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A B S T R A C T

Due to the expensive cost of full-scale tests, more and more designs rely on simulation. For highly nonlinear
crash simulation, numerical uncertainty is an inherent by-product, which refers to the oscillation of results when
the simulation is repeated at the same design or the design variables are slightly changed. This oscillation
directly influences the quality and reliability of the optimal design. This paper shows how these issues can be
addressed by proposing a simple uncertainty quantification method for numerical uncertainty (noise) and sur-
rogate model uncertainty (error) in the optimization process. Three engineering problems, a tube crush example,
an automotive front-rail crush example and a multi-cell structure crush example, are used to illustrate this
method. Firstly, the level of numerical uncertainty is quantified in terms of noise frequency and amplitude, and
the convergence study of these two criteria is employed to determine an appropriate data size to describe
numerical noise. Secondly, an estimation method considering both numerical noise and surrogate model error is
proposed based on the prediction variance of the polynomial response surface. Finally, the tube and front rail
structures are optimized according to the proposed uncertainty quantification method. It was found that by
considering the two sources of uncertainty, the optimal designs are more reliable than the deterministic solu-
tions.

1. Introduction

Vehicle crashworthiness has drawn increasing attention because it is
associated with public safety and socioeconomic benefits. One possible
way to enhance crashworthiness is to optimize the energy absorption
capability of key automotive components, thereby reducing severe in-
juries and fatalities when a collision occurs. With the increase of speed
and power of computers in recent years, the ability to simulate complex
systems has been improved [1], which facilitates crashworthiness op-
timization in aerospace and automotive engineering fields. Despite the
wide use of finite element analysis in crashworthiness optimization, the
presence of numerical uncertainty (noise) requires more attention.

Here, numerical uncertainty (noise) represents the oscillations with
small wavelengths when the same simulation model is calculated sev-
eral times or the design variables are slightly changed. Many re-
searchers [2–4] pointed out that the crash simulations are not re-
peatable and have obvious numerical uncertainty due to the instability
of structures (such as buckling) [2], contact bifurcations, numerical

rounding errors and parallel computing errors [5]. Thole and Mei [6]
revealed that the unstable behavior or large numerical noise in crash
simulations is due to bifurcations, which in turn are caused by parallel
computing algorithms, contact search problems, buckling, and levers.
Will and Bucher [7] revealed the existence of numerical noise in front-
crash load case for a passenger vehicle and proposed a method to
identify and quantify the numerical noise. Duddeck [3] claimed that the
level of noise in the crash simulation varies from 1% to 10%, which
depends on the FE model, configuration, and load cases. They also as-
sumed that frontal impact load case is much more sensitive to bi-
furcations than the lateral load case. Therefore, in this paper, we will
use the tube and front rail models as examples to quantify the numerical
noise and to take into account it in the crashworthiness optimization
process.

Many existing studies are limited to deterministic optimization.
However, there are a number of uncertainties which must be compen-
sated during the optimization process. For uncertainty-based optimi-
zation, most researchers [8–16] mainly considered the parametric
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uncertainty in sheet thickness, geometry size and mechanical properties
of materials due to manufacturing imperfection and/or other factors.
However, surrogate model uncertainty may have a large effect on the
reliability and robustness of the optimum and should be taken into
account in the optimization process [17,18]. In this regard, Picheny
et al. [19] developed a conservative surrogate method by adding a
safety margin to consider the surrogate model uncertainty. Viana et al.
[20] investigated the conservative modeling technique to consider the
model form error by using cross validation method. Zhang et al. [17]
proposed a new robust design method based on the prediction variance
of kriging model to take into account both surrogate model uncertainty
and parametric uncertainty. Kim and Choi [21] discussed a reliability-
based design optimization method including the effect of response
surface error. However, the previous studies on crashworthiness opti-
mization often focus on input randomness and surrogate model error
and fail to consider the effect of numerical uncertainty. For constrained
optimization problems, the optimum solution tends to be pushed on the
constraint boundary, which leaves a little room to tolerate the predic-
tion error of surrogate model and numerical uncertainty. Therefore, the
numerical uncertainty and surrogate model uncertainty need to be
considered to ensure reliable optimal design.

Even if we know the presence of numerical uncertainty in crash-
worthiness simulation, it is unclear how to quantify its level, how to
determine the suitable data size to quantify it, and how to obtain reli-
able optimums. All of these are the difficulties that need to be solved
when considering numerical uncertainty in engineering applications.
This paper aims to address these issues by following the flowchart as
shown in Fig. 1. The paper is structured as follows: Section 2 reveals the
presence of numerical uncertainty in crashworthiness simulations and
quantifies the level of numerical noise according to the frequency and
amplitude of noise. Based on these two criteria, the sample size is de-
termined from the convergence study. The estimation method for both
numerical and surrogate model uncertainties is discussed in detail in
Section 3. Section 4 aims to develop an uncertainty-based optimization
methodology by considering both numerical uncertainty and surrogate
model uncertainty, followed by conclusions in Section 5.

