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Abstract
In this paper, a simple but efficient concept of epistemic reliability index (ERI) is introduced for sampling uncertainty in
input random variables under conditions where the input variables are independent Gaussian, and samples are unbiased. The
increased uncertainty due to the added epistemic uncertainty requires a higher level of target reliability, which is called the
conservative reliability index (CRI). In this paper, it is assumed that CRI can additively be decomposed into the aleatory
part (the target reliability index) and the epistemic part (the ERI). It is shown theoretically and numerically that ERI remains
same for different designs, which is critically important for computational efficiency in reliability-based design optimization.
Novel features of the proposed ERI include: (a) it is unnecessary to have a double-loop uncertainty quantification for
handling both aleatory and epistemic uncertainty; (b) the effect of two different sources of uncertainty can be separated so
that designers can better understand the optimization outcome; and (c) the ERI needs to be calculated once and remains the
same throughout the design process. The proposed method is demonstrated with two analytical and one numerical examples.

Keywords Epistemic uncertainty · Reliability index · Reliability-based design optimization · Smart reconfigurable reflector

1 Introduction

In a design problem, which requires a high accuracy and
confidence (e.g., aerospace structural design), epistemic
uncertainty cannot be ignored because it has been known to
have a significant impact on the design (Der Kiureghian and
Ditlevsen 2009). Especially, sampling uncertainty, one of
epistemic uncertainty, has an impact on the quantification of
aleatory uncertainty. For example, the manufacturing varia-
bility, one of aleatory uncertainty, is often quantified by
several samples. The accuracy of the quantification depends
on the number of samples. Since the number of samples is
often limited and insufficient, the quantification of variabi-
lity has an error, which is called sampling uncertainty.
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Therefore, when the number of samples is limited, it is
necessary to consider both aleatory and epistemic uncer-
tainties to obtain a robust design (Cho et al. 2012, 2016).
In this paper, we focus on a design problem that has
manufacturing variability with sampling uncertainty and
propose a new method to handle epistemic uncertainty. Nor-
mal distribution is generally applied to the probabilistic
model of manufacturing variability and to other models such
as measurement error model. When input variables show
non-Gaussian distributions, it is possible to transform a
non-Gaussian distribution to Gaussian using, for example,
Rosenblatt and Nataf transformation. This type of trans-
formation is commonly used in the first-order reliability
analysis (FORM) as it is formulated in the space of standard
normal random variables. Since the proposed epistemic reli-
ability index approach is based on the FORM, all random
variables are transformed to the standard normal random
variables, which inevitably induces an error. However, this
error in FORM has already been reported and well rec-
ognized in the community. Therefore, the accuracy of the
proposed method should be understood in the same context.

In general, both aleatory and epistemic uncertainties
are considered using double-loop algorithms (Helton and
Breedin 1993). The inner loop quantifies the aleatory uncer-
tainty, while the outer loop is for epistemic uncertainty
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(Park et al. 2014). Using Monte Carlo sampling, for exam-
ple, the inner loop evaluates the probability of failure for
a given realization of epistemic uncertainty. On the other
hand, the outer loop calculates the distribution of the prob-
ability of failure, from which a conservative estimate can
be used for obtaining a reliable design. The conservative
estimate provides additional safety by imposing a smaller
probability of failure than that of ignoring sampling uncer-
tainty. Such double-loop algorithms are computationally
expensive, especially in design optimization, where the
process of quantification is repeated at different designs.

In this paper, the conservative estimate of the probability
of failure is represented using a conservative reliability index
(CRI). From the assumption that the conservative reliability
index can be decomposed additively into aleatory and episte-
mic portions, it is used in reliability-based design optimiza-
tion (RBDO) considering sampling uncertainty for input
variables. A novel contribution of this paper is to show that
the epistemic portion of the reliability index remains con-
stant for different designs in this condition. Therefore, only
the aleatory portion is reevaluated at every design iteration,
which makes the process almost the same as the conven-
tional RBDO without considering epistemic uncertainty.

Due to the new epistemic reliability index (ERI), it is
easy to visualize the effect of epistemic uncertainty in
the design process. In the conventional study considering
epistemic uncertainty (Cho et al. 2012, 2016; Gunawan and
Papalambros 2006; Srivastava and Deb 2013), the effects
from both uncertainties are melted. However, this paper
is the first attempt to separate their effects on optimal
solutions. The proposed method divides these effects into
the two sources of uncertainty and their effects can be
quantified using the new reliability index (see Section 2.3).
In practice, this visualization is important because it can
help to make a decision whether it is beneficial to reduce the
epistemic uncertainty or not.

Designers can recognize the effect of epistemic uncer-
tainty for each limit state function before the optimiza-
tion process. The evaluation of the new reliability index
is required only one time in the entire design process as
explained the following section (see Sections 2.1 and 2.4).
In the conventional RBDO, this effect can only be found
implicitly after performing RBDO. That is, if designers
are not satisfied with the RBDO results, they have to try
the evaluation RBDO process again with reduced epistemic
uncertainty in this case with more number of samples. The
proposed method, however, does not require performing
RBDO to estimate the effect of epistemic uncertainty. In
fact, the proposed method provides an explicit magnitude of
additional reliability index due to the epistemic uncertainty
from the beginning.

Since the ERI can be calculated explicitly and the two
reliability indices are additively decomposed, the proposed

method can be applicable to general RBDO problems
considering sampling uncertainty of input variables (see
Section 2.3). According to many past studies (Aoues and
Chateauneuf 2009), many different tools can be used to
perform RBDO with the proposed method. In addition,
the proposed method makes it easy to compare the results
with and without considering epistemic uncertainty (see
Section 5).

The paper is organized as follows: Section 2 presents
the proposed method of calculating the CRI, and Section 3
discusses the feature of CRI. One important fact that is
presented in Section 3 is that the epistemic reliability is
independent of design variables under the modeling we
set in Section 2. In Section 4, the proposed method is
compared with other methods that can handle both aleatory
and epistemic uncertainty. Section 5 illustrates the validity
of the proposed method through two analytical examples as
well as the example of displacement magnifying structure,
followed by conclusions in Section 6.

