uncertainty’. In
RBDO, a conservative estimate of the failure probability is defined using the mean and the upper confidence limit, which are
obtained from samples and from the normality assumption. Then, the sensitivity of the conservative probability of failure is
derived with respect to design variables as well as the number of samples. It is shown that the proposed sensitivity is much more
accurate than that of the finite difference method and close to the analytical sensitivity. A simple RBDO example showed that
once the design variables reach near the optimum point, the number of samples is adjusted to satisfy the conservative reliability
constraints. This example showed that not only shifting design but also shaping uncertainty plays a critical role in the optimi-
zation process.

Keywords Reliability-based design optimization . Uncertainty quantification . Sampling uncertainty . Conservative . Sensitivity

1 Introduction

The probability of failure is usually utilized in a design process
to assure the safety of a component or a system.
Notwithstanding the importance of the probability of failure,
its accuracy has always been in a question. That is to say, there
is uncertainty in the probability calculation (Cadini and
Gioletta 2016; Howard 1988; Mosleh and Bier 1996), espe-
cially when the level of probability of failure is extremely low.

There are two categories of uncertainty involved in a sys-
tem: aleatory uncertainty and epistemic uncertainty (Park et al.
2014; Hofer et al. 2002). The former is inherent variability or
natural randomness that is irreducible. The aleatory

uncertainty is usually represented using a probability theory
(Li et al. 2013). This randomness is reflected in the input
variables in a form of probability distributions. Epistemic un-
certainty, on the other hand, comes from a lack of knowledge.
If additional information is provided, then the uncertainty can
be reduced. However, modeling epistemic uncertainty is not a
trivial task. The sources of both uncertainties can be found
throughout the entire design process. For instance, the mate-
rial property can be taken as an example of the aleatory un-
certainty: Young’s modulus and Poisson’s ratio are different
from a sample to another even if the samples are made from
the same material. Likewise, the input design variable can be
thought to have variability, which is modeled as a random
variable in RBDO (Choi et al. 2005).

As well as for the aleatory uncertainty, there have been nu-
merous trials to systematically consider the epistemic uncertain-
ty which can be divided into the following types – surrogate
model error, model form error, sampling error, numerical error,
and other unknown error (Liang and Mahadevan 2011) – in a
design process. For example, fuzzy set theory, possibility theo-
ry, interval analysis, and evidence theory are used to mathemat-
ically represent the epistemic uncertainty (Helton and
Oberkampf 2004; Youn et al. 2006; Agarwal et al. 2004).
Sometimes, the limit of the prediction interval of a surrogate
model is used as a design criterion (Zhuang and Pan 2012).
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Recently, Jiang et al. tried to improve themodeling capability in
a multidisciplinary system by efficiently allocating samples by
using the prediction interval (Jiang et al. 2016).

In the field of reliability analysis, the epistemic uncertainty
has been a major concern as well. For example, Nannapaneni
and Mahadevan utilized a novel FORM-based approach and
Monte Carlo simulation (Nannapaneni and Mahadevan 2016),
andMartinez et al. applied the belief function theory to a system
under epistemic uncertainty to estimate the reliability (Martinez
et al. 2015). However, most works focus on how to consider the
effect of epistemic uncertainty, but not controlling it. Since
epistemic uncertainty is related to the lack of knowledge or
information, it is possible to control the epistemic uncertainty
by improving a model or increasing the number of samples.
Therefore, it would be necessary to include the control of epi-
stemic uncertainty in the design process. For example, the
building-block process in the aircraft industry is developed to
identify design errors, which are caused by model form errors
(epistemic uncertainty), and fix them in the early design stage;
i.e., reducing epistemic uncertainty. So far, the industry relies on
trial-and-error to reduce epistemic uncertainty.

In this paper, as a first attempt to explicitly control the epi-
stemic uncertainty, a tradeoff between changing design variables
and controlling sampling uncertainty is presented in the frame-
work of RBDO. The conservative estimate of the failure prob-
ability is used as a constraint in sampling-based RBDO. The
constraint can be satisfied by either (a) changing design, which
in turn, will shift the mean of the probability of failure or (b)
shaping uncertainty—adding more samples can reduce the un-
certainty in the distribution. The former may increase the system
weight and thus increase the operating cost, while the latter may
increase the development cost as it requires more samples and
tests. With a proper cost model, it is possible that the optimiza-
tion algorithm can tradeoff between the two.