2. Determination of data size to quantify numerical noise

Because of the expensive cost of full-scale tests, most of crash-
worthiness optimizations are conducted based on computer simula-
tions. However, most commercial programs for simulating crash-
worthiness use an explicit time integration scheme, a penalty-based
contact/impact formulation, and distributed memory parallelization.
For the highly nonlinear nature of crashworthiness simulation, the
objective functions are often non-convex, with a number of extrema and
discontinuities [5]. For these reasons, the simulation results are sub-
jected to significant numerical error and noise, which is considered as
the main difficulty in crashworthiness optimization and largely affects
the reliability and robustness of optimum designs. Numerical un-
certainty means that different runs at different times or machines yield
different results. Even with the same FE model and hardware, the si-
mulation results can be different [3,22], as shown in Fig. 2. Therefore,
the response of a design cannot be represented by the value from one
simulation, but a confidence interval considering numerical un-
certainty, which can yield more robust and reliable optimums for
crashworthiness optimization.

2.1. Problem description

In this study, specific energy absorption (SEA) is considered as an
objective function to quantitatively evaluate the crash performances.
SEA is a key indicator to take into account the energy absorption cap-
ability and the mass factor, and can be calculated from the following
formula:

∫
= =SEA EA

M
F s s
M

( )dd
0

(1)

where F is the impact force at the crash distance s and d is the total
crash displacement concerned. EA is the energy absorption at the dis-
placement d. The crash performance of the front rail performs better
when it can absorb more energy so that less energy is transferred to
passengers in the event of a crash. At the same time, light weight is
preferable for the lightweight requirement. In this study, d is set to
120mm for tube and multi-cell structure and 150mm for front rail
examples, respectively.

2.1.1. Tube crash example
In this paper, a square tube under axial compressive loading (see

Fig. 3) is used as an example to study how to deal with the numerical
error and noise in crashworthiness. Since the energy absorber in the
front rail is a tube-like structure, some researchers [13,23–29] have
previously investigated the tube structure in order to improve the
crashworthiness performance of the front rail. As an important energy

Fig. 1. The flowchart of dealing with numerical noise in uncertainty-based
crashworthiness optimization.

Fig. 2. Example of a frontal crash simulation with the same FE model and
hardware shows two different reaction patterns because of bifurcation [22].
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absorber, front rails of automobiles and trains need to be optimized to
protect passengers from fatal or severe injuries during the collision.

The height h of this tube is 150mm, and the width B and the
thickness t are considered as design variables, whose values are de-
termined according to the size of a front rail for the vehicle. The tube
impacts onto a rigid wall at the bottom end with an initial velocity of v0
= 15m/s. To consider the effect of entire vehicle, an additional mass of
600 kg is attached to the tube's top end. The loading and boundary
condition is set in order to simulate the crash performance of the front
rail (tube structure) under typical crash conditions. The tube geometry
was modeled with the Belytschko-Tsay reduced integration shell ele-
ments [30] with five integration points through the thickness, which
can represent the thickness change by a relaxation of the thickness
variable. The mesh size was determined to be close to 2mm based on a
mesh convergence study. To avoid volumetric locking and spurious zero
energy deformation modes, reduced integration and stiffness-based
hourglass control were employed in the simulation model. Two types of
contact were used to avoid penetrations in the FE model. “Automatic
single surface” contact was utilized to model the self-contact of the tube
during the folding and “Automatic node to surface” was used to simu-
late the interactions between the tube and the rigid supports. The
Coulomb friction coefficients for all contact surfaces were set to be 0.15
[31].

As a lightweight material commonly used for energy absorbers,
aluminum is used with the following mechanical properties: density
= 2700 kg/m3, Poisson's ratio = 0.29, Young's modulus = 68.2 GPa,
initial yield stress = 227MPa and tangent modulus = 312MPa. An
elastoplastic material model 123 in LS-DYNA with linear hardening was
used to describe the constitutive behavior of the thin-walled structure.

Therefore, the optimization problem can be formulated as follows:

⎧

⎨
⎪

⎩
⎪

−
≤

≤ ≤
≤ ≤

SEA B t
s t F B t

B
t

min ( , )
. . ( , ) 65kN

40 mm 80 mm
1.5 mm 2.5 mm

max

(2)

where Fmax is the maximum force applied during the process. The ne-
gative sign in the design criterion SEA is used so that it is maximized
during optimization.

2.1.2. Frontal side rail example
To explore the performance of the proposed uncertainty estimation

method in the industry context, a frontal side rail structure of 2010
Toyota Yaris sedan was utilized as shown in Fig. 4. This passenger
vehicle was originally created for frontal crash simulations and was
validated by NCAC (National Crash Analysis Center) [32]. The front rail
structure (see Fig. 4) was extracted from the full vehicle for the study
purpose.

The design variables t1 and t2 are the thicknesses of two parts of

absorber box. The number of nodes and elements of the front rail
baseline model were 90708 and 6642, respectively. To keep the same
element formulation with the original NCAC model, fully integrated
shell element with 3 integration points through thickness was em-
ployed. The contact modeling technique and friction coefficients were
similar to that of the tube model. The material properties are also un-
changed from the NCAC model. The front rail structure was modeled
through a piecewise linear elastic-plastic behavior with strain hard-
ening (Material model 24 in LS-DYNA). The material for the absorber
box is steel, with the following mechanical properties: density
= 7800 kg/m3, Poisson's ratio = 0.3, Young's modulus = 200 GPa,
yield stress = 380 GPa, and the relationship between true stress and
plastic strain was defined in Fig. 5. Cowper-Symonds was utilized to
consider the strain rate effect.

