## EAS6939 Homework \#5

1. Minimize $f(\mathbf{x})=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$ by means of Newton method. Use the initial estimate $\mathbf{x}^{0}=[0,0]$.
2. Apply two steps of the steepest descent method to the minimization of $f(\mathbf{x})=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$. Use the initial estimate $\mathbf{x}^{0}=[0,0]$.
3. Apply the conjugate gradient method to the minimization of $f(\mathbf{x})=\left(2 x_{1}-x_{2}\right)^{2}+\left(x_{2}+1\right)^{2}$ with $\mathbf{x}^{0}=\left[\frac{5}{2}, 2\right]$.
4. Determine the first updated matrix $\mathbf{A}_{1}$ when applying DFP method to the minimization of $f(\mathbf{x})=3 x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}+x_{1}$ with $\mathbf{x}^{0}=[1,1]$.

$$
\begin{aligned}
& \text { 1. } \nabla f(\underline{x})=\left[\begin{array}{c}
1+4 x_{1}+2 x_{2} \\
-1+2 x_{1}+2 x_{2}
\end{array}\right]=\underline{C}(\underline{x}) ; \underline{H}(\underline{x})=\left[\begin{array}{ll}
4 & 2 \\
2 & 2
\end{array}\right] \quad \underline{H}^{-1}=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right] \\
& \underline{x}^{(1)}=\underline{x}^{(0)}-\underline{H}^{-1} \cdot \underline{c}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]-\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
\frac{3}{2}
\end{array}\right] \\
& \nabla f\left(\underline{x}^{(1)}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \underline{H} \text { is always P.D. } \quad \therefore \underline{x}^{*}=\underline{x}^{1}=\left[\begin{array}{c}
-1 \\
\frac{3}{2}
\end{array}\right] / /
\end{aligned}
$$

2. $\nabla f(\underline{x})=\left[\begin{array}{c}1+4 x_{1}+2 x_{2} \\ -1+2 x_{1}+2 x_{2}\end{array}\right], \quad \underline{x}^{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right], \underline{d}^{(1)}=-\nabla f\left(\underline{x}^{(0)}\right)=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
a) $\underline{x}^{(1)}=\underline{x}^{(0)}+\alpha_{1} \underline{d}^{(1)}=\left[\begin{array}{c}-\alpha_{1} \\ \alpha_{1}\end{array}\right]$
$\alpha_{1}$ minimizes $\Phi\left(\alpha_{1}\right)=f\left(x^{(1)}\right)=-\alpha_{1}-\alpha_{1}+2 \alpha_{1}^{2}-2 \alpha_{1}^{2}+\alpha_{1}^{2}$

$$
\frac{\partial \Phi}{\partial \alpha_{1}}=2 \alpha_{1}-2=0 \quad \therefore \alpha_{1}=1 \quad \therefore x^{(1)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

b) $x^{(2)}=x^{(1)}+\alpha_{2} d^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]+\alpha_{2}\left[\begin{array}{l}+1 \\ +1\end{array}\right]=\left[\begin{array}{c}-1+\alpha_{2} \\ 1+\alpha_{2}\end{array}\right]$

$$
\begin{aligned}
& \Phi\left(\alpha_{2}\right)=\left(-1+\alpha_{2}\right)-\left(1+\alpha_{2}\right)+2\left(\alpha_{2}-1\right)^{2}+2\left(\alpha_{2}-1\right)\left(\alpha_{2}+1\right)+\left(\alpha_{2}+1\right)^{2} \\
& \frac{\partial \Phi}{\partial \alpha_{2}}=10 \alpha_{2}-2=0 \quad \therefore \alpha_{2}=\frac{1}{5} \quad \underline{x}^{(2)}=\left[\begin{array}{c}
-0,8 \\
1.2
\end{array}\right] .
\end{aligned}
$$