2 Conservative index approach

2.1 Sampling uncertainty modeling

In this study, we consider aleatory and epistemic uncertainty
in manufacturing tolerance based on a small number of
data. First, to consider aleatory uncertainty, a manufacturing
output variable, such as a dimension, xi is regarded as a
random variable following a normal distribution, as

xi ∼ N(μp(i), σp(i)) (1)

where μp(i) and σp(i) are the mean and standard deviation of
xi , respectively. The subscript p means that the parameters
are for “population”.

However, due to the lack of information, the accurate
values of these parameters are unknown. Instead, they
are estimated using a limited number of samples. Therefore,
the parameters of population distribution have epistemic
uncertainty, which is called sampling uncertainty. In statis-
tics, the sampling uncertainty is represented in the form
of probability distribution. Therefore, the two parameters,
μp(i) and σp(i), are considered random variables and
rewritten as μ̂p(i) and σ̂p(i). Therefore, (1) can be rewritten
as

xi ∼ N(μ̂p(i), σ̂p(i)) (2)

The distribution of the mean μ̂p(i) is estimated as

μ̂p(i) ∼ N

(
di,

σs(i)√
n(i)

)
(3)

where di is the ith design variable and n is the number
of samples. The subscript s means that the parameters are
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for “sample”. σs(i) is the standard deviation of the samples.
Additionally, the distribution of the standard deviation σ̂p(i)
is estimated as

σ̂p(i) ∼ σs(i)√
n(i) − 1

χ(n(i) − 1) (4)

where χ(n(i) − 1) is the chi distribution of the degree of
freedom n(i) − 1.

2.2 RBDO formulation with aleatory and epistemic
uncertainty

When only aleatory uncertainty is considered, the RBDO is
formulated as follows:

min. : f (d) (5)

s. t. : P [gj (x) ≥ 0] ≤ �(−βT
j ) (j = 1, · · · , m)

dL
i ≤ di ≤ dU

i (i = 1, · · · , nd)

xi ∼ N(di, σs(i)) (i = 1, · · · , nd)

where d = [d1, · · · , dnd
]T denotes the vector of design

variables with nd dimensions and x = [x1, · · · , xnd
]T

denotes the vector of random variables. In this paper, it is
assumed that x follows a normal distribution, whose mean
values are set as design variables d. The function f (·) is
the objective function to be minimized, and the constraint
function gj (·) is the j th limit state function. βT

j is the

j th target reliability index. dL
i and dU

i represent the lower
and upper bounds of ith design variable, respectively. This
formulation considers only aleatory uncertainty, where a
single value of the probability of failure exists for a given
design.

When epistemic uncertainty is considered in addition
to aleatory uncertainty, the probability of failure is not a
deterministic value although the design variables are fixed.
As shown in Fig. 1, a number of samples can first be
generated from the distribution of parameters to evaluate
the distribution of the probability of failure. This part
corresponds to the outer-loop for epistemic uncertainty.
Then, for each pair of parameter samples, the distribution
of x(i) can be defined, from which the probability of failure

can be calculated. This part is the inner-loop for aleatory
uncertainty. Since there are many samples of probability
of failure, they can be used to determine a conservative
probability of failure using a confidence level. Therefore,
when there is epistemic uncertainty, the conventional RBDO
is modified to a confidence-based RBDO as

min. : f (d) (6)

s. t. : P α
f (j) < �(−βT

j ) j = 1, · · · , m

dL
i ≤ di ≤ dU

i i = 1, · · · , nd

xi ∼ N(μ̂p(i), σ̂p(i)) i = 1, · · · , nd

where P α
f (j) represents the α percentile of the probability of

failure. This means that the result has the reliability with the
α percentage confidence level.

Uncertainty in input variables leads to conservative
design to satisfy reliability requirements. Since it is well
known that the epistemic uncertainty is reducible but
aleatory uncertainty is not, it is important to understand
the contribution of these two sources of uncertainty to the
conservatism in the design. If the epistemic uncertainty
leads to too conservative design, designers may want to
reduce it instead of compensate for it. In the case of
sampling uncertainty, increasing the number of samples,
n, can reduce the epistemic uncertainty, as shown in (3)
and (4). The conservative probability of failure P α

f (j) in (6)
includes the contribution from both aleatory and epistemic
uncertainty. However, it is not straightforward to identify the
contribution of individual uncertainty from the formulation
in (6) and the method of evaluating the conservative
probability of failure shown in Fig. 1. In the following
subsection, a method of separating the contribution of
epistemic uncertainty from that of aleatory uncertainty is
presented in terms of the reliability index.

2.3 Conservative Reliability Index (CRI)
and Epistemic Reliability Index (ERI)

Let dopt be the optimal solution of (5). In RBDO, the
reliability index is often used instead of the probability of
failure. The reliability index is evaluated in the U-space of

Fig. 1 Distribution of
probability of failure
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standard normal random variable, where the input random
variable, xi , is converted into ui in the U-space as

ui = xi − d
opt
i

σs(i)
(i = 1, · · · , nd) (7)

The limit state function gj (x) in (5) is also converted in the
U-space by replacing xi with ui using the relationship in
(7). In the following derivations, we use the same functional
form for the limit state function in the U-space; i.e., gj (u).

The most probable point (MPP) is defined as the nearest
point from the origin to the limit state surface, gj (u) = 0.
The distance from the origin to the MPP in the U-space is
equal to the j th reliability index βT

j when the limit state
is active as shown in Fig. 2. This figure shows that the
limit state function is varied due to epistemic uncertainty
for example, g◦(u) and g×(u). Therefore, the nearest point
from the origin (MPP) is also varied and as a result, the
reliability index is distributed as this figure.

It is noted that the target reliability index can be
approximated by a mean value of this distribution of
reliability index because E[μ̂p(i)] = d

opt
i and E[σ̂p(i)] =

σs(i) are introduced by (3) and (4). Since we consider a
conservative estimate of reliability, the confidence level of
the reliability index P [β ≥ βT ] can be used as a reliability
constraint.