The optimization problem is to maximize the SEA while con-
straining the peak force lower than a threshold level:

⎧

⎨
⎪

⎩
⎪

−
≤

≤ ≤
≤ ≤

SEA t t
s t F t t

t
t

min ( , )
. . ( , ) 160kN

0.7 mm 2.5 mm
0.7 mm 2.5 mm

1 2

max 1 2

1

2 (3)

The threshold force of 160 kN was obtained from the base model
with original thicknesses of 1.89mm and 1.30mm for t1 and t2, re-
spectively. The bottom side of the rail was constrained to a rigid wall.
The impactor with a mass of 600 kg was impacted onto the front end of
absorber box with an impact velocity of 15m/s. The material of the
absorber box and frontal side rail are all steel.

2.1.3. Multi-cell tube example
In reality, engineering optimization problems involve many design

variables. To demonstrate the performance of the proposed method for
many design variables, a multi-cell hexagonal tube structure with seven
design variables was used as the third example in this paper as shown in
Fig. 6. The cross-sectional configuration is proposed based on the op-
timal design from reference [33]. For the multi-cell tube crush example,
the mesh size was set as 1.5mm and six elements were used along each
edge of the small triangular cells in the multi-cell cross-section shown in
Fig. 6. The Belytschko-Tsay reduced integration shell elements with ten
integration points through the thickness was employed to model the
multi-cell tube.

The FE model for multi-cell tube crash example was similar to the
tube example but with the different cross-sectional configuration. There
are seven design variables T1–T7, which represent different thicknesses
for different ribs or walls (see Fig. 6). The optimization problem is to
maximize the energy absorption (EA) and constrain the Fmax lower than
a threshold level:

⎧

⎨
⎩

−
≤

≤ ≤

EA T T T T T T T
s t F T T T T T T T

T T T T T T T

min ( , , , , , , )
. . ( , , , , , , ) 160kN

1.0 mm , , , , , , 2.0 mm

1 2 3 4 5 6 7

max 1 2 3 4 5 6 7

1 2 3 4 5 6 7 (4)

As this multi-cell structure aims to be applied to the absorber
structure in the front-rail, the constraint of Fmax is selected the same one
with the front-rail example, 160 kN.

2.2. Polynomial response surface for noisy data

This section explains the proposed method of building a surrogate
and compensating numerical and model uncertainties using the tube
crush example. Since crashworthiness optimization is computationally
expensive, surrogate models are often employed to reduce the number
of simulations. Some surrogate models also help the optimization pro-
cess because they tend to filter out the random numerical noise, espe-
cially for gradient-based optimization algorithms. However, other sur-
rogate models, such as interpolative surrogate models, are easily
affected by numerical noise. In addition, even if the structural response

Fig. 3. An aluminum square tube under axial loading.
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is highly nonlinear, design criteria are mildly nonlinear with respect to
design variables. Therefore, in this paper, a polynomial response sur-
face (PRS), one of the commonly used regression surrogate models, is
selected as the surrogate model to filter out numerical noise [34].

The optimal Latin hypercube sampling (OLHS) technique [35] was
employed to generate 20 sample points in addition to 4 corner points in
the two-dimensional design space (see Fig. 7). PRS was used to

approximate the responses of SEA and Fmax by utilizing the above-
mentioned 24 sampling points. In order to assess the accuracy of the
surrogate models in the whole design space, 21×21=441 points with
uniform intervals were used as test points. Note that in practice, 441
samples are not required to build the surrogate; they are used for the
purpose of validation. The coefficient of determination (R2) and the
adjusted coefficient of determination (R 2) were used to evaluate the

Fig. 4. Model of automotive front-rail structure of 2010 Toyota Yaris sedan.
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Fig. 5. Relationship between plastic strain and true stress for front rail model.

Fig. 6. FE model and design variables for the multi-cell tube crash example.
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accuracy of the surrogate models. To be specific, the R2 and R 2 in
Table 1 are calculated from the 441 test points according to Eqs. (5) and
(6), respectively.

= −
∑ − ⌢

∑ −
=

=

R
y y

y y
1

( )

( )
i
N

i i

i
N

i

2 1
2

1
2

v

v (5)

= − − −
− −

R R n
n p

1 (1 )( 1)
( 1)

2
2

(6)

where yi and ⌢yi are the exact function value and the corresponding
surrogate value for assessment point i, respectively. y is the mean of yi,
Nv denotes the number of the test sampling points. n is the total sample
size and p is the number of coefficients in the PRS model.

In general, the values of R2 and R 2 close to 1 are preferred, in-
dicating a high accuracy for overall performance in the design space.
The orders of polynomial models were selected mainly based on the
adjusted R 2 to compensate the increases of the number of coefficients.
The orders of polynomial models were selected mainly based on the
adjusted R 2 to compensate the increases of the number of coefficients.
As shown in Table 1, the second-order PRS performs best in terms of
accuracy, which is therefore used in the following analysis process. It
can be seen that the second-order PRS was validated in approximating
the SEA and Fmax. In this case, the R 2 was evaluated as 97.9% and
93.6% for Fmax and SEA, respectively.

To gain more insights into PRS models, the 3D contours of Fmax and
SEA are plotted in Fig. 8. We also plot the actual simulation results of
SEA and Fmax over the design space by using the 441 test points of equal
intervals. As shown in Fig. 8(c) and (d), the simulation results reveal a
significant level of numerical noise. It means a small change in the
design variables can result in a large change in simulation results. This
numerical noise is present due to the bifurcations, the lack of con-
vergence in explicit time integration, parallel computing algorithm,
contact search problems, buckling, and levers. In the presence of a large
error, PRS proves to be suitable for its characteristic of filtering out the
noise as shown in Fig. 8(a) and (b). However, it is noted that other
surrogates, such as Kriging with nugget, can also consider noise in data.

