EAS6939 Homework \#6

1. In engineering, the random wind pressure (Y) is typically modeled as a quadratic transformation of the random wind speed (X). If $X \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$ and $Y=X^{2}$, find approximation of Y based on the first-order Taylor series expansion about mean of X and equivalent linearization. For equivalent linearization, consider $Y_{L}=a X+b$, where a and b are optimal parameters. Calculate the mean and variance of the above approximations of Y.

Solution:

1) First-order Taylor series expansion:

$$
Y_{L}=Y\left(\mu_{x}\right)+\left.\frac{d Y}{d X}\right|_{x=\mu_{x}}\left(X-\mu_{x}\right)=2 \mu_{x} X-\mu_{x}^{2}
$$

Therefore, the approximate mean and variance are

$$
\begin{aligned}
& \mu_{Y}=E\left[Y_{L}\right]=2 \mu_{x} E[X]-\mu_{x}^{2}=\mu_{x}^{2} \\
& \sigma_{Y}^{2}=\left(2 \mu_{x}\right)^{2} \operatorname{Var}[X]=2 \mu_{x}^{2} \sigma_{x}^{2}
\end{aligned}
$$

2) Equivalent linearization:

The model parameters a and b can be obtained from:

$$
\underset{a, b}{\operatorname{minimize}} E\left[Y_{L}-Y\right]^{2}
$$

For a general case, the minimizing conditions become
$a E\left[X^{2}\right]+b E[X]=E\left[X^{3}\right]$
$a E[X]+b=E\left[X^{2}\right]$
From class,
$E\left[X^{2}\right]=\sigma_{x}^{2}+\mu_{x}^{2}$
$E\left[X^{3}\right]=2 \mu_{x} \sigma_{x}^{2}+\mu_{x}^{3}$
Therefore, parameters a and b are calculated by

$$
a=2 \mu_{x} \quad b=\sigma_{x}^{2}-\mu_{x}^{2}
$$

And the linearized equation becomes
$Y_{L}=2 \mu_{x} X+\sigma_{x}^{2}-\mu_{x}^{2}$
And the mean and variance become
$\mu_{\mathrm{Y}}=\sigma_{x}^{2}+\mu_{x}^{2}$
$\sigma_{Y}^{2}=4 \mu_{x}^{2} \sigma_{x}^{2}$
2. A vehicle has a deterministic mass, $m=2$, and random velocity, V, which can take on both positive and negative values. The kinetic energy (K) of the vehicle is $K=\frac{1}{2} m V^{2}$. If V follows Normal (Gaussian) probability distribution with mean, $m_{V}=0$, and standard deviation, $\sigma_{V}=1$, determine the probability density function and cumulative probability distribution function of K. Use the method of general transformation.

Solution:

Since the relationship, $K=V^{2}$, is nonlinear, the method of general transformation needs to be used.
CDF of K :

$$
\begin{aligned}
F_{K}(k) & =P(K \leq k) \\
& =P\left(V^{2} \leq k\right) \\
& =\int_{R=\left\{V^{2} \leq k\right\}} f_{V}(v) \mathrm{d} v \\
& =2 \int_{-\sqrt{k}}^{0} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} v^{2}\right) \mathrm{d} v \\
& =2\left[\frac{1}{2}-F_{V}(-\sqrt{k})\right] \\
& =1-2 F_{V}(-\sqrt{k}) \quad \text { for } k \geq 0
\end{aligned}
$$

Since V is Normal with zero mean, $F_{V}(-v)=1-F_{V}(v)$ for any v. Hence, the CDF of K can be written as
$F_{K}(k)=2 F_{V}(\sqrt{k})-1=F_{V}(\sqrt{k})-F_{V}(-\sqrt{k})$
Since K is always positive, the complete PDF of K is
$F_{K}(k)= \begin{cases}0 & k<0 \\ F_{V}(\sqrt{k})-F_{V}(-\sqrt{k}) & k \geq 0\end{cases}$
PDF of K :
By differentiating PDF of K,

$$
\begin{aligned}
f_{K}(k) & =\frac{\mathrm{d} F_{K}(k)}{\mathrm{d} k}=2 \frac{\mathrm{~d} F_{V}(\sqrt{k})}{\mathrm{d} k} \\
& =2 f_{V}(\sqrt{k}) \frac{1}{2} \frac{1}{\sqrt{k}} \\
& =\frac{1}{\sqrt{2 \pi k}} \exp \left(-\frac{1}{2} k\right), \quad k \geq 0
\end{aligned}
$$

This is one-degree-of-freedom chi-square probability.
3. The resistance (or strength), R, of a mechanical component which is subject to a load, S, are modeled as random variables with the following probability density function:
$f_{R}(r)= \begin{cases}0.5 & 0 \leq r \leq 2 \\ 0 & \text { otherwise }\end{cases}$
$f_{s}(s)= \begin{cases}2 s & 0 \leq s \leq 1 \\ 0 & \text { otherwise }\end{cases}$