The paper is composed of six sections. Section 2 shows
two different ways of dealing with uncertainty in the design
process. Section 3 explains how the epistemic uncertainty
from sampling is reflected in the sensitivity analysis.
Section 4 exhibits the accuracy of the formulation by compar-
ing the sensitivity obtained from two different methods, and

Section 5 demonstrates how the derived sensitivity could be
utilized in RBDO using a 2-d mathematical problem, followed
by conclusions in Section 6.

2 Living with uncertainty versus shaping
uncertainty

Design optimization helps to minimize the objective function
while satisfying all constraints. The process is well utilized in
industry to design a structure that satisfies constraints, which
can be a function of external force, vibration, or heat transfer
(Choi and Kim 2004). However, when the optimized structure
is built, not all of them show expected performance. That is,
some of them do not satisfy the prescribed constraints. This is
because of the uncertainty involved in the loading conditions
applied to the structure, manufacturing process, material prop-
erties, and computational errors that the optimization process
did not consider. For example, a structure may undergo a larger
force than the force used in the analysis or there could be het-
erogeneity in the material property that is hard to express with a
mathematical model. Sometimes, the manufacturing tolerance
is too large to make an optimized shape. In conventional opti-
mization, the effect of uncertainty is indirectly considered by
adopting the concept of safety factor or safety margin.

In order to consider uncertainty directly, reliability-based de-
sign optimization (RBDO) is developed to find an optimum with
constraints on the probability of failure. RBDO takes randomness
of inputs into account and searches for the optimum (Tu andChoi
1999). The idea has been thoroughly investigated with different
approaches. One of them is to use the sampling method, in which
the probability of failure is evaluated through Monte-Carlo sam-
pling, possibly with a surrogate model (Lee et al. 2011).

A challenge in sampling-based reliability calculation is that
the sampling uncertainty also affects the probability calcula-
tion, which in turn, results in the distribution of the probability
(see Fig. 1). If the epistemic uncertainty can be quantified,
then it can be included in the design process by introducing
a conservative probability of failure. It is possible to make the
design strategically conservative to consider such uncertainty.
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Fig. 1 Options to satisfy
reliability constraint with
conservative probability of
failure. (a) livingwith uncertainty,
(b) shaping uncertainty
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In detail, the target probability of failure in a probabilistic
constraint can be achieved with the upper confidence limit
of the probability of failure. If the desired confidence level is
1 −α and the probability of failure follows a normal distribu-
tion, then the reliability constraint with the conservative esti-
mate can be written as

PF;cons ¼ PF þ z1−ασP F ≤PT ð1Þ
where PF and σP F are, respectively, the mean and standard
deviation of the probability of failure estimated from samples,
z1 −α is the z-score, and PT is the target probability of failure.

When the conservative probability of failure violates the
reliability constraint, the mean probability of failure can be
reduced, which can be achieved by changing design toward a
conservative direction. Although the mean probability can be
reduced by a conservative design, it still needs to quantify the
effect of epistemic uncertainty σP F on the probability of failure
to shift the mean properly. In this paper, this approach is called
‘living with uncertainty’ as shown in Fig. 1a. This is the basic
approach in conventional RBDO — designing the system to
satisfy reliability with all given uncertainties. However, since
there are many sources of epistemic uncertainty, the design
may end up too conservative if all uncertainties are included.
Therefore, it is often necessary to reduce epistemic uncertainty
by using a high fidelity model or having more tests. In this
paper, we only consider sampling uncertainty as for the source
of epistemic uncertainty. That is, the uncertainty in the proba-
bility of failure calculation depends on the number of samples.
If more samples are used, the uncertainty in the probability of
failure will be reduced, but the computation will be more cost-
ly. However, the population mean of the probability of failure
remains unchanged, and therefore, only the distribution of the
probability of failure is narrowed. Note that the estimate of the
mean probability can change, but the populationmean does not
change. In this paper, this approach is called ‘shaping uncer-
tainty’ as shown in Fig. 1b.