Another important observation is that between the two design
variables, t and B, numerical solutions oscillated significantly in the
width direction (B) than in the thickness direction (t), as shown in
Fig. 8(d). This is because the finite element mesh remains the same
when the thickness of the plate changes, while the size and the number
of mesh change when the width changes. This error/noise has to be
considered in order to maintain the reliability and robustness of the
optimal design.

2.3. Data size for quantifying numerical noise

As shown in Fig. 8(c) and (d), the random oscillations of numerical
noise were observed with the increase of t and B. However, it is hard to
interpret this characteristic from visual inspection and there is a need to
quantify the noise level. The numerical uncertainty (noise) level can be
decomposed into two factors: the frequency and amplitude [1]. The
former is defined by the percentage oscillations frequency, fr, for-
mulated as

=
∑ =f

Ω
n

100 i
n

i
r

1
(7)

where Ωi is used to evaluate the oscillation parameters for the ith
sample when the total number of samples is equal to n. For the ith
sample, if the sign of the gradient changes at that point, then =Ω 1i .
Therefore, =f 0r donates a very stable signal where all the samples
monotonically change and =f 100r represent a fully oscillatory signal
where the gradient changes its sign for every point.

Another important characteristic of noise is the amplitude. The
amplitude accounts for the magnitude of each individual oscillation.
Two-sigma rule design in statistics was adopted in this study.
Considering the randomness in the data, two-sigma is an adequate
measure of data spread because it can account for 95% of the recorded
data, which is used to define the amplitude of noise A σ2 , given as

=A σ2σ2 (8)

where σ is the standard deviation of selected samples. For the tube
example, 101 sample points were finally selected to evaluate the level
of numerical noise based on the convergence study of different sample
sizes. The FEA results are regarded as the random result for that point
and their prediction result from PRS is regarded as the mean value
because it filters out the numerical noise. The standard deviation can be
estimated from the standard error of the PRS.

But in practical engineering application, one difficulty in quanti-
fying the numerical noise is to determine the sample size. It is obvious
that the more samples the better, but it is related to the computational
cost. This paper proposes a method of convergence study to determine
the appropriate sample size based on the above-mentioned two criteria.
By taking the tube example, we compared the frequency and amplitude
for sample sizes of 25, 34, 51 and 101 by equally distributing samples
for the design range of t and B. The convergence can be evaluated based
on the difference in frequency or amplitude divided by the sample size
difference. As shown in Fig. 9(a-d), when sample size increased to 101
(the change intervals are 0.01mm for thickness t and 0.4mm for width
B), the relative difference of frequency and amplitude on different data
size are all less than 15%. Thus, the sample size 101 was selected as the
convergence value of the sample size for both SEA and Fmax. Overall,
the total number of FE simulations is 226 (24 for building the PRS
surrogate models and 101 × 2 for quantifying numerical noise of B and
t) for the tube crash example.

On the other hand, the selection of sample size should also consider
the tradeoff between the accuracy and computational efficiency. As
shown in Fig. 9(e-h), some frequency and amplitude of front-rail ex-
ample have not converged even when the sample size increased to 73.
The front rail example needs comparatively high computational cost.
For this reason, the sample size of 73 is adopted for the evaluation of
numerical noise in this case. Therefore, the total number of FE simu-
lations for the front rail example is 170 (24 for building the PRS sur-
rogate models and 73 × 2 for quantifying the numerical noise of t1 and
t2). Based on the convergence study, it is clear that the initial 24 sam-
ples are not sufficient to estimate the level of numerical noise. There-
fore, it is expected that there is a discrepancy between the actual nu-
merical noise level and the level of noise that the surrogate model
estimates. It also can be observed in Fig. 9 that the amplitude of nu-
merical noise for t (see Fig. 9(d)) is smaller than that of B (see Fig. 9(b))
due to the change of element size when the width B changes, which has
been discussed in Section 2.2.

For the multi-cell structure example, the frequency and amplitude
were compared for sample sizes of 13, 16, 20, 33 and 51 by equally
distributing samples for design range of each T1–T7, when other design
variables are fixed at 1.0mm. As shown in Fig. 10, the noise amplitude
of 7 design variables for Fmax and EA all converged well when the data
size increased to 51. However, the noise frequency for Fmax and EA of
some design variables (for example T1 and T2 in Fig. 10c) are still not
converged well. As mentioned above, the tradeoff between the accuracy

Table 1
Accuracy comparison of different orders of PRS surrogate models.

First-order PSR Second-order PRS Third-order PRS

Fmax R2 0.980 0.984 0.983
Adjusted R 2 0.978 0.979 0.972

SEA R2 0.940 0.950 0.955
Adjusted R 2 0.934 0.936 0.927
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and computational efficiency need to be considered. More importantly,
the amplitude is highly related to the noise level and is more important
than the frequency for the quantifying process. Therefore, data size 51
was utilized as the data size to quantify the numerical noise for the
multi-cell structure example.