With epistemic uncertainty, the RBDO formula in (5) can
be rewritten as

min. : f (d) (8)

s. t. : P [gj (x) ≥ 0] ≤ �(−β∗
j ) (j = 1, · · · , m)

dL
i ≤ di ≤ dU

i (i = 1, · · · , nd)

xi ∼ N(di, σs(i)) (i = 1, · · · , nd)

This formulation simply replaces the reliability index from
βT to β∗, and β∗ is larger than βT due to additional epis-
temic uncertainty. That is, in order to be conservative under
epistemic uncertainty, a higher value of the reliability index
is required than the case without epistemic uncertainty. The
distribution of the reliability index evaluated in (8) is com-
pared with that of the reliability index in (5) in Fig. 3. Based
on the approximation that E[μ̂p(i)] = d

opt
i and E[σ̂p(i)] =

σs(i), the mean of the distribution of the reliability index cor-
responds to βT approximately. It means that about 50% of
reliability indices failed to satisfy the reliability constraint.
It will be shown in Section 3 that the distribution shape of
reliability index is independent of design. Therefore, in the
RBDO formulation in (8) with epistemic uncertainty shifts
the mean of this distribution from βT to β∗ while keeping
its shape. By designing with β∗, the target reliability index
βT becomes a conservative one. If the confidence level
P [β ≥ βT ] satisfies the desired confidence level α%, this
optimal result also satisfies the conservative based RBDO
conditions.

In this paper, β∗ is called “Conservative Reliability Index
(CRI)”. Additionally, the shifted value, which is due to the
epistemic uncertainty, is called “Epistemic Reliability Index
(ERI)”. It is defined as

βe = β∗ − βT (9)

Therefore, the formulation considering aleatory and epis-
temic uncertainty can be described as (8).

This formulation can be solved in the same way as the
traditional RBDO once the CRI (β∗

j ) is obtained. In the
following section, the procedure to evaluate CRI and ERI
will be described.

Fig. 2 Distribution of reliability
index due to epistemic
uncertainty



Conservative reliability index for epistemic uncertainty in reliability-based design optimization 1923

Fig. 3 Shifted reliability index distribution due to conservative target
reliability index

2.4 Algorithm of estimating CRI and ERI

In this section, we describe how to estimate the CRI and ERI
step by step. Since the distribution of the reliability index is
difficult to evaluate mathematically, a numerical method is
adopted. This reason will be referred in Section 3.1. The key
concept of the proposed method is that for a fixed MPTP
(Maximum Performance Target Point (Tu et al. 1999)) x∗ in
the design space, the distribution of corresponding u∗ can
be found based on the distribution of epistemic uncertainty.
The distribution of reliability index can be calculated from
that of u∗. In this section, we briefly describe procedures
for each step and a flow of evaluating CRI and ERI will be
followed.

2.4.1 (Step 0) initialization

First, design variable d and CRI for each limit state func-
tion β∗

j are set as d(0) and βT
j , respectively. Then, samples

for input design variables are prepared and their sample
standard deviations are evaluated. And the values of d is
fixed on the initial design variables d(0) on each evaluating
CRI iteration. For simplicity, we will describe is as d.

2.4.2 (Step 1) MCS sampling for the distribution parameters

In this step, samples of the distribution parameters, mean
value μ̂p(i) and standard deviation σ̂p(i), are generated to
make the distribution of the reliability index numerically.
As we mentioned above section, these values follow certain
distributions as in (3) and (4). Then, the samples of the
distribution parameters can be obtained. The number of the
samples is set as nk for each variable.

2.4.3 (Step 2) MPTP search in Z-space

In order to find MPTP, we introduce Z-space that is based
on the initial design point as

zi = xi − di

σs(i)
(i = 1, · · · , nd) (10)

Then, the MPTP of each limit state function can be obtained
in Z-space by solving the following optimization problem:

find : z∗ (11)

min. : gj (z)

s. t. : |z| = β∗
j

The optimum point z∗ satisfies the condition that the mean
of reliability index is approximately equal to CRI, β∗
as shown in Fig. 4. The MPTP z∗ in Z-space can then
be converted into the design space to obtain x∗ using
the relationship in (10). Note that since the MPTP is
found using the sample mean and standard deviation, it is
approximately the mean of the reliability index distribution
due to epistemic uncertainty.

2.4.4 (Step 3) evaluating normalized MPTPs for each sample

Once MPTP is found, the next step is to generate the
samples of reliability index based on sampling uncertainty.
First, nk numbers of sample sets of distribution parameters
are generated by (3) and (4) for each random variable. Here,
the k th sample set is denoted as (μ

(k)
MCS, σ

(k)
MCS). For a given

sample set of distribution parameters, the MPTP point x∗
can be converted into the standard normal space as

u
∗(k)
i = x∗

i − μ
(k)
MCS(i)

σ
(k)
MCS(i)

(i = 1, · · · , nd) (12)

Fig. 4 MPTP search in Z-space
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Since we have nk sample sets of distribution parameters,
the above equation yields nk numbers of normalized MPTP
u∗(k)(k = 1, · · · , nk).

2.4.5 (Step 4) evaluating the distribution of the reliability
index and updating CRI value

Following the general reliability analysis of FORM (Choi
et al. 2007), each reliability index evaluated at each
normalized MPTP can be introduced as

βk = ||u∗(k)|| (k = 1, · · · , nk) (13)

Then, the distribution of reliability index is evaluated using
nk numbers of the reliability index samples. Using these
samples, we can evaluate the α percentile of the reliability
index, β(α). Figure 5 illustrates the process of evaluating the
distribution of reliability index.

If β(α) is equal to the target reliability index βT , the value
of β∗ can be regarded as the CRI. If not, the value of β∗ is
updated as

β∗
new = β∗

old + �β (14)

where �β = βT −β(α). β∗
new and β∗

old are represented as the
updated CRI value and the old CRI value, respectively. This
update is repeated until converged; that is, until �β = 0.

Finally, the flowchart of estimating CRI and thus ERI is
shown in Fig. 6.