3. First step, $d^{(1)}=-c^{(0)}=\left[\begin{array}{c}-12 \\ 0\end{array}\right] \quad \nabla f(x)=\left[\begin{array}{c}4\left(2 x_{1}-x_{2}\right) \\ -4 x_{1}+4 x_{2}+2\end{array}\right]$

$$
\begin{aligned}
& x^{(1)}=x^{(0)}+\alpha_{1} d^{(1)} \\
& \frac{\partial \Phi}{\partial \alpha_{1}}=0 \Rightarrow x^{(1)}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \nabla f\left(x^{(1)}\right)=\left[\begin{array}{l}
0 \\
6
\end{array}\right]=c^{(1)} \\
& d^{(2)}=-c^{(1)}+\beta_{2} d^{(1)} \quad \beta_{2}=\left(\frac{\left.\| c^{(1)}\right)}{\left\|c^{(01}\right\|}\right)^{2}=\left(\frac{6}{12}\right)^{2}=\frac{1}{4} . \\
& =\left[\begin{array}{c}
0 \\
-6
\end{array}\right]+\frac{1}{4}\left[\begin{array}{c}
-12 \\
0
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-6
\end{array}\right] \\
& x^{(2)}=\underline{x}^{(1)}+\alpha_{2} d^{(2)}=\left[\begin{array}{l}
1-3 \alpha_{2} \\
2-6 \alpha_{2}
\end{array}\right] \\
& \Phi\left(\alpha_{2}\right)=\left(2\left(1-3 \alpha_{2}\right)-\left(2-6 \alpha_{2}\right)\right)^{2}+\left(2-6 \alpha_{2}+1\right)^{2} \\
& \frac{\partial \Phi}{\partial \alpha_{2}}=-12\left(3-6 \alpha_{2}\right)=0 \quad \therefore \alpha_{2}=\frac{1}{2}
\end{aligned}
$$

$\Rightarrow \underline{x}^{(2)}=\left[\begin{array}{c}-\frac{1}{2} \\ -1\end{array}\right] \quad \nabla f\left(x^{(3)}\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. and $H=\left[\begin{array}{cc}8 & -4 \\ -4 & 4\end{array}\right]$ is P.D.

$$
\therefore \underline{x}^{*}=\underline{x}^{(2)}
$$

4. $\nabla f(\underline{x})=\left[\begin{array}{c}6 x_{1}-2 x_{2}+1 \\ -2 x_{1}+2 x_{2}\end{array}\right] \quad \nabla f\left(\underline{x}^{0}\right)=\left[\begin{array}{l}5 \\ 0\end{array}\right], \quad \underline{A}_{0}=I$.

$$
\begin{aligned}
& \underline{x}^{(1)}=\underline{x}^{(c)}+\alpha_{1} \underline{d}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\alpha_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
-5 \\
0
\end{array}\right]=\left[\begin{array}{c}
1-5 \lambda_{1} \\
1
\end{array}\right] \\
& \Phi\left(\alpha_{1}\right)=3\left(1-5 \alpha_{1}\right)^{2}-2\left(1-5 \alpha_{1}\right)+1+\left(1-5 \alpha_{1}\right) \\
& \frac{\partial \Phi}{\partial \alpha_{1}}=6\left(1-5 \alpha_{1}\right)(-5)+10-5=0 \Rightarrow \alpha_{1}=\frac{1}{6} . \\
& \Rightarrow \underline{x}^{(1)}=\left[\begin{array}{l}
\frac{1}{6} \\
1
\end{array}\right] \quad \underline{S}_{0}-x^{(1)}-\underline{x}^{(c)}=\left[\begin{array}{c}
-\frac{5}{6} \\
1
\end{array}\right] \\
& \nabla f\left(x^{(1)}\right)=\left[\begin{array}{l}
0 \\
\frac{5}{3}
\end{array}\right] \quad \underline{y}_{0}=c^{(1)}-c^{(0)}=\left[\begin{array}{c}
-5 \\
\frac{5}{3}
\end{array}\right] \\
& \underline{A}_{1}=\underline{A}_{0}+\frac{S_{0} S_{0}^{\top}}{S_{0}^{\top} y_{0}}-\frac{\left(A_{0} y_{0}\right)\left(y_{0}^{\top} A_{0}\right)}{y_{0}^{\top} A_{0} y_{0}}=\left[\begin{array}{cc}
\frac{4}{15} & \frac{3}{10} \\
\frac{3}{10} & \frac{9}{10}
\end{array}\right]
\end{aligned}
$$