3. Estimation of numerical noise based on PRS surrogate model

3.1. Estimation of numerical noise and surrogate model error for the tube
structure

Based on the convergence study, we can consider the effect of nu-
merical noise in the optimization process. At the same time, the sur-
rogate model uncertainty can also be taken into account. Surrogate
model uncertainty refers to the discrepancy between the metamodel
prediction and simulated responses, which normally is an inevitable
source of uncertainty in surrogate-based optimization. PRS is a common
linear regression model, which is described in a linear combination of
the vector of known basis functions ξ x( ) and the vector of unknown
coefficients b as [36]

= ⋅y x b ξ x bˆ ( , ) ( ) (9)

The standard error, which represents the standard deviation of
random error between data and PRS predictions, can be expressed as

=
−

σ
n n

e eˆ
y b

T

(10)

where e is the vector of errors between the surrogate predictions and

the data, ny is the number of data and nb is the number of coefficients.
Using the standard error, the prediction variance at a point x can be
calculated as

= −σ σ ξ x X X ξ xˆ [ ( ) ( ) ( )]2 2 T T 1 (11)

where X is the design matrix composed of the basis vector at sampling
points. It was observed that the prediction variance is not only related
to the standard error of the sampling points but also the position of the
prediction point. In general, the surrogate model uncertainty of PRS is
assumed to be normally distributed with the mean at prediction value
in Eq. (8) and the variance in Eq. (10).

In this study, it is assumed that uncertainty in the surrogate pre-
diction comes from two sources. One is surrogate model uncertainty
due to sampling error and model form error, which is the error between
surrogate predictions and simulation results. The other is numerical
uncertainty due to randomness in simulation results. Let y x( )true be the
true response, y x( )sim the simulation output, and y x( )surr the surrogate
prediction. The relationship between them can be written as

= +y y ex x( ) ( )sim surr surr (12)

= +y y ex x( ) ( )true sim num (13)

where esurr and enum are, respectively, the surrogate error and numerical
noise. In general, the simulation also has a model error or systematic
bias, but it is ignored in this paper as the purpose is not comparing the
results with physical tests. These errors include both aleatory un-
certainty (variability or random) and epistemic uncertainty (model
form error or bias). By combining the two equations, we can estimate

Fig. 8. 3D surfaces of Fmax and SEA: (a) Fmax for PRS; (b) SEA for PRS; (c) Fmax plot directly from the 441 sample data; (d) SEA plot directly from the 441 sample data.
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Fig. 9. Noise frequency and amplitude convergence study of data size for different design variable: (a) noise frequency for B in tube example; (b) noise amplitude for
B in tube example; (c) noise frequency for t in tube example; (d) noise amplitude for t in tube example; (e) noise frequency for t1 in front rail example; (f) noise
amplitude for t1 in front rail example; (g) noise frequency for t2 in front rail example; (h) noise amplitude for t2 in front rail example.
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the true response of simulation by taking into account two kinds of
uncertainty, as

= + +y y e ex x( ) ( )true surr surr num (14)

The rigorous way of handling the two uncertainties is to quantify
them by as a statistical distribution. Therefore, esurr and enum are mod-
eled as a statistical distribution. Since the regression process yields
ysurr(x) as an unbiased estimate of ytrue(x), esurr and enum can be modeled
as a normal distribution with a zero mean. Therefore, the estimated
ytrue(x) has a mean of ysurr(x) and the standard deviation of

= +σ σ σsurr
2

num
2 (15)

In the above equation, it is assumed that esurr and enum are in-
dependent, which is not true in reality because the error in the surro-
gate model is also affected by the error in numerical simulation.

It is well known that esurr can be approximated by the prediction
variance of the surrogate model. But, there is no established method to
estimate enum, especially when the design changes. From the observa-
tion that esurr and enum are not independent, the combined uncertainty is
represented using a scalar multiple of the prediction variance. That is

= + =σ σ σ λσsurr
2

num
2

surr (16)

where λ is the level used to quantify both numerical and surrogate
uncertainties.

In this paper, we assume that the numerical and surrogate un-
certainties are normally distributed, and their uncertainties are

proportional to the standard error of the surrogate model. In fact, the
polynomial response surface is based on the assumption that the model
form is accurate but the data have normally distributed noise. 2-sigma
confidence intervals are often used to cover 95% of distribution due to
noise in the samples. However, this is true only when the model form of
the surrogate is accurate. In reality, the model form is not perfect, as the
true model may not be in the form of polynomials. Therefore, if the
conventional 2-sigma confidence intervals are utilized to cover 95% of
both the model form error and numerical noise, it may not cover the
true 95% of simulation results. In fact, numerical noise at the un-
sampled points also needs to be considered. However, it is hard to se-
parate the model form uncertainty from the numerical uncertainty
because the errors in samples include the combined effect. Therefore,
instead of separating these two uncertainties, in this paper both un-
certainties are assumed to be proportional to the standard error σsurr
and estimated by using Eq. (16).

