EAS6939 Homework \#4 (Due: 3/22)

1. Consider the following design optimization problem:

$$
\begin{array}{ll}
\text { Minimize } & f(\mathbf{x})=x_{1}^{2}+x_{2}^{2}-4 x_{1}+4 \\
\text { Subject to } & g_{1}(\mathbf{x})=-x_{1} \leq 0 \\
& g_{2}(\mathbf{x})=-x_{2} \leq 0 \\
& g_{3}(\mathbf{x})=x_{2}-\left(1-x_{1}\right)^{3} \leq 0
\end{array}
$$

(i) Find the optimum point graphically
(ii) Show that the optimum point does not satisfy K-T condition. Explain
2. An engineering design problem is formulated as:

Minimize $\quad f(\mathbf{x})=x_{1}^{2}+2 x_{2}^{2}-5 x_{1}-2 x_{2}+10$
Subject to the constraints

$$
\begin{aligned}
& h_{1}=x_{1}+2 x_{2}-3=0 \\
& g_{1}=3 x_{1}+2 x_{2}-6 \leq 0
\end{aligned}
$$

In all of the following questions, justify your answers.
(i) Write K-T necessary conditions
(ii) How many cases are there to be considered? Identify those cases.
(iii) Find the solution for the case where g_{1} is active. Is this acceptable case?
(iv) Regardless of the solution you obtained in (iii), suppose the Lagrange multiplier for the constraint $h_{1}=0$ is $\lambda_{1}=-2$ and the Lagrange multiplier for the constraint $g_{1} \leq 0$ is $\lambda_{2}=1$. If the equality and inequality constraints are simultaneously changed to $h_{1}=x_{1}$ $+2 x_{2}-3.2=0$ and $g_{1}=3 x_{1}+2 x_{2}-6.2 \leq 0$, what will be the new optimum cost?
3. A design problem is formulated as an unconstrained optimization problem to minimize

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+2 x_{2}^{2}+2 x_{3}^{2}+4 x_{1} x_{3}+2 x_{2} x_{3}
$$

(i) Calculate the gradient of the cost function at $(1,1,1)$
(ii) Calculate Hessian at the point $(2,1,1)$
(iii) Is the cost function $f(\mathbf{x})$ a convex function? Why or Why not?
(iv) Is the cost function $f(\mathbf{x})$ convex for the region $x_{1}>1$? Why or Why not?
(v) Show that $(0,0,0)$ is a stationary point. Is this a minimum, maximum, or inflection point? Why?