3 Features of CRI

In this section, the feature of the CRI and the ERI will
be discussed. An important property that will be shown in
this section is that the CRI and thus ERI is independent
on the design variable values. Therefore, designers need
to evaluate these indices only once. Here, we present two

Fig. 5 Evaluating the distribution of the reliability index

proofs in the viewpoint of mathematical and numerical
approaches.

3.1 Mathematical approach

We consider epistemic uncertainty as shown in Section 2.1,
and then, introduce Z-space to find the normalized MPTP.
Using the following relationship between ẑi and x̂i :

ẑi = x̂i − di

σs(i)
∼ N(μ̂z(i), σ̂z(i)) (15)

we can find the mean and standard deviation of ẑi as

μ̂z(i) ∼ N

(
0,

1√
n(i)

)
, σ̂z(i) ∼ 1√

n(i) − 1
χ(n(i) − 1)

(16)

In the Z-space, the MPTP is searched by solving the
optimization problem in (11). The deterministic value z∗ of
MPTP in the Z-space can be converted into the design space
as

x∗
i = di + σs(i)z

∗
i (17)

Since the reliability index is generally defined in the U-
space, the MPTP x∗ is further converted into the U-space as

û∗
i = x∗

i − μ̂p(i)

σ̂p(i)
(18)

Note that even if x∗
i is deterministic, û∗

i is random due to
the epistemic uncertainty, which is represented in μ̂p(i) and

Fig. 6 Procedure of evaluating CRI
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σ̂p(i). Then, we can obtain the random reliability index in
U-space as the norm of û

∗. That is,

β̂2 =
nd∑
i=1

û∗2
i (19)

Once we have the distribution of β̂2, we can also evaluate
the α percentile of reliability index.

Using (18), we can obtain the following relationship for
û∗2

i :

û∗2
i =

(
x∗
i − μ̂p(i)

σ̂p(i)

)2

=
(

μ̂p(i) − x∗
i

σ̂p(i)

)2

=
(

μ̂p(i) − di − σs(i)z
∗
i

σ̂p(i)

)2

=
(

(μ̂p(i) − di) − σs(i)z
∗
i

σs(i)σ̂z(i)

)2

= 1

σ̂ 2
z(i)

(
μ̂p(i) − di

σs(i)
− z∗

i

)2

= 1

n(i)σ̂
2
z(i)

(√
n(i)μ̂z(i) − √

n(i)z
∗
i

)2 (20)

Here, to simplify the expression, v̂i is introduced as

v̂i := √
n(i)μ̂z(i) ∼ N(0, 1) (21)

Then,

û∗2
i = 1

nσ̂ 2
z(i)

(
v̂i − √

n(i)z
∗
i

)2

= 1

n(i)σ̂
2
z(i)

(
v̂2i − 2

√
n(i)v̂iz

∗
i + n(i)z

∗2
i

)
(22)

Note that σ̂z(i) is independent on the index of design
variables because it is normalized by design variables. We
can introduce the expression of the squared reliability index
distribution using (19) and (22) as

β̂2 =
nd∑
i=1

1

nσ̂ 2
z(i)

(
v̂2i − 2

√
n(i)v̂iz

∗
i + n(i)z

∗2
i

)

= 1

nσ̂ 2
z

(
nd∑
i=1

v̂2i − 2
√

n(i)

nd∑
i=1

z∗
i v̂i + n(i)

nd∑
i=1

z∗2
i

)
(23)

Knowing that z∗ satisfies the condition in (11), individual
terms in (23) can be expressed as

â :=
nd∑
i=1

v̂2i ∼ χ2(nd) (24)

b̂ :=
nd∑
i=1

z∗
i v̂i ∼ N

⎛
⎝0,

√√√√ nd∑
i=1

z∗2
i

⎞
⎠ = N(0, β∗) (25)

where
∑nd

i=1 z∗2
i = β∗2. Using the above terms, (23) can be

simplified as

β̂2 = â

n(i)σ̂ 2
z

− 2b̂√
n(i)σ̂ 2

z

+ β∗2

n(i)σ̂ 2
z

(26)

where

â

n(i)σ̂ 2
z

= nd

n(i)

· â/nd

σ̂ 2
z

∼ nd

n(i)

· χ2(nd)/nd

χ2(n(i) − 1)/n(i) − 1

= nd

n(i)

· F(nd, n(i) − 1)

2b̂√
n(i)σ̂ 2

z

= 2√
n(i)

· b̂

σ̂ 2
z

∼ 2(n(i) − 1)√
n(i)

N(0, β∗)
χ2(n(i) − 1)

β∗2

n(i)σ̂ 2
z

= (n(i) − 1)β∗2

n(i)

· 1

(n(i) − 1)σ̂ 2
z

∼ (n(i) − 1)β∗2

n(i)

· Inv-χ2(n(i) − 1)

F and Inv-χ2 are the F distribution and the inverse chi
square distribution, respectively.

As shown in (26), it is difficult to handle the squared
reliability index distribution. However, this distribution is
the independent of the design variables. Rather, it depends
on the number of samples and σ̂z(i). That is, the uncertainty
in β̂∗ will be the same at different designs. Since the CRI
depends on the uncertainty in β̂∗, it is independent of design
variables. This property is particularly important in the
RBDO process because the ERI needs to be evaluated only
once. In the next section, we will show the validation of this
property using numerical approach.

3.2 Numerical approach

In this section, the following limit-state functions (Youn and
Choi 2004) are considered to validate the feature of the CRI
and ERI.

g1(x) = x2
1x2

20
− 1

g2(x) = (x1 + x2 − 5)2

30
+ (x1 − x2 − 12)2

120
− 1

g3(x) = 80

x2
1 + 8x2 + 5

− 1

For the demonstration purpose, the target reliability index
is set to 3.0 for each limit state function. The objective of
this section is to show that the ERI is independent of design
variable values.