To estimate the level of numerical uncertainty, 101 uniformly dis-
tributed points are obtained in the range of each design variable as
shown in the convergence study, while the other variable is fixed at
t=2.5 or B =40. Fig. 11 shows the variation of Fmax and SEA along
101 data for each design variable based on FE model. These FE simu-
lation results are also compared with the second-order PRS fitted with
24 samples. Two findings can be observed from Fig. 11. The first finding
is that FE results have a randomly distributed numerical uncertainty as
design variables vary. That is, for a small change in design variables,
the FE results are scattered in a relatively large amplitude. In addition,
if the simulation is repeated at the same design, the results also vary.
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Fig. 10. Noise frequency and amplitude convergence study of data size of 7 design variables for different design criteria: (a) noise frequency for Fmax in multi-cell
structure example; (b) noise amplitude for Fmax in multi-cell structure example; (c) noise frequency for EA in multi-cell structure example; (d) noise amplitude for EA
in multi-cell structure example;.
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Therefore, the nature of the uncertainty is random as well as biased.
This can be confirmed from the trend of errors in Fig. 11(a) and (b). If
numerical noise is dominant, then the noise should be randomly dis-
tributed with positive and negative errors against the surrogate model
predictions (black line in Fig. 11). On the other hand, the model form
error may show as a bias.

The other finding is that the conventional 2-sigma confidence in-
tervals, shown in red curves, cannot cover 95% of simulation results, as

the actual level of uncertainty is much higher than the 2-sigma con-
fidence intervals shown in Fig. 11(d). This is because the uncertainty is
not only from numerical noise but also from surrogate model error. In
order to cover 95% of actual simulation results, the confidence intervals
should increase to at least 8-sigma, as shown in green curves. Also
shown in Fig. 11(a), the errors of the surrogate model and numerical
noise depend on the value of design variables. Indeed, the standard
error varies with different designs because of surrogate modeling error.
Therefore when we use a conservative estimate using λ-sigma, the
conservative estimate also varies with designs.

It is noted that it is not the conclusion of this paper that an addi-
tional 6-sigma has to be used to compensate for all uncertainties.
Rather, the conventional 2-sigma conservative estimate is not sufficient
due to the presence of both uncertainties, and different level of con-
servatism should be used. However, in general, it is difficult to de-
termine the uncertainty factor λ such that λ-sigma confidence intervals
can cover 95% of simulation results. In order to have a reliable and
robust design, it is necessary to evaluate the uncertainty factor using a
similar method presented in Fig. 11.

3.2. Numerical uncertainty and surrogate model uncertainty for front-rail
structure

For the front rail example, 20 sample points as shown in Fig. 12
were selected by using Latin hypercube sampling. Besides these, addi-
tional 4 corner points (see Fig. 12) of the design space were also used.

Fig. 11. Comparison of PRS prediction and FEA results for tube example with confidence intervals: (a) Fmax for different b with t=2.5mm; (b) SEA for different b
with t=2.5mm; (c) Fmax for different t with b =40mm; (d) SEA for different t with b=40mm. (For interpretation of the references to color in this figure, the reader
is referred to the web version of this article.)
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Fig. 12. Training points for the front rail example.
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For PRS surrogate model, the third-order polynomial function was se-
lected based on the same procedure as in the tube example. The ad-
justed R 2 of PRS surrogate model was 99.1% and 98.3% for Fmax and
SEA, respectively, which indicated that PRS can provide the acceptable
accuracy for the following design optimization (Table 2).

According to the tradeoff between the convergence and efficiency as
discussed in Section 2.2, data size to quantify numerical noise is de-
termined as 73. It means that one design variable is fixed at 0.7mm and
sampled 73 uniformly distributed points with an interval of 0.25mm
along the other design variable. According to Fig. 13, the 2-sigma in-
tervals (red curves) cannot cover 95% of simulation results, while 4-
sigma intervals cover about 98% of simulation results at 73 points.
Compared to the confidence intervals of 8-sigma for the tube example,
the confidence intervals of 4-sigma for the front rail structure are much
smaller. That is because, in the tube example, the number of elements

and size will change with the change of width B of the tube, which will
cause relatively large numerical noise. However, in the case of the front
rail example, the mesh remains constant while the thicknesses of the
two plates are changed. Therefore, in this case, 4-sigma is enough to
cover 98% of simulation results.

3.3. Numerical uncertainty and surrogate model uncertainty for multi-cell
structure

For the multi-cell example, 85 sample points were selected by using
Latin hypercube sampling. Extra 10 samples were selected as the vali-
dation points. For PRS surrogate model, the third-order polynomial
function was selected for Fmax and second-order for EA. The R2 of PRS
surrogate model was 99.4% and 99.7% for Fmax and EA, respectively.
Hence the PRS surrogate models were considered accurate and effective
for the subsequent design optimization.

As shown in Fig. 14, the PRS predictions with different C.I. for de-
sign variable T1 and T2 are compared with the FEA results. The com-
parison figures for other design variables are given in Appendix A. It
was observed that the 2-sigma confidence intervals (C.I.) are not en-
ough to cover 95% of simulation results for Fmax and EA, while 4-sigma
C.I. can cover about 98% of simulation results for Fmax and 5-sigma C.I.
can generally cover about 95% of simulation results for EA at 51 points
for every design variable. Therefore, for this example, 4-sigma was
utilized for Fmax and 5-sigma was used for EA to cover at least 95% of
simulation results.

Table 2
Accuracy comparison of different orders of PRS surrogate models for front rail
example.

