
EAS6939 Homework #6 
 
1. In engineering, the random wind pressure (Y) is typically modeled as a quadratic 
transformation of the random wind speed (X). If 2~ ( , )x xX N μ σ  and Y = X2, find approximation 
of Y based on the first-order Taylor series expansion about mean of X and equivalent 
linearization. For equivalent linearization, consider YL = aX + b, where a and b are optimal 
parameters. Calculate the mean and variance of the above approximations of Y. 
 
Solution: 
1) First-order Taylor series expansion: 
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Therefore, the approximate mean and variance are 
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2) Equivalent linearization: 
The model parameters a and b can be obtained from: 
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For a general case, the minimizing conditions become 
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From class,  
2 2 2[ ] x xE X σ μ= +  
3 2 3[ ] 2 x x xE X μ σ μ= +  

Therefore, parameters a and b are calculated by 
2 22 x x xa bμ σ μ= = −  

And the linearized equation becomes 
2 22L x x xY Xμ σ μ= + −  

And the mean and variance become 
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2. A vehicle has a deterministic mass, m = 2, and random velocity, V, which can take on both 
positive and negative values. The kinetic energy (K) of the vehicle is 21

2K mV= . If V follows 
Normal (Gaussian) probability distribution with mean, mV = 0, and standard deviation, σV = 1, 
determine the probability density function and cumulative probability distribution function of K. 
Use the method of general transformation. 
 
Solution: 



Since the relationship, K = V2, is nonlinear, the method of general transformation needs to be 
used. 
CDF of K: 
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Since V is Normal with zero mean, FV(–v) = 1 – FV(v) for any v. Hence, the CDF of K can be 
written as 

( ) ( ) ( )( ) 2 1K V V VF k F k F k F k= − = − −  

Since K is always positive, the complete PDF 
of K is 
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PDF of K: 
By differentiating PDF of K,  
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This is one-degree-of-freedom chi-square probability. 
 
3. The resistance (or strength), R, of a mechanical component which is subject to a load, S, are 
modeled as random variables with the following probability density function: 
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Assume that R and S are statistically independent. Find the cumulative probability distribution 
functions, FY(y) and FZ(z) of  
(a) Y = R – S  
(b) Z = R/S 
Furthermore, evaluate 
(c) FY(0) 



(d) FZ(1) 
(e) Explain why FY(0) = FZ(1) 
 
Solution: 
(a) CDF of Y = R – S 
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For -1<y<0 
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For 0<y<1 
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For 1<y<2 
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Therefore 
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(a) CDF of Z = R/S 
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For 0<z<2 
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For z>2 
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(c) 1 0 1(0)
3 2 3YF = + =  

(d) 1(1)
3ZF =  

(e) (0) ( 0) ( 0) ( / 1 0) ( 1) (1)Y ZF P Y P R S P R S P Z F= ≤ = − ≤ = − ≤ = ≤ =  
Both probabilities represent the probability of event when R < S; i.e., when the applied load 
exceeds the resistance of the mechanical component. Since this is a failure event for this 
component, this probability if called the probability of failure. 
 