Assume that R and S are statistically independent. Find the cumulative probability distribution functions, $F_{Y}(y)$ and $F_{Z}(z)$ of
(a) $Y=R-S$
(b) $Z=R / S$

Furthermore, evaluate
(c) $F_{Y}(0)$
(d) $F_{Z}(1)$
(e) Explain why $F_{Y}(0)=F_{Z}(1)$

Solution:

(a) CDF of $Y=R-S$
$F_{Y}(y)=P(Y \leq y)=P(R-S \leq y)=P(R-S-y \leq 0)=\iint_{R=\{r-s-y \leq 0\}} f_{R}(r) f_{S}(s) \mathrm{d} r \mathrm{~d} s$

For $-1<y<0$
$F_{Y}(y)=\int_{-y}^{1} \int_{0}^{s+y} \frac{1}{2}(2 s) \mathrm{d} r \mathrm{~d} s=\int_{-y}^{1} s(s+y) \mathrm{d} s=\left.\left[\frac{s^{3}}{3}+y \frac{s^{2}}{2}\right]\right|_{-y} ^{1}=\frac{1}{3}+\frac{y}{2}-\frac{y^{3}}{6}$
For $0<y<1$
$F_{Y}(y)=\int_{0}^{1} \int_{0}^{s+y} \frac{1}{2}(2 s) \mathrm{d} r \mathrm{~d} s=\int_{0}^{1} s(s+y) \mathrm{d} s=\left.\left[\frac{\frac{s}{}^{3}}{3}+y \frac{s^{2}}{2}\right]\right|_{0} ^{1}=\frac{1}{3}+\frac{y}{2}$
For $1<y<2$
$F_{Y}(y)=1-\int_{0}^{2-y} \int_{s+y}^{2} \frac{1}{2}(2 s) \mathrm{d} r \mathrm{~d} s=1-\int_{0}^{2-y} s(2-s-y) \mathrm{d} s=1-\left.\left[s^{2}-\frac{s^{3}}{3}-y \frac{s^{2}}{2}\right]\right|_{0} ^{2-y}=1-\frac{(2-y)^{3}}{6}$
Therefore
$F_{Y}(y)= \begin{cases}0 & y \leq-1 \\ \frac{1}{3}+\frac{y}{2}-\frac{y^{3}}{6} & -1 \leq y \leq 0 \\ \frac{1}{3}+\frac{y}{2} & 0 \leq y \leq 1 \\ 1-\frac{(2-y)^{3}}{6} & 1 \leq y \leq 2 \\ 1 & 2 \leq y\end{cases}$
(a) CDF of $Z=R / S$
$F_{Y}(y)=P(Z \leq z)=P\left(\frac{R}{S}-z \leq 0\right)=\iint_{R=\{r \mid s-z \leq 0\}} f_{R}(r) f_{S}(s) \mathrm{d} r \mathrm{~d} s$

For $0<z<2$
$F_{Z}(z)=\int_{0}^{1} \int_{0}^{s z} \frac{1}{2}(2 s) \mathrm{d} r \mathrm{~d} s=\int_{0}^{1} s^{2} z \mathrm{~d} s=\left.\left[Z \frac{s^{3}}{3}\right]\right|_{0} ^{1}=\frac{Z}{3}$
For $\mathrm{z}>2$
$F_{Z}(z)=1-\int_{0}^{2} \int_{0}^{r / z} \frac{1}{2}(2 s) \mathrm{d} s \mathrm{~d} r=1-\frac{1}{2} \int_{0}^{2} \frac{r^{2}}{z^{2}} \mathrm{~d} r=1-\left.\frac{1}{2 z^{2}}\left[\frac{z^{3}}{3}\right]\right|_{0} ^{2}=1-\frac{4}{3 z^{2}}$
Therefore
$F_{z}(z)= \begin{cases}0 & z \leq 0 \\ \frac{z}{3} & 0 \leq z \leq 2 \\ 1-\frac{4}{3 z^{2}} & z \geq 2\end{cases}$
(c) $F_{Y}(0)=\frac{1}{3}+\frac{0}{2}=\frac{1}{3}$
(d) $F_{Z}(1)=\frac{1}{3}$
(e) $F_{Y}(0)=P(Y \leq 0)=P(R-S \leq 0)=P(R / S-1 \leq 0)=P(Z \leq 1)=F_{Z}(1)$

Both probabilities represent the probability of event when $\mathrm{R}<\mathrm{S}$; i.e., when the applied load exceeds the resistance of the mechanical component. Since this is a failure event for this component, this probability if called the probability of failure.