In the figure, the distribution of the probability of failure at
the original design is given as the solid line. At the design d1,
the conservative estimate PF, cons which is represented by the
black dot in the figure does not satisfy the reliability con-
straint; i.e., it is larger than the target probability of failure.
In order to make the conservative estimate to satisfy the con-
straint, either the standard deviation of the distribution should
be reduced or the mean should be shifted by changing the
design. When the design is changed, the conservative estimate
can satisfy the constraint as the dot moves to the left as in Fig.
1a. If more samples are provided so that the uncertainty is
reduced, PF, cons can also satisfy the constraint, although the
design does not change, as shown in Fig. 1b. In other words,
not only changing the design variables but also reducing the
uncertainty can be used to satisfy reliability constraint in
RBDO. The conventional RBDO only looks for changing
design to satisfy the reliability constraint.

3 Design sensitivity analysis under epistemic
uncertainty

As explained in the previous section, epistemic uncertainty yields
the distribution of the probability of failure. In order to compen-
sate for this uncertainty, a conservative probability of failure was
introduced by using both the mean and standard deviation of this
distribution. When design changes, it is possible that either the
mean of the distribution is shifted or the standard deviation of the
distribution changes, both of which can change the conservative
probability of failure. It is also possible that the standard devia-
tion of the distribution can change when the number of samples
changes. In this section, the design sensitivity of the conservative
probability of failure with respect to either design variables or the
number of samples is developed.

There are many methods available for calculating the prob-
ability of failure, such as the first- or second-order reliability
methods (Haldar and Mahadevan 2000), surrogate-based
methods (Bichon et al. 2011), and sampling-based methods
(Picheny et al. 2010; Bae et al. 2017). Different methods have
their own advantages but it is the out of the scope of this paper
to discuss them. In this paper, it is assumed that the probability
of failure is calculated using a sampling-based method, more
specifically, Monte Carlo Simulation (MCS).

Let us assume that N samples are available for calculating
the probability of failure. In MCS, the probability of failure is
calculated as

PF dð Þ ¼ 1

N
∑
N

i¼1
I F yið Þ ð2Þ

where IF is the indicator function, which becomes 1 if yi is in
the failure region; otherwise 0:

I F yið Þ ¼ 0 if yi∉ΩF

1 if yi∈ΩF

�
ð3Þ

The sum of the indicator function, NPF(d), approximately
follows a normal distribution N(NPF,NPF(1 − PF)) when the
normality condition is satisfied, such that NPF > 10 and N(1 −
PF) > 10 (Fraser 1958). Therefore the probability of failure
follows a normal distribution, PF∼N PF ;PF 1−PFð Þð =NÞ.
The unique characteristic of sampling-based methods is that
the calculated probability of failure has sampling uncertainty.
That is, PF is random because a different set of samples may
yield different values. Note that NPF(d) follows a normal dis-
tribution regardless of the distribution type or correlation of
input random variables. When MCS is used to calculate PF,
its standard deviation can be estimated as

σP F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PF 1−PFð Þ

N

r
ð4Þ

where N is the number of samples used to calculate PF. An
important observation in (4) is that the uncertainty is
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independent of the number of input random variables. Rather,
it is a function of the level of probability and the number of
samples. Note that the variance of PF is inversely proportional
to the number of samples used. Therefore, the variance of the
probability of failure can be controlled by changing the number
of samples. Equation (4) is also an estimate, which means that
uncertainty exists in (4) because PF is an estimate of the true
failure probability. However, the uncertainty of standard devi-
ation is not considered in this research because it is small when
compared to the uncertainty in PF. The expression in (4) is
valid when all samples are independent and identically distrib-
uted, which is the case of MCS. Therefore, it is unnecessary
that the underlying distribution is Gaussian.

Using (2) and (4), the ratio between PF and σP F is shown
when the number of samples N is changed from 1000 to
10,000 in Fig. 2 at different probabilities. Even if the absolute
magnitude of the standard deviation decreases as PF de-
creases, its relative magnitude compared to PF increases.
That is to say, the uncertainty in probability can be much
larger than the probability itself. Therefore, this uncertainty
plays a key role when the probability is small. Further, the
relative uncertainty decreases as more samples are provided,
which confirms that introducing more samples is indeed a way
to reduce the uncertainty.