As described in Section 2.4, the evaluation of the ERI
requires the number of input samples and the standard
deviations of samples. In order to demonstrate epistemic
uncertainty, 10 sample sets of design variables x are
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Table 1 Probability distribution of design variables and statistics of
samples

Design Population Sample Sample standard

variable mean deviation

d1 N(3, 0.32) 2.7425 0.2481

d2 N(3, 0.062) 3.0124 0.0507

Fig. 7 Grids of the design variable points

Fig. 8 ERI value of g1

Fig. 9 ERI value of g2

Fig. 10 ERI value of g3

Table 2 Mean and standard deviation of ERI

Mean Standard deviation

g1 0.7464 1.307 × 10−3

g2 0.8834 1.874 × 10−3

g3 0.6625 1.524 × 10−3
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Table 3 Comparison with
related study Our study Gunawan et al. and Srivastava et al. Cho et al.

RBDO formulation (8) multi-objective confidence-based

Reliability distribution reliability index probability of failure ←−
Evaluation method sampling Bayesian binomial inference sampling

Number of evaluation one time number of iteration ←−

generated based on the distribution parameters given in
Table 1.

In order to show that the ERI is independent of design
variables, the ERIs are evaluated at sixteen grid points in the
design space as shown Fig. 7. The ERIs on these 16 points
of design variable are evaluated for each limit state function.

The results for each limit state function are shown in
Figs. 8, 9 and 10, respectively. The values written in each
figure are the ERI values for each design variable. As shown
in the three figures, the ERI values are almost same at
different designs, which is consistent to the theoretical proof
in the previous section. The mean value and the standard
deviation are summarized in Table 2. Since the standard
deviation is two orders of magnitude smaller than the mean
value of the ERI, it can be said that the ERI is constant. The
small differences are caused by the convergence tolerance
during optimization in (11) and sampling uncertainty in
determining β(α). Although the reliability index is defined
as the distance between the design point and the limit-state
function, the ERI is independent of the distance from the
limit-state function.

These results provide an illustration of the fact that the
ERI is independent on the design variable values. Therefore,
the CRI and the ERI are evaluated only one time before
solving the RBDO problem. Therefore, the computational
cost is one-time cost of evaluating ERI based on the initial
design.

4 Related research and comparison

In this section, related researches which address to handle
aleatory uncertainty and epistemic uncertainty in optimal
design process are shown and compared with our study.

Gunawan and Papalambros (2006) proposed a method for
considering the uncertainties using insufficient information.

Table 4 Properties of design variables and samples in numerical
example 1

Design Population Sample Sample standard

variable mean deviation

d1 N(3, 0.12) 3.0281 0.0549

d2 N(3, 0.32) 3.0175 0.3223

It is noted that this study adopts a multi-objective opti-
mization, which considers a trade-off relationship between
the objective value and the confidence level. Additionally,
they estimate the reliability distribution using a Bayesian
binomial inference technique and beta distribution. Srivas-
tava and Deb (2013) applied an evolutionary algorithm
for searching the trade-off Pareto frontier. These studies
guaranteed to show the relationship using multi-objective
optimization method and approximate the reliability dis-
tribution. On the other hand, Cho et al. (2012) and Cho
et al. (2016) proposed a new method to estimate the reliabil-
ity distribution based on sampling. This method addressed
directly to evaluate the reliability distribution. Although it
takes too much cost due to iterated sampling, they showed
this method can deal with even non-normal distribution
type. It might guarantee industrial problems, which have
insufficient information of the type of distributions.

These past studies are compared with our study
in Table 3. On the view of the RBDO formulation,
our proposed method has an advantage to perform the
optimization problem compared with multi-objective and
confidence-based formulation. However, multi-objective
formulation can show the relationship between the objective
value and the confidence level. That aids designers to know
how effective both aleatory and epistemic uncertainty are.
It is noted that their effect is not divided. To consider
epistemic uncertainty in RBDO, the past studies adopt
the distribution of probability of failure, while our study
adopts that of reliability index. Then, these distributions
are evaluated by sampling or Bayesian binomial inference.
Sampling method is easy to obtain accurate distributions, in
contrast, Bayesian method is easy to approach because it is
assumed as beta distribution. The most important feature is
that our proposed method requires only one time to evaluate
the distribution although the past studies require several
times which is proportional to the number of iteration in
RBDO process.

Table 5 CRI and ERI values in example 1

CRI ERI

g1 3.955 0.955

g2 3.615 0.615
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Table 6 Summary of optimal
results in example 1 dopt f (dopt) g1(d

opt) g2(d
opt) Reliability index (FORM)

Proposed [2.34, 2.06]T 4.39 −2.97 −1.50 [4.24, 2.84]

Only aleatory [2.35, 1.75]T 4.11 −2.90 −1.15 [3.20, 2.30]

Original [2.44, 1.72]T 4.17 −2.72 −1.50 [3.0, 3.0]

5 Numerical examples

5.1 Linear functionmodel

At first, the following linear RBDO problem is considered.

min. : f (d) = d1 + d2 (27)

s. t. : P α
f (j) < �(−βT

j ) (j = 1, 2)

g1(x) = x1 − 3x2
g2(x) = −4x1 − x2 + 10

0 ≤ di ≤ 5 (i = 1, 2)

xi ∼ N(μ̂p(i), σ̂p(i)) (i = 1, 2)

where the confidence level α = 90% and the target
reliability index βT

j = 3.0, (j = 1, 2). Since this
problem is composed of linear functions for both objective
and constraints, and since all input random variables are
normally distributed, the calculated reliability index using
FORM should be accurate. For epistemic uncertainty, n =
10 sample sets of design variables are generated according
to the distribution described in Table 4.

The CRI and the ERI values are obtained using nk =
1000 epistemic samples, as shown in Table 5. These values
are evaluated by the procedure mentioned in Section 2.4.