First-order
PSR

Second-order
PRS

Third-order
PRS

Fourth-order
PRS

Fmax R2 0.9840 0.9894 0.9945 0.9943
Adjusted R 2 0.9825 0.9796 0.9910 0.9855

SEA R2 0.9680 0.9889 0.9898 0.9886
Adjusted R 2 0.9650 0.9591 0.9833 0.9709

Fig. 13. Comparison of PRS prediction and FEA results for front rail example with confidence intervals: (a) Fmax for different t1 with t2 = 0.7mm; (b) SEA for
different t1 with t2 = 0.7mm; (c) Fmax for different t2 with t1 = 0.7mm; (d) SEA for different t2 with t1 = 0.7mm. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)
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4. Optimization with uncertainty for crashworthiness

4.1. Optimization with uncertainty for the tube structure

Crash simulation results in Section 2 indicated that the effect of
numerical noise is significant and warrants consideration. Thus, to
obtain a robust and reliable design, both the numerical uncertainty and
surrogate model uncertainty need be considered in the optimization

procedure, which is the purpose of this section. An in-house Matlab
code of Particle swarm optimization (PSO) algorithm [37] is adopted in
this study. The population size for the solver is set as 500 and the
generation upper limit is 5000. The solver will stop when either the
algorithm reaches the upper limit of generation; i.e., 5000 generations
or when there is no improvement for 100 successive generations. The
optimization process is repeated five times and yields the same op-
timum, which shows the statistical convergence of the solutions. The
optimization problem is formulated as

− +
+ ≤

≤ ≤
≤ ≤

μ SEA λσ SEA
s t μ F λσ F

t
B

{min ( ) ( )
. . ( ) ( ) 65kN

1.5mm 2.5mm
40mm 80 mm

max max

(17)

where λ is the uncertainty factor to take into account the effect of
surrogate model error and numerical noise. μ SEA( ) and σ SEA( ) are the
predictive mean and standard deviation of the objective SEA from the
PRS. μ F( )max and σ F( )max are the predictive mean and standard devia-
tion of the constraint Fmax from the PRS. According to Section 3.1, the λ
is set as 2 to consider the 95% confidence interval of the PRS surrogate
model error and 8 to cover 95% of the simulation results in terms of
both surrogate model error and numerical noise. In addition, since both
Fmax and -SEA are the non-beneficial attributes, the positive side is used
to make a conservative estimation.

Three different optimization results are presented: (1) deterministic
optimization, (2) only considering surrogate-estimated error; i.e.,
λ=2, and (3) considering both surrogate model error and numerical

Fig. 14. Comparison of PRS prediction and FEA results for multi-cell structure example with confidence intervals: (a) Fmax for different T1; (b) EA for different T1; (c)
Fmax for different T2; (d) EA for different T2.

Table 3
Optimization results of different optimization cases.

PRS Deterministic RBRDO 2 σ RBRDO 8 σ Optimum
from 441
samples

t (mm) 2.44 2.40 2.29 2.35
B (mm) 40.00 40 42.5066 42
Fmax (kN) FEA 61.44 60.97 59.52 61.16

Predict 65.00 63.09 60.10 63.75
Upper
bound
of 8 σ
C.I.

78.09 75.45 64.95 72.29

SEA (kJ) FEA 25.95 25.30 26.06 26.54
Predict 26.54 26.22 24.82 25.53
Lower
bound
of 8 σ
C.I.

20.71 20.76 20.86 20.96
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noise; i.e., λ=8, and the results are presented in Table 3 and Fig. 15.
The PRS-based deterministic optimizations push the design to the
constraint boundary of Fmax = 65 kN. Since the optimum design resides
on the boundary of the constraint, it is possible that this optimum de-
sign can violate the constraint when uncertainty is present.

When only the surrogate model uncertainty is considered, i.e.,
λ=2, the optimum design moves towards the left to the positions in-
dicating a thinner wall (smaller t value) in the feasible region (Fmax ≤
65 kN) shown as a yellow circle in Fig. 15(a). When the numerical
uncertainty is also considered, i.e., by changing the value of weight
factor λ from 2 to 8, the solution moves further and have a smaller

value for t and a larger value for width B. The optimum design moves
away from the constraint boundary, thereby guaranteeing a certain
level of reliability under uncertainty. In general, the PRS model with
λ=8 provides an optimum similar to, but more robust and reliable
than the optimum design directly selected from 441 sample points
(Fig. 15(b)). Therefore, the robustness and performances should be
compromised in practice, as shown in the previous research [38]. In
addition, for a highly nonlinear crash problem, a large numerical un-
certainty and surrogate model uncertainty are present and need be
considered to obtain a reliable result.

Fig. 15. Optima and contours of SEA and Fmax: (a) PRS with 24 sampling points; (b) 441 sample points. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

Table 4
Optimization results of different optimization cases for front-rail structure.

Base-model PRS Deterministic RBRDO 2 σ RBRDO 4 σ

t1 (mm) 1.889 2.17 2.05 1.95
t2 (mm) 1.3 0.7 0.7 0.7
Fmax (kN) FEA 159.73 151.38 151.44 147.68

Predict 170.72 160.00 148.81 138.95
Upper bound of 4 σ C.I. 188.73 181.38 169.85 159.20

SEA (kJ/t) FEA 15,424.76 17,334.04 17,326.96 17,246.66
Predict 14,732.49 17,434.78 16,804.78 16,250.35
Lower bound of 4 σ C.I. 13,883.18 16,554.95 15,879.78 15,311.02

Table 5
Optimization results of different optimization cases for multi-cell tube structure.