To compensate for sampling epistemic uncertainty, (1) can
be used for reliability analysis. To calculate the sensitivity of (1)
with respect to an input design variable, the mean probability of
failure is considered first. Using (2), the design sensitivity can
be calculated using Leibniz’s rule as (Lee et al. 2011)

∂PF dð Þ
∂di

¼ 1

N
∑
N

j¼1
I F x j
� �

sdi x j; d
� � ð5Þ

In (5), sdi x; dð Þ is the partial derivative of the log-likelihood
function with respect to its argument, which is called a score
function. If the probability is determined based on a finite
number of samples, then the sampling uncertainty as in (4)

is induced. Using the result, the design sensitivity of (1) can be
derived using the chain rule of differentiation as

∂PF;cons

∂di
¼ ∂PF

∂di
1þ z1−α

1−2PF

2NσP F

� �
ð6Þ

As mentioned before, (6) is the sensitivity of the conserva-
tive estimate of the probability of failure. The sensitivity con-
sists of two parts: the effect of design perturbation on the
probability and that on the uncertainty of the probability. If
the uncertainty of the probability is not considered, then the
latter part of (6) vanishes, making it same as (5).

Fig. 1b suggests another way of design. That is, utilizing
the number of samples to make the conservative estimate sat-
isfy the reliability constraint. The design sensitivity of (1) with
respect to the number of samples can be derived as

∂PF;cons

∂N
¼ −z1−α

σP F

2N
ð7Þ

Equation (7) shows that changing the number of samples to
the probability calculation does not change the mean proba-
bility but only the uncertainty of the probability. Also, the sign
of (7) is always negative, which suggests that additional sam-
ples always reduces the uncertainty.

4 Accuracy of design sensitivity analysis
under epistemic uncertainty

To demonstrate the accuracy of the sensitivity derived in
(6) and (7), a simple linear function with a known input
distribution is considered. Let y(x) = x and x~N(d, 12),
where d is the current design point. Here the failure
region is defined as ΩF = {y| y < yth} with yth = − 2.3263.
A conservative estimate is chosen with the confidence
level to 95%; that is, z95% = 1.645. When the current
design point is d = 0, the true probability of failure is
equal to 1%. The target probability of failure that the
conservative estimate must satisfy is 1.3%. The number
of samples used in this problem is 1000, and therefore,
the conservative estimate of the probability is
PF þ z95%σP F ¼ 1:52%. Before carrying out the sensitiv-
ity analysis, it is verified if the target probability can be
achieved by the proposed methods as shown in Fig. 3.
To satisfy the target probability, either the design must
be shifted by 0.0691 as in Fig. 3a, or the number of
samples must be increased by 1970 as in Fig. 3b. Note
that the mean probability of failure changes when the
design is shifted, but it remains the same when more
samples are added. Also, the variance of the distribution
changes when the design is shifted because the variance
is also a function of the probability.Fig. 2 Relative importance of uncertainty in probability of failure
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To show the accuracy of the sensitivity result, the score
function is calculated first. Since The input random variable
follows a normal distribution with the current design point
d = 0, the score function becomes

∂ln f x x; d;σð Þ
∂d

¼ x ð8Þ

Using the chain rule of differentiation, the sensitivity of the
conservative estimate in (6) is calculated as

∂PF;cons

∂d
≃

1

N
∑
N

m¼1
I xmð Þxm

� �
1þ z0:95

1−2PF

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPF 1−PFð Þp

 !
ð9Þ

The sensitivity in (9) is compared with that of the finite
difference method (FDM), which is based on the perturbation
of design as

∂PFDM
F;cons

∂d
≃
PF;cons d þΔdð Þ−PF;cons dð Þ

Δd
ð10Þ

Figure 4 shows the estimated distribution of the proba-
bility of failure with 10,000 repetitions. As expected, the
probability of failure is normally distributed and the param-
eters are estimated as μ = 0.01, σ = 3.118 × 10−4, while the

population mean and variance of the probability of failure
are calculated as μtrue = 0.01, σtrue = 3.146 × 10−4.