Next, the RBDO problem is performed with and
without ERI. In this example, PMA (Performance Measure
Approach (Tu et al. 1999)) is adopted. The conventional
RBDO without epistemic uncertainty corresponds to an

Fig. 11 Optimal solution comparing with and without epistemic
uncertainty in example1

optimal solution with βe = 0, which means it considers
only aleatory uncertainty. Additionally, the original RBDO
problem is performed using the population distributions
of the random variables in Table 4. These results are
summarized in Table 6 and the optimal points are shown
in Fig. 11. As shown in Table 6, the result using only
aleatory uncertainty is also different from that of original
RBDO due to sampling error. In fact, the results using only
aleatory uncertainty and proposed method fail to satisfy
the reliability constraint, however, the proposed method
yields more conservative reliability result. As shown in

(a) Histogram of reliability index for g1

(b) Histogram of reliability index for g2

Fig. 12 Validation of the optimal result considering epistemic
uncertainty in example 1: histograms of reliability index using MCS
sampling
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Table 7 CRI and ERI values in example 2

CRI ERI

g1 3.892 0.892

g2 3.560 0.560

g3 3.829 0.829

the table and figure, the optimum design with epistemic
uncertainty is moved further to the feasible domain from
the optimal design only aleatory uncertainty. Based on
Table 4, the uncertainty in x2 is three times larger than
that of x1. Between the two limit state functions in (28),
g1 is proportional to −3x2, while g2 is to −x2. Therefore,
it is obvious that g1 is more sensitive to the epistemic
uncertainty. As shown in Table 5, since the effect of
epistemic uncertainty on g1 is larger than that of g2, the
optimal design moves away further from g1 than g2.

Finally, to validate this result, Monte Carlo sampling
(MCS) is performed. For epistemic uncertainty, 1000
sample sets of distribution parameters are generated by (3)
and (4) for each random variable at optimal design. The
histograms of the reliability index are evaluated for each
limit state function and shown in Fig. 12. The figure shows
that the 90 percentile of reliability index almost satisfies
the target reliability index (βT = 3.0) for each limit state
function.

5.2 Nonlinear functionmodel

As the second example, the following nonlinear RBDO
problem is considered.

min. : f (d) = (d1 + 2)2 + (d2 + 2)2 − 2d1d2 (28)

s. t. : P α
f (j) ≤ �(−βT

j ) (j = 1, 2, 3)

g1(x) = x2
1x2

20
− 1

g2(x) = (x1 + x2 − 5)2

30
+ (x1 − x2 − 12)2

120
− 1

g3(x) = 80

x2
1 + 8x2 + 5

− 1

0 ≤ di ≤ 10 (i = 1, 2)

xi ∼ N(μ̂p(i), σ̂p(i)) (i = 1, 2)

where α = 90% and βT
j = 3.0 (j = 1, 2, 3). This problem

is composed of nonlinear objective function and the three

Table 8 Summary of optimal
results in example 2 dopt f (dopt) g1(d

opt) g2(d
opt) g3(d

opt) Reliability index (FORM)

Proposed [3.61, 2.87]T 34.47 −0.870 −0.131 −0.951 [3.22, 5.23, 35.8]

Only aleatory [3.44, 2.76]T 33.26 −0.630 −0.116 −1.056 [2.48, 4.07, 37.7]

Original [3.56, 2.84]T 34.11 −0.797 −0.126 −0.981 [3.0, 4.89, 36.3]

Fig. 13 Optimal solution comparing with and without epistemic
uncertainty in example 2

limit state functions that were studied in Section 3. The same
distribution parameters and samples shown in Table 1 are used.

The CRI and the ERI are obtained using nk = 1000
epistemic samples, whose results are shown in Table 7.
Similar to the previous example, this table shows that the
epistemic uncertainty effect of g1 is largest, because the ERI
of g1 is largest in all of these limit state functions.

In the same way as with the previous example, the RBDO
problem is solved using the PMA. The optimal solution
with βe = 0 and the original RBDO problem using the
population distributions are also evaluated to compare with
the proposed method with epistemic uncertainty. These
results are summarized in Table 8, and the optimal points are
shown in Fig. 13. As shown in Table 8, the result using only
aleatory uncertainty is also different from that of original
RBDO in example 1. In fact, the result using only aleatory
uncertainty fails to satisfy the reliability constraint (β =
2.48), while the proposed method yields a conservative
reliability result (β = 3.22). In this example, since the
constraint functions g2 and g3 are not active, the optimal
design is moved away from g1.

The level of conservativeness is evaluated using MCS
with 1000 samples, the same procedure explained in the
previous example. Since the constraint functions g2 and
g3 are not active, only g1 is investigated. Figure 14 shows
the histogram of reliability index of g1. The figure shows
that the 90 percentile of reliability index satisfies the target
reliability index (βT = 3.0).
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Fig. 14 Validation of the optimal result considering epistemic
uncertainty in example 2: histograms of reliability index using MCS
sampling

5.3 Displacement Magnifying Structure (DMS)
design

In this section, the proposed method is applied to “Dis-
placement Magnifying Structure (DMS)” design problem
(Kogiso et al. 2017). To obtain an accurate design, the man-
ufacturing tolerance is evaluated by measuring the dimen-
sions from three prototypes. Since the number of samples
are small, it is necessary to consider epistemic uncertainty.

The geometry of the DMS is shown in Fig. 15. This
problem has eight design variables, which are the important
dimensions for the performance of the DMS. These design
variables are independently chosen by sensitivity analysis

Fig. 15 Displacement magnifying structure

Table 9 Lower- and upper-limits of design variables (mm)

d1 d2 d3 d4 d5 d6 d7 d8

dL
i 85.0 18.0 18.0 45.0 0.5 0.5 2.0 2.0

dU
i 125.0 25.0 25.0 90.0 1.5 2.0 8.0 8.0

in the past study (Kogiso et al. 2017). The lower and upper
limits of the design variables are shown in Table 9.

The function of DMS is to magnify the input forced
displacement (A in Fig. 15) and generate the tip displace-
ment (B in Fig. 15). In this case, the input displacement is
0.08mm, which is determined by the ability of the piezo-
electric actuator and the output displacement is required
over 1mm. Then, this problem can be formulated as the
following maximization of the tip displacement problem.

max. : f (d) = (Tip displacement) (29)

s. t. : P α
f (j) ≤ �(−βT

j ) (j = 1, 2)

g1(x) = (Maximum stress) ≤ 300MPa

g2(x) = (1st frequency) ≥ 100Hz

dL
i ≤ di ≤ dU

i (i = 1, · · · , 8)

xi ∼ N(μ̂p(i), σ̂p(i)) (i = 1, · · · , 8)

where α = 90 and βT
j = 3.0 (j = 1, 2). The RBDO

problem has two constraints. One for the maximum stress
and the other for the lowest natural frequency.