Base-model PRS Deterministic RBRDO 2 σ RBRDO 4/5
σ

T1 (mm) 2.00 1.18 1.09
T2 (mm) 1.00 1.78 1.00
T3 (mm) 1.00 1.00 1.04
T4 (mm) 2.00 1.08 1.52
T5 (mm) 1.33 1.20 1.30
T6 (mm) 1.53 1.33 1.56
T7 (mm) 1.00 1.00 1.03
Fmax (kN) FEA 160 175.74 158.71 152.56

Predict 160.00 151.81 148.96
Upper bound of 4 σ
C.I.

184.48 168.18 160.00

EA (kJ) FEA 9.71 14.78 14.70 14.65
Predict 14.78 14.71 14.66
Lower bound of 5 σ
C.I.

14.74 14.67 14.63
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4.2. Optimization under uncertainty for front rail structure

For the front rail structure example, the optimization problem can
be expressed as Eq. (18). Similar to the tube example, three different
optimization results are presented. According to the discussion in
Section 3.2, the uncertainty factor λ=4 is used to take into account
both numerical noise and surrogate model error and the results are
presented in Table 4.

− +
+ ≤

≤ ≤
≤ ≤

μ SEA λσ SEA
s t μ F λσ F

t
t

{min ( ) ( )
. . ( ) ( ) 160kN

0.7mm 2.5mm
0.7mm 2.5 mm

max max

1

2 (18)

It is interesting to note that the optimal designs for the three cases
were all located at the boundary of design domain t2 = 0.7mm. This is
because SEA oscillates within a range but is not improved much as the
thickness t2 increases (see Fig. 13), while Fmax increases monotonically.
On the other hand, both SEA and Fmax increase as the thickness t1 in-
creases. Therefore, a small value of t2 is preferable to satisfy the con-
straint on Fmax. The optimal value of t2 was obtained to satisfy the upper
limit 160 kN with different confidence intervals. As shown in Table 4,
the optimal design obtained from deterministic optimization are lo-
cated at the constraint boundary of Fmax = 160 kN. However, since the
upper bound Fmax is 188.73 kN (as shown in Table 4), it can violate the
upper limit of the constraint when the surrogate model uncertainty and
numerical uncertainty are present. Optimization considering both nu-
merical uncertainty and surrogate model uncertainty can provide a
more conservative optimum as shown in Table 4. Notably, the 95%
confidence interval (2σ case) of PRS surrogate model is not enough to
cover both the numerical uncertainty and surrogate model uncertainty.
A more conservative and reliable result can be obtained by considering
both uncertainty factors, although the performance will be sacrificed to
some degree. However, the final robust and reliable solution can still
achieve a 12% increase of SEA with a large safety margin.

4.3. Optimization under uncertainty for multi-cell structure

For the multi-cell structure example, the optimization problem can
be given as Eq. (19). Three different optimization cases are investigated
herein. According to the discussion in Section 3.3, the uncertainty
factors for EA λ 1 = 5 and that for Fmax λ2 = 4 were used to take into
account both numerical noise and surrogate model error and the results
are presented in Table 5.

− +
+ ≤

≤ ≤

μ EA λ σ EA
s t μ F λ σ F

T T T T T T T

{min ( ) ( )
. . ( ) ( ) 160kN

1mm , , , , , , 2mm

1

max 2 max

1 2 3 4 5 6 7 (19)

As shown in Table 5, optimal design obtained from deterministic
optimization are located at the constraint boundary of Fmax = 160 kN.
However, Fmax obtained from FEA was 174.74, which violates the upper
limit of the constraint when the surrogate model uncertainty and nu-
merical uncertainty are present. It indicated that the optimal designs
obtained from deterministic design optimization are not reliable. Be-
sides, the 95% confidence interval (2σ case) of PRS surrogate model is
not enough to cover both the numerical uncertainty and surrogate
model uncertainty. Therefore, 4-sigma and 5-sigma were selected to
obtain a more conservative optimum by considering both numerical
noise and surrogate models error as shown in Table 5. It is also inter-
esting to note that the final robust and reliable solution for the multi-
cell structure can still achieve a 50% increase of EA than the baseline
model of front-rail absorbers. It shows that multi-cell structure is very
promising in improving the crashworthiness performance as energy
absorbers.

5. Conclusions

Numerical noise is an inevitable by-product for the crashworthiness
simulations for their highly nonlinear responses. This issue can lead to
challenges in finding robust and reliable optimum designs. To solve this
issue, the paper presented a novel method to determine the number of
data for estimating the accurate level of numerical noise. More im-
portantly, a simple quantification method to consider numerical un-
certainty and surrogate model uncertainty was proposed in optimiza-
tion under uncertainty based on the standard error of PRS surrogate
model. It was observed that the conventional 95% confidence interval is
not enough for robustness especially when the level of noise in the si-
mulation is high because the number of samples to build a surrogate is
normally too small for accurately estimating the level of noise. It was
shown that the different confidence intervals should be chosen based on
the level of noise. For the numerical examples considered, it was de-
monstrated that about 8-sigma is required when the mesh is changed at
different designs, while 4-sigma is enough when the mesh does not
change.
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Appendix A

See Appendix Fig. A1.

Fig. A1. Comparison of PRS prediction and FEA results for multi-cell structure example with confidence intervals: (a) Fmax for different T3; (b) EA for different T3; (c)
Fmax for different T4; (d) EA for different T4; (e) Fmax for different T5; (f) EA for different T5; (g) Fmax for different T6; (h) EA for different T6; (m) Fmax for different T7;
(n) EA for different T7.
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