Figures 5 , 6 and Table 1 compare the distribution of the
sensitivity using the two different methods with 10,000
repetitions. The mean of sensitivity obtained from (9) is
equal to −0.0348, while the mean obtained by FDM varies
from −0.0322 to −0.0148 depending on Δd. Considering
that the exact value is −0.0348, the proposed method can
provide an accurate sensitivity of the conservative proba-
bility of failure. The standard deviation of FDM is the
smallest when Δd = 1, which is approximately 2 times
smaller than that from the proposed method. However, the
accuracy of the sensitivity is inferior to the proposed meth-
od. Moreover, the sensitivity obtained using FDM can be
larger than 0, which contradicts the fact that the sampling
uncertainty is only reduced when additional samples are
provided. Thus, it would be difficult, if not impossible, to
calculate the sensitivity using FDM when only a small
number of samples are available. In fact, it is highly recom-
mended to use the sensitivity derived in (9) instead of the
FDM since the problems in this research arise from a lim-
ited number of samples. Note that the distribution of sensi-
tivity using (9) converges to the true value as the number of
samples is increased in Fig. 6.

For this simple analytical example, it is possible to cal-
culate the analytical sensitivity of the conservative esti-
mate, which is given in Table 1. In (6), only the calculation
of ∂PF/∂d requires samples, which can be obtained through
numerical integration in this example as

∂PF dð Þ
∂d

¼ ∫
−∞

yth 1ffiffiffiffiffiffi
2π

p
σ

x−dð Þ
σ2

exp −
x−dð Þ2
2σ2

" #
dx ð11Þ

Therefore, the analytical sensitivity in Table 1 is calcu-
lated by substituting (11) in (6), which is shown in Table 1.
Note that since the analytical sensitivity does not use sam-
ples, its value is deterministic. The sensitivity obtained
using the proposed method still has uncertainty in itself.
However, the analytical solution is seldom available in re-
ality because of the nonlinearity in the limit state function
that defines the failure region. Therefore it is suggested to
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Fig. 3 Verification of options to
satisfy reliability constraint using
conservative estimate. (a) by
shifting design, (b) by increasing
the number of samples
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utilize the proposed method which is still more accurate and
precise than FDM.

In addition to the design variable, the conservative proba-
bility of failure also depends on the number of samples. The

sensitivity with respect to the number of samples is much
smaller than that of the design variables because adding or
removing one sample has a negligible effect on the probability
estimation. Therefore, a scaled variable, n = N/1, 000, is

Fig. 5 Distribution of design
sensitivity using finite difference
method

Fig. 6 Distribution of design
sensitivity using proposed
method for different number of
samples
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introduced in optimization. Then, the sensitivity expression in
(7) can be converted to

∂PF;cons

∂n
¼ z1−α

∂σP F

∂N
∂N
∂n

≃−500z1−α
σP F

N
ð12Þ

Table 2 shows the sensitivity results from all three
methods based on 10,000 repetitions. The sensitivity using
(12) with the population mean of PF = 0.01, is compared
with those obtained by FDM and (12) with random sam-
pling. The process is repeated 10,000 times to compare the
accuracy of the proposed method. For the convergence
study of FDM, Δn is varied from 0.001 to 1. As shown in
the table, the derived sensitivity is more accurate than the
finite difference method and has a small standard deviation
as well while FDM failed to estimate the sensitivity
accurately.

5 Design optimization of 2-D mathematical
problem

To illustrate the effect of sampling uncertainty on optimum
design, a 2-D mathematical problem is formulated.
Information regarding the random variables is provided in
Table 3, where the design variable is the mean of a random
variable. The objective function consists of two parts: the

operation cost and the design cost. The operation cost is an
expected expense of a design during the operation, and
therefore, it is a function of the design variables. On the
other hand, the design cost is the expense of design process
itself, and thus, this is a function of the number of samples.
There are three constraints, among which G2(X) is highly
nonlinear. The lower and upper bounds of the number of
samples, N, are 1000 and 10,000, respectively. A scaled
variable n = N/10, 000 is used to normalize the cost function
and the constraints. PF is evaluated for each constraint, and
the combined effect of more than two constraints is ignored
in this paper. For the effect of dependency between multiple
constraints, readers are referred to the work of Park et al.
(Park et al. 2015). The design cost is modeled as a mono-
tonically increasing function ofN, however, it is modeled as
a mildly convex function to show that RBDO can make
tradeoff between the two costs in this problem.