To evaluate the manufacturing error, we built 3 copies
of the DMS and measured their dimensions using 3D
measurement device, whose results are shown in Table 10.
Even if the DMS was initially designed as symmetric,
the measured dimensions were not symmetric due to the
manufacturing error. In the table, “left” and “right” are left
side and right side of the DMS design variables, respectively,
and “original” means the initial design values which we set
before building them. As a result, we have six samples of
each design variable, whose statistical properties are shown
in Table 11.

When input variables show non-Gaussian distributions,
it is possible to transform a non-Gaussian distribution

Table 10 Measurement results (mm)

d. v. original left right

d1 91.057 91.051 90.972 91.388 91.252 91.116 91.486

d2 19.091 19.023 19.181 18.525 18.828 18.946 18.358

d3 18 18.014 17.996 18.123 17.996 17.97 17.901

d4 45 44.988 44.967 44.962 45.062 44.997 45.036

d5 0.7 0.645 0.696 0.661 0.674 0.689 0.652

d6 0.7 0.705 0.736 0.726 0.663 0.716 0.721

d7 3.152 3.189 3.156 3.088 3.006 3.202 3.139

d8 7.843 7.825 7.847 7.847 7.771 7.862 7.271
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Table 11 Property of
experimental samples d1 d2 d3 d4 d5 d6 d7 d8

Mean 91.211 18.810 18.000 45.002 0.670 0.711 3.130 7.737

Standard deviation 0.200 0.312 0.0722 0.0395 0.0204 0.0258 0.0729 0.231

to Gaussian using, for example, Rosenblatt and Nataf
transformation. This type of transformation is commonly
used in the FORM as it is formulated in the space of
standard normal random variables. Since the proposed
epistemic reliability index approach is based on the FORM,
all random variables are transformed to the standard
normal random variables, which inevitably induces an error.
However, this error in FORM has already been reported and
well recognized in the community. Therefore, the accuracy
of the proposed method should be understood in the same
context.

When dimensional tolerances are considered as a random
variable, it is common that the distribution might be
truncated because of the quality control process. If a
truncated normal distribution is modeled as a regular normal
distribution, there will be an error in the approximation. In
the case of 2-sided truncation with ±2σ , the error in the
standard deviation would be 12%. If the truncation occurs
at ±3σ , the error is reduced to 1%. In addition, the regular
normal distribution is always conservative compared to the
truncated one. To show this fact, we carry out a reliability
analysis of maximum stress (g1). The design variables d are
set as the deterministic optimal solution which is indicated
as “original” in Table 10. The truncated value is set as
2 sigma. The obtained results by Monte Carlo simulation
with 107 samples are compared between the untruncated
and truncated distributions in Fig. 16. The probability of
failure of using normal distribution is 5.68% and that
of using truncated normal distribution is 3.49%. This
result indicates reliability analysis using regular normal
distribution provides more conservative result than that of

Fig. 16 Result of reliability analysis comparing truncated and
untruncated normal distribution

using truncated one. Therefore, the proposed method can
still provide a conservative estimate of the reliability.

For the two constraints, the CRI and the ERI values are
obtained with nk = 1000 samples, whose results are shown
in Table 12. The table shows that the epistemic uncertainty
effect of the lowest frequency is larger than that of the
maximum stress.

Then, the RBDO problem is performed. In this problem,
a computationally efficient optimization method is required,
because the physical analysis requires costly computational
time. This study adopts a Kriging model to construct
surrogates for the objective function and the constraint
functions. The details of the optimization framework using
the Kriging model are described in Appendix. Here,
to compare with and without considering aleatory and
epistemic uncertainties, the deterministic optimization and
the RBDO considering only aleatory uncertainty are also
performed. The optimum results of design variables for all
three cases are shown in Table 13, and the configuration of
the DMS obtained by proposed method is shown in Fig. 17.
As shown in this table, “only aleatory” and “proposed” can
be regarded as almost same design.

Next, the values of objective and constraints at the
optimum designs are compared in Table 14. Once the
optimum designs are obtained using the Kriging surrogate
model, the function values are re-evaluated using finite
element simulation. As shown in this table, the tip
displacement decreases as we consider uncertainties and the
values of constraint functions become conservative. That
means it is required to take some margins to avoid the
effect of these uncertainty. Note that even if the difference
in the optimal designs between with and without considered
epistemic uncertainty is small in Table 13, the difference in
objective and constraints is relatively large in Table 14. This
means that the DMS is sensitive to small change in design,
which is why it is necessary to consider not only aleatory
but also epistemic uncertainty.

Finally, Fig. 18 shows the compared results of nor-
malized margin of each constraint function between “only
aleatory” and “proposed” results. The difference of each

Table 12 CRI and ERI values in example 3

CRI ERI

g1 3.1281 0.1281

g2 3.2425 0.2425
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Table 13 Optimal result of the
DMS design d1 d2 d3 d4 d5 d6 d7 d8

Deterministic 99.723 22.650 23.884 45.886 0.540 0.727 4.486 5.642

Only aleatory 96.314 22.244 23.184 49.508 0.586 0.832 3.902 6.211

Proposed 96.952 22.573 23.281 50.102 0.640 0.785 4.020 6.242

Fig. 17 Optimal configuration of the DMS (proposed method)

Table 14 Comparison of function value in the DMS optimal design
problem

Tip disp. (mm) Max. stress (Mpa) First frequency (Hz)

Deterministic 1.258 299.9 100.3

Only aleatory 1.034 255.5 118.34

Proposed 0.975 246.2 127.9

Fig. 18 Comparison of normalized margin of constraint function

value between two optimal results (the red arrow) indi-
cates the effect of epistemic uncertainty on each condition.
The difference is larger for the first frequency than that of
the maximum stress. It can be concluded that the effect
of epistemic uncertainty on the first frequency has more
impact than that of the maximum stress. We can naturally
agree with this fact because the ERI results in Table 12
indicated it.

6 Conclusions

In this paper, two new reliability indices are introduced
for handling sampling uncertainty under conditions where
the input variables follow normal distribution and samples
are unbiased. The epistemic reliability index (ERI) is for
expressing the effect of epistemic uncertainty, and the
conservative reliability index (CRI) is the combination of
the target reliability index with ERI. By optimizing with
CRI, the effect of aleatory and epistemic uncertainty can be
considered simultaneously. Based on our literature review,
this paper is the first time to explain the effect of epistemic
uncertainty using a similar concept of the reliability index.
Additionally, three examples are considered as the case of
random input variables, however, our concept can also be
applied in the case of uncontrollable random parameters
because the uncertainty of random parameters are estimated
through samples. The most important contribution of the
paper is to show that the ERI remains same for different
designs, and thus, it needs to be calculated once, which
makes the reliability-based design optimization almost the
same as the conventional method with aleatory uncertainty
only.

Compared to conventional double-loop methods, the
proposed method has some advantages. The first is that
the proposed method allows to separate the effect of
aleatory and epistemic uncertainty under our modeling of
sampling uncertainty. Therefore, when the optimal design
is not satisfactory, designers can make a decision on either
reducing aleatory uncertainty or epistemic uncertainty. The
former can be achieved by tightening the manufacturing
tolerance, while the latter can be done by making more
samples. The second advantage is that the computational
cost of the proposed method is almost the same as the
conventional RBDO with aleatory uncertainty only. This
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was possible because the ERI remains same for different
designs, which was proved theoretically and numerically
under our conditions.

One of the most important future works is an investiga-
tion whether the proposed method works for non-Gaussian
input distribution. After that, this method will be applied
to more complicated design problem, such as heat condi-
tions in the space, which is difficult to test and simulate
on ground. In addition to sampling uncertainty, this may
involve epistemic uncertainty due to modeling error. The
proposed CRI and ERI may or may not be applicable for
model-form uncertainty. If the concept of CRI and ERI
does not work for model-form uncertainty, then a new
index might be required. This work will enhance to obtain
an accurate design under aleatory, epistemic and modeling
uncertainty and develop integrated method of handling these
uncertainties.
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Appendix A: Displacement Magnifying
Structure (DMS)

To realize high accuracy and larger antenna system which is
required by radio astronomy observation over 100GHz, an
antenna system equipped with the smart reconfigurable sub-
reflector has been developed (Hill et al. 2011). In the past
study of our project, the conceptual figure of this system
is shown in Fig. 19. As shown in this figure, the smart
reconfigurable sub-reflector corrects the path length error
due to the surface deformations.

In the past study of our project, a reconfigurable reflector
BBM (breadboard model) is built as shown in Fig. 20.
This BBM is composed of the sub-reflector, displacement
magnifying structure (DMS) and the piezoelectric actuator.
The tip displacement of DMS is required over 1mm
although the actuator generates forced displacement less

Fig. 19 Smart reflector system (Tanaka et al. 2016)

Fig. 20 BBM (breadboard model) of a reconfigurable reflector in the
past study (Kogiso et al. 2017)

than 0.08mm in order to control the sub-reflector shape.
Then, DMS works to magnify the displacement generated
by the actuator to over 1 mm. Additionally, DMS is designed
as a kind of compliant mechanism. That’s because this
improves the reliability by reducing the number of small
fastening portions that causes the backlash or friction.

Appendix B: Optimization framework using
the Krigingmodel for DMS design

In this part, the DMS design procedure is described.
Considering costs to evaluate its function values, Kriging
(Matheron 1963) is adopt to approximate these functions.
Kriging is a well-known surrogate technique that is often
adopt to approximate computationally expensive functions.
Since there are many study about Kriging, details of its
technics are skipped.

In this study, first, a deterministic optimization result
was already obtained using PSO (Kogiso et al. 2017). An
optimal result in (29) can be assumed to place near the
deterministic design. Then, we focus on a region near the
deterministic result and construct surrogate functions in
this region as shown in Fig. 21. The number of design of
experiment is 1000 and the correlation model of Kriging is
gauss model. The procedure of DMS design is summarized
as follows:

(DMS-Step 1) Sampling points (design of experiment)
are generated by the Latin hypercube design (LHD) in
the limited region as Fig. 21.

(DMS-Step 2) Kriging models are constructed in the
region. The correlation model is set as the gauss model.

(DMS-Step 3) RBDO formulated in (29) is performed
(use sequential optimization and reliability assessment
method (SORA (Du and Chen 2004)) considering costs).

Additionally, the accuracy of this Kriging model is
discussed. Random 50 test points in limited region as shown
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Fig. 21 Conceptual figure of the region constructing surrogate models

in Fig. 20 are generated and the values of both numerical
simulation and response surface of this Kriging model are
evaluated. As an example, accuracy of the objective function
is shown in Fig. 22. And the mean of error between the
numerical simulation and the response surface is about
0.34%. These results show that the accuracy of this meta-
model is small enough in calculating reliability.

Appendix C: Discussion of important factors
of ERIx

In this appendix, we discuss what factors effect on ERI
values. Since ERI (or CRI) is induced by the distribution of
the reliability index, (26) indicates that the important factors
are the number of design variables nd and the number of
samples n(i). Additionally, it may depend on the limit state
function because the limit state function is used when the
reliability index is evaluated.

Now, we focus on the effect of the number of samples on
ERI values. The relationship between ERI and the number
of samples are numerically investigated using numerical
example in Section 5.1. In this investigation, the number of
samples are set as 5, 10(original), 25, 50, 100 and 500. The
result is shown in Fig. 23. It shows that ERI gets smaller as
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Fig. 22 Accuracy of the response surface of objective function
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Fig. 23 Relationship between the number of samples and ERI

the number of samples increases. This fact clearly indicates
getting large number of samples can reduce the epistemic
uncertainty caused by the insufficient number of input data.
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