min f dð Þ ¼ operation costþ design cost

¼ −
d1 þ d2−10ð Þ2

30
−

d1−d2 þ 10ð Þ2
120

þ 10

" #
þ 0:01

n
þ 0:2n

� 	
S:T : P Gi xð Þ > 0½ � þ z97:5%σPi ≤PT ;i; i ¼ 1∼3

z97:5% ¼ 1:96

dL≤d≤dU ; d∈R2 and X∈R2

0:1≤n≤1

ð13Þ

Table 1 Mean and standard
deviation of sensitivity of
conservative probability of failure
with respect to design variable

Analytical
sensitivity

Sensitivity
using (10)

Sensitivity using FDM

Δd = 0.001 Δd = 0.01 Δd = 0.1 Δd = 1

Mean −0.0348 −0.0348 −0.0255 −0.0311 −0.0322 −0.0148
Standard deviation – 0.01 5.8945 0.3345 0.0556 0.0045

Table 2 Mean and standard deviation of sensitivity of conservative probability of failure with respect to number of samples

Sensitivity using
(12) with population
mean of PF

Sensitivity
using (12)

Sensitivity using FDM

Δn = 0.001 Δn = 0.01 Δn = 0.1 Δn = 1

Mean −2.013E-03 −1.987E-03 −5.554E-03 −2.704E-03 −1.803E-03 −1.137E-03
Standard deviation – 3.191E-04 9.155E-01 8.988E-02 8.665E-03 7.219E-04

Table 3 Distribution of random variables

Random
Variables

Distribution
Type

Mean Standard
Deviation

Lower
Limit of
mean

Upper
Limit of
mean

X1 Normal d1 0.3 0 10

X2 Normal d2 0.3 0 10

Reliability-based design optimization under sampling uncertainty: shifting design versus shaping uncertainty 1851



Equation (14) shows the three constraint functions applied
in this problem.

G1 Xð Þ ¼ 1−
X 2

1X 2

20
G2 Xð Þ ¼ −1þ Y−6ð Þ2 þ Y−6ð Þ3−0:6 Y−6ð Þ4 þ Z

G3 Xð Þ ¼ 1−
80

X 2
1 þ 8X 2 þ 5

ð14Þ

where Y and Z are intermediate variables correlated as

Y
Z

� 

¼ 0:9063 0:4266

0:4266 −0:9063

� 	
X 1

X 2

� 

ð15Þ

Figure 7 shows the contour of the objective function and
the limit states of the three constraints. The initial design point
is set to the deterministic design optimum (DDO) which is
(d1, d2) = (5.1969, 0.7405). N = 7500 samples are initially
used to evaluate the probabilities of failure and their sensitiv-
ities. The operation cost at the DDO is 7.7083. To ensure that
the proposed sensitivity finds an optimum correctly, first, the
reliability-based design optimum is found using 1 million
samples, which is assumed large enough to ignore the

sampling uncertainty. Because the number of samples is fixed,
the design cost becomes constant.

With aleatory uncertainty alone, the optimum design from
the conventional RBDO is located at (d1, d2) = (4.7324,
1.5544) and the operation cost is 8.0919, which is shown in
Fig. 7. The optimum design has been shifted inside the feasi-
ble region, and the cost is increased by 0.3836 from that of
DDO. The probability constraints ofG1 andG2 are active, and
thus, the probability of failure for both constraints is PF(G1) =
PF(G2) = 2.275%.

Now the RBDO searches for the optimum design consid-
ering the sampling uncertainty withN = 750. The optimization
is repeated 100 times with different sets of samples to show
the behavior of the RBDO using a conservative estimate ofPF.
Figure 8 summarizes the optimization results.

All trials found an optimum fairly close to the RBDO op-
timum. In the magnifying window, the black dot is the opti-
mum design with aleatory uncertainty only, while red dots are
100 optimum designs considering sampling uncertainty. As
expected, the optimum designs are shifted further inside the
feasible region and increased the operation cost to compensate
for the sampling uncertainty as shown in Fig. 9. The box plot
of the d1 and d2 location at the optimum is provided in Fig. 10.

The mean of the number of samples required to reach the
optimum is around 3000. This is not enough number to pre-
cisely calculate the probability of failure and therefore the
probability distribution still exists. However, this number is
obtained by the RBDO considering both the operation cost
and the design cost. It is always advisory to increase the num-
ber of samples to reach the exact optimum, but doing so costs
too much design expense. Therefore, the RBDO tries to find a
balance between the two costs. If the design cost is too high
compared to the operation cost, then the RBDOminimizes the
design cost. In contrast, the RBDOmaximizes the design cost
when it is trivial. The definition of non-trivial design cost may
vary in context, but in this problem, about 1% of the total cost
is design cost.

Fig. 10 shows the d1 and d2 locations and the number of
samples required to calculate the probability of failure at the
optimum point for 100 repetition of the RBDO. The RBDO
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does not simply ignore the design cost which is small relative
to the operation cost. The design cost function is a convex
function, the minimum design cost can be found at n =
0.2236. However, the design cost itself is not minimized by
the proposed RBDO formulation. Instead, the RBDO tries to
find an optimum at which the total cost can beminimized. The
range of the samples found at the optimum is from around
2100 to over 3300 which is relatively wide. This is because
the design cost is a mildly linear function of n.

At each optimum, the probability calculation has been car-
ried out to calculate the mean of the probability and confi-
dence limit of the distribution, which is shown in Fig. 11. At
the optimum, PF(G3) = 0% because it is inactive. Therefore
the box plot is created only for PF(G1) and PF(G2). The mean
probability of failure is now less than the target, which is
2.275%. Instead, the RBDO tries to match the target probabil-
ity with the conservative estimate. It is also observed that the
probabilistic constraint was actually violated just in one case
out of 100 trials. The confidence level of the problem is
97.5%, and therefore only one or two cases have been expect-
ed to violate the constraints, which is consistent with the re-
sult. If the same number of samples were used for the RBDO,
then around half of the probability calculation would not meet
the target probability, which the RBDO clearly avoids when a
conservative estimate of PF is applied as in Fig. 11.

Fig. 10 Boxplot of optimum points

Fig. 9 Histogram of operation
cost and design cost at optimum
under sampling uncertainty

Fig. 11 Boxplot of mean probability of failure at optimum
Fig. 12 Design history of reliability-based design optimization under
sampling uncertainty
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The optimization history shows an example of how the
RBDO performs the tradeoffs. Figure 12 shows the design
iteration history of the trial 1, where the design variables are
normalized by the upper limit of their own and the cost is
normalized by the initial value. Note that the operation cost
increases because the RBDO starts from the deterministic de-
sign optimum. In an early iteration, the RBDO tries to change
both the design points and the number of samples to satisfy the
target. Once the design variables reach near the optimum
point, only the number of samples is adjusted to satisfy the
conservative reliability constraints. Thus, both the shifting de-
sign and shaping uncertainty that were suggested in Fig. 2 are
manifested.

Lastly, the convergence of the RBDO is traced while in-
creasing the number of samples. In Table 4, the mean and
standard deviation of the objective function and the optimum
location are calculated based on 100 repetition. As seen in the
table, the standard deviation decreases as more samples are
applied. Also, the mean of objective function approaches the
aleatory-only RBDO optimum when the sample size is in-
creased. This is because the sampling uncertainty decreases
as more samples are applied.

6 Conclusion

This paper showed that epistemic uncertainty could be con-
trolled during reliability-based design optimization (RBDO).
Then, the optimization algorithm found a tradeoff between
changing designs and shaping uncertainty. This paper pro-
posed three key components to make such a tradeoff possible.
(1) The objective function must depend on both the design
variables and the epistemic uncertainty. In particular, in this
paper the objective function composed of the operation cost
and development cost. The former depends on design vari-
ables, while the latter depends on the number of samples used
in the design stage. (2) In RBDO, the conservative estimate of
the probability of failure is defined using the mean and the
upper confidence limit, which are obtained from samples and
from the normality assumption. (3) The sensitivity of the con-
servative probability of failure is derived with respect to de-
sign variables as well as the number of samples. It is shown
that the proposed sensitivity is much more accurate than that

of the finite difference method and actually close to the ana-
lytical sensitivity. A simple RBDO example showed that once
the design variables reach near the optimum point, the number
of samples is adjusted to satisfy the conservative reliability
constraints. This example showed that not only shifting design
but also shaping uncertainty plays a critical role in the optimi-
zation process.

In fact, in addition to sampling uncertainty, there are other
types of epistemic uncertainties. However, formulating such
uncertainties in a form of probability distribution is not a triv-
ial task while sampling uncertainty can be expressed using a
distribution. Including other kinds of epistemic uncertainties
will be explored in the future research.
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